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Preface

The prospect facing students still in need of Basic Algebra as they enter
two-year colleges2 is a discouraging one inasmuch as it usually takes at the
very least two semesters before they can arrive at the course(s) that they
are interested in—or required to take, not to dwell on the fact that their
chances of overall success tend to be extremely low3.

Reasonable Basic Algebra (RBA) is a standalone version of part
of From Arithmetic To Differential Calculus (A2DC), a course
of study developed to allow a significantly higher percentage of students to
complete Differential Calculus in three semesters. As it is intended for
a one-semester course, though, RBA may serve in a similar manner students
with different goals.

The general intention is to get the students to change from being “answer
oriented”, the inevitable result of “show and tell, drill and test”, to being
“question oriented4” and thus, rather than try to “remember” things, be able
to “reconstruct” them as needed. The specific means by which RBA hopes
to accomplish this goal are presented at some length below but, briefly, they
include:
• An expositional approach, based on what is known in mathematics as

model theory, which carefully distinguishes “real-world” situations
from their “paper-world” representations5. A bit more precisely, we start
with processes involving “real-world” collections that yield either a re-
lationship between these collections or some new collection and the stu-
dents then have to develop a paper procedure that will yield the sentence
representing the relationship or the number-phrase representing the new

2Otherwise known, these days, as “developmental” students.
3For instance, students who wish eventually to learn Differential Calculus, the

“mathematics of change”, face five or six semesters with chances of overall success of no
more than one percent.

4See John Holt’s classic How Chidren Fail, Delacorte Press,1982.
5See Zoltan P. Dienes, for instance Building Up Mathematics.
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collection.

EXAMPLE 0.1. Given that, in the real-world, when we attach to a
collection of three apples to a collection of two apples we get a collection
of five apples, the question for the students is to develop a paper procedure
that, from 3 Apples and 2 Apples, the number-phrases representing on paper
these real-world collections, will yield the number-phrase 5 Apples.

In other words, the students are meant to abstract the necessary concepts
from a familiar “real-world” since, indeed, “We are usually more easily
convinced by reasons we have found ourselves than by those which have
occurred to others.” (Blaise Pascal).
• A very carefully structured contents architecture—in total contrast to
the usual more or less haphazard string of “topics”—to create systematic
reinforcement and foster an exponential learning curve based on a Co-
herent View of Mathematics and thus help students acquire a Profound
Understanding of Fundamental Mathematics6.
• A systematic attention to linguistic issues that often prevent students
from being able to focus on the mathematical concepts themselves.
• An insistence on convincing the students that the reason things mathe-
matical are the way they are is not because “experts say so” but because
common sense says they cannot be otherwise.

∴

The contents architecture was designed in terms of three major require-
ments.

1. From the students’ viewpoint, each and every mathematical issue
should:
• flow “naturally” from what just precedes it,
• be developed only as far as needed for what will follow “naturally”,
• be dealt with in sufficient “natural” generality to support further devel-
opments without having first to be recast.

EXAMPLE 0.2.
After counting dollars sitting on a counter, it is “natural” to count dollars
changing hands over the counter and thus to develop signed numbers. In
contrast, multiplication, division or fractions all involve a complete change of
venue.

6See Liping Ma’s Knowing and Teaching Elementary School Mathematics.
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2. Only a very few very simple but very powerful ideas should be used
to underpin all the presentations and discussions even if this may be at the
cost of some additional length. After they have familiarized themselves with
such an idea, in its simplest possible embodiment, later, in more complicated
situations, the students can then focus on the technical aspects of getting
the idea to work in the situation at hand. In this manner, the students
eventually get to feel that they can cope with “anything”.

EXAMPLE 0.3.
The concept of combination-phrase is introduced with 3 Quarters + 7 Dimes
in which Quarters and Dimes are denominators and where + does not denote
addition as it does in 3 Quarters + 7 Quarters but stands for “and”. (In fact,
for a while, we write 3 Quarters & 7 Dimes.) The concept then comes up again
and again: with 3 hundreds + 7 tens, with 3

4 + 7
10 , with 3x2 + 7x5, with

3x + 7y, etc, culminating, if much later, with 3~i + 7~j.

EXAMPLE 0.4.
If we can change, say, 1 Quarter for 5 Nickels and 1 Dime for 2 Nickels, we
can then change the combination-phrase 3 Quarters+ 7 Dimes for 3����Quarters×
5 Nickels
���Quarter + 7 ���Dimes × 2 Nickels

��Dime that is for the specifying-phrase 15 Nickels +
14 Nickels which we identify as 29 Nickels. (Note by the way that here × is
a very particular type of multiplication, as also found in 3����Dollars × 7 Cents

���Dollar =
21 Cents.) Later, when having to “add” 3

4 + 7
10 , the students will then need

only to concentrate on the technical issue of developing a procedure to find the
denominators that Fourth and Tenth can both be changed for, e.g. Twentieths,
Hundredths, etc.

3. The issue of “undoing” whatever has been done should always be, if
not always resolved, at least always discussed.

EXAMPLE 0.5.
Counting backward is introduced by the need to undo counting forward and
both subtracting and signed numbers are introduced by the need to undo
adding, that is by the need to solve the equation a + x = b.

∴

As a result of these requirements, the contents had to be stripped of the
various “kitchen sinks” to be found in current basic algebra courses and
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the two essential themes RBA focuses on are affine inequations & equations
and Laurent polynomials. This focus empowers the students in that, once
they have mastered these subjects, they will be able both: i. to investigate
the Calculus of Functions as in A2DC and ii. to acquire in a similar
manner whatever other algebraic tools they may need for other purposes.

However, a problem arose in that the background necessary for a treat-
ment that would make solid sense to the students was not likely to have
been acquired in any course the students might have taken previously while,
for lack of time, a full treatment of arithmetic, such as can be found in
A2DC, was out of the question here.

Following is the “three Parts compromise” that was eventually reached.
Part I consists of a treatment of arithmetic, taken from A2DC but min-
imal in two respects: i. It is limited to what is strictly necessary to make
sense of inequations & equations in Part II and Laurent polynomials in Part
III, that is to the ways in which number-phrases are compared and operated
with. ii. It is developed only in the case of counting number-phrases with the
extension to decimal number-phrases to be taken for granted even though
the latter are really of primary importance—and fully dealt with in A2DC.
• Chapter 1 introduces and discusses the general model theoretic concepts
that are at the very core of RBA: real-world collections versus paper-world
number-phrases, combinations, graphic representations.
• Chapter 2 discusses comparisons, with real-world collections compared
cardinally, that is by way of one-to-one matching, while paper-world
number-phrases are compared ordinally, that is by way of counting. The
six verbs, <, >, 5, =, =, 6=, together with their interrelationships, are
carefully discussed in the context of sentences, namely inequalities and
equalities that can be true or false.
• Chapter 3 discusses the effect of an action on a state and introduces ad-
dition as a unary operator representing the real-world action of attaching
a collection to a collection.
• Chapter 4 introduces subtraction as a unary operator meant to “undo”
addition, that is as representing the real-world action of detaching a
collection from a collection.
• Chapter 5 considers collections of “two-way” items which we represent
by signed number-phrases.

EXAMPLE 0.6. Collections of steps forward versus collections of steps
backward, Collections of steps up versus collections of steps down, Collec-
tions of dollars gained versus collections of dollars lost, etc
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In order to deal with signed number-phrases, the verbs, <, >, etc, are
extended to <, =, etc and the operators + and − to ⊕ and 	.
• Chapter 6 introduces co-multiplication between number-phrases and unit-
value number-phrases as a way to find the value that represents the worth
of a collection.

EXAMPLE 0.7. 3 Apples×2Cents
Apple = 6 Cents as well as 3 Dollars×7 Cents

Dollar =
21 Cents

We continue to distinguish between plain number-phrases and signed
number-phrases with × and ⊗.

Part II then deals with number-phrases specified as solution of problems.
• Chapter 7 introduces the idea of real-world collections selected from a
set of selectable collections by a requirement and, in the paper-world, of
nouns specified from a data set by a form. Letting the data set then
consist of counting numerators, we discuss locating and representing the
solution subset (of the data set) specified by a basic formula, i.e. of type
x = x0, x < x0, etc where x0 is a given gauge.
• Chapter 8 extends the previous ideas to the case of decimal numerators by
introducing a general procedure, to be systematically used henceforth, in
which we locate separately the boundary and the interior of the solution
subset. Particular attention is given to the representation of the solution
subset, both by graph and by name.
• Chapter 9 begins the focus on the computations necessary to locate the

boundary in the particular case of “special affine” problems, namely
translation problems and dilation problems, which are solved by reducing
them to basic problems.
• Chapter 10 then solves affine problems by reducing them to dilation prob-

lems and hence to basic problems. It concludes with the consideration of
some affine-reducible problems.
• Chapter 11 discusses the connectors and, and/or, either/or, in the
context of double basic problems, that is problems involving two basic
inequations/equations (in the same unknown). Here again, particular
attention is given to the representation of the solution subset, both by
graph and by name.
• Chapter 12 wraps up the discussion of how to select collections with the
investigation of double affine problems, that is problems involving two
affine inequations/equations (in the same unknown).

Part III investigates plain polynomials as a particular case of Laurent poly-
nomials.
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• Chapter 13 discusses what is involved in repeated multiplications and
repeated divisions of a number-phrase by a numerator and introduces the
notion of signed power.
• Chapter 14 extends this notion to Laurent monomials, namely signed

powers of x. Multiplication and division or Laurent monomials are care-
fully discussed.
• Chapter 15 extends the fact that decimal numerators are combinations of
signed powers of ten to the introduction of Laurent polynomials as com-
binations of signed powers of x. Addition and subtraction of polynomials
are then defined in the obvious manner.
• Chapter 16 continues the investigation of Laurent polynomials with the
investigation of multiplication.
• Chapter 17 discusses a particular case of multiplication, namely the suc-
cessive powers of x0 + u.
• Chapter 18 closes the book with a discussion of the division of polyno-
mials both in descending and ascending powers

∴

This is probably the place where it should be disclosed that, as the
development of this text was coming to an end, the author came across
a 1905 text7 that gave him the impression that, in his many deviations
from the current praxis, he had often reinvented the wheel. While rather
reassuring, this was also, if perhaps surprisingly, somewhat disheartening.

∴

Some of the linguistic issues affecting the students’s progress are very
specific and are directly addressed as such. The concept of duality, for
instance, is a very powerful one and occurs in very many guises.
• When it occurs as “passive voice”, duality is almost invariably confused
with symmetry, a more familiar concept8. But, in particular, while du-
ality preserves truth, symmetry may or may not.

EXAMPLE 0.8.
“Jack is a child of Sue” is the dual of “Sue is a parent of Jack” and, since

7H. B. Fine, College Algebra, reprinted by American Mathematical Society Chelsea,
2005.

8The inability to use the “passive voice” is a most important linguistic stumbling block
for students and one that Educologists have yet to acknowledge.
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both refer to the same real-world relationship, they are either both true or
both false.
On the other hand, “Jack is a child of Sue” is the symmetrical of “Sue is a
child of Jack” and, here, the truth of one forces the falsehood of the other.
But compare with what would happen with “brother” or “sibling” instead
of “child”.

• When it occurs as indirect definition, duality is quite foreign to most
students but absolutely indispensable in certain situations.

EXAMPLE 0.9.
While Dollar can be defined directly in terms of Quarters by saying that
1 Dollar is equal to 4 Quarters, the definition of Quarter in terms of Dollar
is an indirect one in that we must say that a Quarter is that kind of coin
of which we need 4 to change for 1 Dollar and students first need to be
reconciled with this syntactic form. The same stumbling block occurs in
dealing with roots since

√
9 is to be understood as “that number the square

of which is 9”a.
aEducologists will surely agree that, for instance, these particular “reverse” prob-

lems would in fact be better dealt with in an algebraic context, i.e. as the investigation
of 4x = 1 and x2 = 9. Iincidentally, this is the point of view adopted in A2DC where
arithmetic and algebra are systematically “integrated”.

Other linguistic issues, even though more diffuse, are nevertheless sys-
tematically taken into account. For instance:
• While mathematicians are used to all sorts of things “going without say-

ing”, students feel more comfortable when everything is made explicit as,
for instance, when & is distinguished from +. Hence, in particular, the
explicit use in this text of default rules.
• The meaning of mathematical symbols usually depends on the context
while students generally feel more comfortable with context-free termi-
nology, that is in the case of a one-to-one correspondence between terms
and concepts.
• Even small linguistic variations in parallel cases disturb the students who
take these variations as having to be significant and therefore as implying
in fact an unsaid but actual lack of parallelism.

In general, being aware of what needs to be said versus what can go without
saying is part of what makes one a mathematician and, as such, requires
learning and getting used to. Thus, although being pedantic is not the goal
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here, RBA tries very hard to be as pedestrian as possible and, if only for
the purpose of “discussing matters”, to make sure that everything is named
and that every term is “explained” even if usually not formally defined.

∴

The standard way of establishing truth in mathematics is by way of proof
but the capacity of being convinced by a proof is another part of what makes
one a mathematician. And indeed, since the students for whom RBA was
written are used only to drill based on “template examples”, they tend to
behave as in the joke about Socrates’ slave who, when led through the proof
of the Pythagorean Theorem, answers “Yes” when asked if he agrees with
the current step and “No” when asked at the end if he agrees with the truth
of the Theorem. So, to try to be convincing, we use a mode of arguing
somewhat like that used by lawyers in front of a court9.

Another reason for using a mode of reasoning more akin to everyday
argumentation is that even people unlikely to become prospective mathe-
maticians ought to realize the similarities between having to establish the
truth in mathematics and having to establish the truth in real-life. Yet, as
Philip Ross wrote recently, “American psychologist Edward Thorndike first
noted this lack of transference over a century ago, when he showed that [. . . ]
geometric proofs do not teach the use of logic in daily life.”10.

∴

Finally, it is perhaps worth mentioning that this text came out of the
author’s conviction that it is not good for a society to have a huge majority of
its citizens saying they were “never good in math”. To quote Colin McGinn
at some length:

“Democratic States are constitutively committed to ensuring and further-
ing the intellectual health of the citizens who compose them: indeed, they are
only possible at all if people reach a certain cognitive level [. . . ]. Democracy
and education (in the widest sense) are thus as conceptually inseparable as
individual rational action and knowledge of the world. [. . . ] Plainly, [edu-
cation] involves the transmission of knowledge from teacher to taught. But
[knowledge] is true justified belief that has been arrived at by rational means.
[. . . ] Thus the norms governing political action incorporate or embed norms
appropriate to rational belief formation. [. . . ]”

9See Stephen E. Toulmin, The Uses of Argument Cambridge University Press, 1958
10Philip E. Ross, The Expert Mind. Scientific American, August 2006.
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“A basic requirement is to cultivate in the populace a respect for intellec-
tual values, an intolerance of intellectual vices or shortcomings. [. . . ] The
forces of cretinisation are, and have always been, the biggest threat to the
success of democracy as a way of allocating political power: this is the fun-
damental conceptual truth, as well as a lamentable fact of history.”

“[However] people do not really like the truth; they feel coerced by reason,
bullied by fact. In a certain sense, this is not irrational, since a commitment
to believe only what is true implies a willingness to detach your beliefs from
your desires. [. . . ] Truth limits your freedom, in a way, because it reduces
your belief-options; it is quite capable of forcing your mind to go against
its natural inclination. [. . . ] One of the central aims of education, as a
preparation for political democracy, should be to enable people to get on
better terms with reason—to learn to live with the truth.” 11

EXAMPLE 0.10.

11Colin McGinn, Homage to Education, London Review of Books, August 16, 1990
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What is important is the real
world, that is physics, but it can
be explained only in
mathematical terms.

Dennis Serre1

procedure

Chapter 1

Number-Phrases

What Arithmetic and Algebra are About, 3 • Specialized Languages,
4 • Real-World, 5 • Number-Phrases, 6 • Representing Large Collections,
8 • Graphic Illustrations, 13 • Combinations, 15 • About Number-Phrases,
17 • Decimal Number-Phrases, 20.

This chapter takes a brief look back at Arithmetic to present it in a
way that will be a better basis for looking at Algebra because we will then
be able to look at algebra as just a continuation of arithmetic.

1 What Arithmetic and Algebra are About

To put it as briefly as possible, Arithmetic and Algebra are both about
developing procedures to figure out on paper the result of real-world pro-
cesses without having to go through the real-world processes themselves.
To make this a bit clearer, here are two examples from Arithmetic the
Algebra counterpart of which we will deal with in Part III of this book.

EXAMPLE 1.1. In the real world, we may want to hand-out six one-dollar
bills to each of four people. To find out ahead of time how many one-dollar
bills this would amount to, we would put on the table six one-dollar bills for
the first person, then six one-dollar bills for the second person, etc. The result
of this real-world process is that this amounts to twenty-four one-dollar bills.

0Bulletin of the AMS, Vol 47 Number 1 Pages 139-144

3
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But with, say, hundreds of one-dollar bills to each of thousands of people,
this process would be impractical and what we do instead is to represent on
paper both the one-dollar bills and the people and then develop the procedure
called multiplication, that is a procedure for figuring-out on paper how many
one-dollar bills we will need as a result of the real-world process.

EXAMPLE 1.2. In the real world, we may want to split fourteen one-dollar
bills among three people. To find out ahead of time how many one-dollar each
person should get, we would put on the table one one-dollar bill for the first
person, one one-dollar bill for the second person, one one-dollar bill for the
third person, and then, in a second round, another one-dollar bill for the first
person, another one-dollar bill for the second person, and so on until we cannot
do a full round. The result of this real-world process is that each person would
get four one-dollar bills with two one-dollar bills remaining un-split.
But with thousands of one-dollar bills to be split among hundreds of people,
this process would be impractical and what we do instead is to represent on
paper both the one-dollar bills and the people and then develop the procedure
called division, that is a procedure for figuring-out on paper how many one-
dollar bills to give to each person and how many one-dollar bills will remain
un-split as a result of the real-world process.

The difference between these two examples illustrate is not obvious but,
as we shall see, it is a significant one which, in fact, is at the root of the
distinction between Arithmetic and Algebra.

2 Specialized Languages

People working in any trade need to use words with a special meaning.
Sometimes, these are special words but often they are common words used
with a meaning special to the trade. For instance, what electricians call a
“pancake” is a junction box that is just the thickness of drywall.

In the same manner, in order to develop and discuss the procedures of
Arithmetic and Algebra, we will have to use a mathematical lan-
guage, that is words that will sometimes be special words but will most of
the time be just common words with a meaning special to Mathematics.
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EXAMPLE 1.3. While the words “process” and “procedure” usually mean
more or less the same thing, in this book we shall reserve the word “process”
for when we talk about what we do in the real world and we shall reserve the
word “procedure” for when we talk about what we do on paper .

In this book, we will encounter a great many such words with special
meaning, likely more than usual. The idea, though, is certainly not that
the students should memorize the special meaning of all these words. These
words are used as focusing devices to help the students see exactly what they
are intended to see whenever we discuss an issue. Thus, quite often, these
words with special meaning will not reappear once the discussion has been
completed as they will have served their purpose.

However, in order to help students find where the special meaning of
these words is explained, these words with special meaning will always be:
• boldfaced the first time they appear—which is where they are ex-

plained,
• printed in the margin of the page where they first appear and are
explained,
• listed in the index at the end of the book with the number of the page
where they first appear and are explained.

3 Real-World

While in the real-world it is often possible to exhibit the items that are
to be dealt with this is not possible in a book. So, to start with, we need a
way to make it clear when we are talking about real-world items as opposed
to when we are talking about what we will use to represent these items
on paper .

In this book, when we will want to talk about real-world items, we will
use pictures of these items.

EXAMPLE 1.4. When we will be talking about real-world one-dollar bills,
we will use the following picture
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4 Number-Phrases
Our first task in arithmetic is to find a way to represent real-world items
on paper. The underlying idea is quite simple.

1. Given real-world items, in order to represent them on paper , we need
to convey two pieces of information:
• We must write a denominator to say what kind of items we are dealing

with. Of course, for this to be possible, all the items will have to be of
the same kind and this will not work when the items are of different
kinds as, for instance, when we are dealing with ten-dollar bills together
with one-dollar bills. So, for the time being, we will deal only with items
that are all of the same kind and in this case we will say that we can
collect the items into a collection.

EXAMPLE 1.5. Given the following real-world items,

since they are all of the same kind (they make up a collection) we can use
as a denominator the name of the President whose picture is on them, that
is

Washington

• We must write a numerator to say how many of these items there are
in the collection we are dealing with.
The first approach that comes to mind is just to write a string of
slashes, that is to write a slash / for each and every item in the real-
world collection.

EXAMPLE 1.6. Given the following real-world items,

since they are all of the same kind they make up a collection and to get a
numerator we can just write a / for each and every item in the collection
that is

///

It is usual first to write the numerator and then to write the denominator
and the result then makes up what we shall call a number-phrase.
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nature␣(of␣a␣collection)
size␣(of␣a␣collection)EXAMPLE 1.7. Given the following real-world items,

since they are all of the same kind they make up a collection which we can
represent by the number-phrase

/// Washingtons

2. Conversely, given a number-phrase, to get the collection that it rep-
resents,
i. The denominator tells us the nature of the collection, that is what
kind of items are in the collection,
ii. The numerator tells us the size of the collection, that is the number
of items that are in the collection.

EXAMPLE 1.8. Given the number-phrase /// Washingtons, to get the
collection of real-world items that it represents:
i. The denominator Washingtons tells us that the items in the collection are

like ,

ii. The numerator /// then tells us that there must be a in the
collection for each slash in the numerator.
iii. Altogether, the slash number-phrase

/// Washingtons
represents the collection of real-world items

.

3. In other words, compared to a photograph of the collection, a number-
phrase causes no loss of information as all we did was just to separate quan-
tity—represented by the numerator— from quality—represented by the
denominator2. (Keep in mind, though, that this only works for collections.)

As a matter of fact, this is most likely how, several thousands of years
ago, SUBJECTArithmetic, got started when, one may imagine, Sumerian

2In spite of which this is precisely the point where, in the name of “abstraction”,
Educologists cut their students away from denominators without noticing, of course, that
this is exactly the point where they start losing them.
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merchants, faced with the problem of accounting for more goods in the
warehouse and/or money in the safe than they could handle directly, decided
to have both the goods and the money represented by various scratches on
clay tablets so that they could see from these scratches the situation their
business was in without the inconvenience of having to go to the warehouse
and/or to open the safe.

5 Representing Large Collections
With large collections, a problem arises in that it becomes difficult to see,
at a glance, how many items a long string of slashes represents.

EXAMPLE 1.9. Given the number-phrase
//////////////////////////////// Washingtons

it is not immediately clear how many items are in the collection that the number-
phrase represents.

What we will do is to count the collection and we will write what we
shall therefore call a counting number-phrase. There are three stages
to developing the procedure.

1. We must begin by memorizing the following digits as shorthands
for the first nine strings of slashes:

string digit

/ 1
// 2
/// 3
//// 4
///// 5
////// 6
/////// 7
//////// 8
///////// 9

Moreover, the various procedures that we shall use will also require that we
have already memorized the basic succession, that is the digits in the
order :

1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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“one, two, three, four, five, six, seven, eight, nine”

NOTE 1.1 There is nothing sacred about ten : it is simply because
of how many fingers we have on our two hands—“digit” is just a fancy
word for “finger”—and we could have used just about any number of
digits instead of ten.

In fact, deep down, computers use only two digits, 0 and 1, be-
cause any electronic device is either off or on. At intermediate lev-
els, computers may use eight (0, 1, 2, 3, 4, 5, 6, 7) or sixteen digits
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f).

The Babylonians used sixty digits, a historical remnant of which can
be seen in the fact that there are sixty seconds to a minute and sixty
minutes to an hour.

The point is that all that we do with ten digits could easily be done
with any number of digitsa.

aZ. P. Dienes always used to start his workshops with second graders, base-
three arithmetic blocks and the digits 0, 1, 2.

2. We can then represent a basic collection, that is a collection with
no more items than we have digits, that is no more than nine items, by a
basic counting number-phrase.

a. Given a basic collection, to get the numerator of the counting num-
ber phrase the procedure, called basic counting, is:
i. We count the collection, that is we point successively at each and every
item in the collection while saying the digits in the basic succession that we
memorized.
ii. The numerator is the end-digit, that is the last digit we say.

EXAMPLE 1.10. Given the collection

to get the basic counting number-phrase that represents it:
i. We can use for the denominator the name of the President whose picture
is on them, that is Washington.
ii. We count the collection to get the numerator , that is

We point at each and everyone of: while we say :

1, 2, 3−−−−−−−−−−−−→
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and the end-digit gives us 3 for the numerator.
iii. Altogether, the collection

is represented by the basic counting number-phrase
3 Washingtons

.

b. Conversely, given a basic counting number-phrase, to get the basic
collection that it represents:
i. We pick one item—of the kind specified by the denominator—each and
every time we say a digit in the basic succession
ii. We stop after we have picked the item for the numeral in the numerator

EXAMPLE 1.11. Given the basic counting number-phrase
5 Washingtons

to get the basic collection that it represents:
i. The denominator Washingtons tells us that the items to be picked must be

of the same kind as
ii. The numerator 5 tell us to pick an item each and every time we say a digit
in the succession; we stop after we have picked the item for the end-digit:

We say : We pick each and every one of:

1, 2, 3, 4, 5−−−−−−−→
iii. Altogether, the basic counting number-phrase

5 Washingtons
represents the basic collection

.

3. For extended counting, that is for counting extended collec-
tions, that is for collections with more items than we have digits, we can
continue to proceed essentially as above: we must begin by memorizing
the extended succession, that is the numerals that follow the basic
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succession 1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−→, namely
10, 11, 12, 13, . . .−−−−−−−−−−−−−−−−−−−−−−→

that is:
numerals we say meaning to make us think of:

10 ten XXXXXX/////////
11 eleve - n ten - one XXXXXX///////// /
12 elve-tw ten - two XXXXXX///////// //
13 thir - teen ten - three XXXXXX///////// ///
. . . . . . . . . . . .
19 nine - teen ten - nine XXXXXX///////// /////////
20 twen - ty two - tens XXXXXX///////// XXXXXX/////////
21 twen - ty - one two - tens & one XXXXXX///////// XXXXXX///////// /
. . . . . . . . . . . .

NOTE 1.2 The words we say for the numerals are far from being as
systematic as the numerals themselves. This is due in part to the fact
that these words slowly evolved over a very long time.

However, and this is possibly the single most important fact about Arith-
metic, while there are only so many digits in the basic succession—nine in
our case, the extended succession is endless.

a. Given an extended collection, to get the numerator of the counting
number-phrase that represents it:
i. We begin by pointing successively at each and every item in the collec-
tion while saying the digits in the basic succession that we memorized,
ii. We continue by pointing successively at each and every item in the col-
lection while saying the numerals in the extended succession that we mem-
orized.
iii. The numerator is the end-numeral, that is the last numeral we say.

EXAMPLE 1.12. Given the extended collection,
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to get the counting number-phrase:
i. We start with a basic count, that is:
we point at each and everyone of: while we say :

1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−→

ii. We continue with an extended count, that is:
we point at each and everyone of: while we say :

10−→
11, 12, 13, 14, . . .−−−−−−−−−−−→
. . . 29. 30, 31, 32−−−−−−−−−−−→

iii. Altogether, the extended collection

is represented by the counting number-phrase
32 Washingtons

b. Given an extended counting number-phrase, to get the collection:
i. We begin by picking one item each and every time we say a digit in the
basic succession
ii. We continue by picking one item each and every time we say a digit in
the extended succession
iii. We stop after we have picked the item for the end-numeral.

EXAMPLE 1.13. Given the extended counting number-phrase,
32 Washingtons

to get the collection that it represents:
i. The denominator Washingtons tells us that the items to be picked must be

of the same kind as
ii. The numerator 32 tells us to pick an item each and every time we say
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graph␣(to)
a digit in the basic succession and then one each and every time we say a
numeral in the extended succession; we stop after we have picked the item for
the numerator .
iii. Altogether, the extended counting number-phrase

32 Washingtons
represents the extended collection

NOTE 1.3 The sticklers among us will have rightfully observed that,
strictly speaking, counting is neither a paper procedure since it involves
the real-world items nor a real world process since it involves the digits
we write on paper. Indeed, counting is a bridge from the real-world to
the paper-world.

6 Graphic Illustrations

As pointed-out at the beginning of this book, it is usually easier to work with
representations of collections on paper than with the real-world collections
themselves. But, once we have represented collections with number-phrases,
we will often also want to illustrate the number-phrase with a graph.
For short, we shall often say that we graph the number-phrase.

For that purpose, we will use rulers that are straight lines with:
• an arrowhead to indicate the way the succession goes
• tick-marks to be labeled with the numerators
• a label for the denominator .

EXAMPLE 1.14. To graph collections represented by basic counting
number-phrases whose denominator is Washingtons, we use rulers such as

Washingtons 
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However, graphing collections represented by number-phrases can raise
issues of its own.

1. In the case of basic counting number-phrases, there is no problem and,
in fact, as soon as we label the tick-marks with numerators, the arrowhead
ceases to be necessary. (But then, there is no point in erasing it either.)

EXAMPLE 1.15. To graph collections represented by basic counting
number-phrases whose denominator is Washingtons, we use the ruler

10 2 3 4 5 6 7 8 9

Washingtons 

Then, given a basic counting number-phrase, one usually places a dot on
the corresponding tick-mark.

EXAMPLE 1.16. The graph that represents the collection represented by
the counting number-phrase 3 Washingtons is

10 2 3 4 5 6 7 8 9
Washingtons 

2. In the case of extended counting number-phrases, one problem is that
we may not be able to draw a long enough ruler.

EXAMPLE 1.17. We can barely graph 15 Washingtons (by extending the
ruler into the margin):

Washingtons
1110 12 13 1410 2 3 4 5 6 7 8 9 15

but we cannot extend the ruler enough to represent 37 Washingtons

A work-around could be to draw the tick-marks closer together. But then
we may not be able to label all the tick-marks.

EXAMPLE 1.18. On the following ruler
10 23456789 Washingtons

we don’t have enough room to write two-digit numerators.

One workaround to that is to label the tick-marks only every so often. How-
ever it is usually better to do so regularly, that is every so many. To make it
easier to read the ruler, it is usual in this case to make the tick-marks that
are labeled longer and, if these are far apart, to make the middle tick-marks
a bit longer too.
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EXAMPLE 1.19. In the following ruler, only every eighth tick-mark, that
is 8, 16, 24, 32, etc, is labeled :

160 24 32 40 568 Washingtons48

and the middle tick-marks, 4, 12, 20, etc, are made easier to see by being made
a bit larger.

EXAMPLE 1.20. The graphic that represents the collection represented by
the extended counting number-phrase 37 Washingtons is

160 24 32 40 568 Washingtons48

3. But, to graph collections represented by really large counting number-
phrases, we will not even be able to draw all the tick-marks—and even so
we will often have to write the labels at an degree angle for them to fit.

EXAMPLE 1.21. In the following ruler, only every thousandth tick-mark,
that is 1000, 2000, 3000, etc, is drawn and labeled.

1000
0 2000

3000
4000

5000
6000

7000
8000

9000
Washingtons

And another workaround may be not to start at 0.

EXAMPLE 1.22. Suppose we are not involved with any numerator less
than 4000 and more than 13000. Then we would use rulers such as

Washingtons4000
5000

6000
7000

8000
9000

10000

11000
12000

13000

EXAMPLE 1.23.

7 Combinations

When there is more than one kind of items, they do not make up a collection
and we cannot represent them by number-phrases.

EXAMPLE 1.24. Given the following real-world items,
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since they are not all of the same kind (they do not make up a collection) there
is no one President whose name we can use as a denominator .

We then proceed as follows:

1. We sort the items by kind into collections so that we now have a
set of collections.

EXAMPLE 1.25. In the above example, we can sort the real-world items
into a set of collections:

2. We represent the set of collections by a combination-phrase by
writing the number-phrases that represent each one of the collections sepa-
rated by the symbol & to be read as “and”.

EXAMPLE 1.26. In the above example, we can represent the set of col-
lections by the combination-phrase:

4 Washington & 2 Hamiltons & 1 Franklin

3. The graphic representation of a combination-phrase requires as many
rulers as there are kinds of collections in the set of collections that the
combination-phrase represents.

EXAMPLE 1.27. In the above example, since there are three kinds of bills,
we need three rulers:
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Hamiltons 

Franklins 
10 2 3 4 5 6 7 8 9

10 2 3 4 5 6 7 8 9

Washingtons 
10 2 3 4 5 6 7 8 9{

8 About Number-Phrases

We end this chapter with a few remarks about why we are using the term
number-phrases as opposed to just the term numbers as is usual in most
current Arithmetic textbooks3.

1. A numerator by itself, that is without a denominator , represents a
number which is not something in the real-world that we can see and touch.

EXAMPLE 1.28. When asked “Can you show what 3 repre-
sents?”, we usually respond by showing three real world items, for in-

stance , but this is what the number-phrase
3 Washingtons represents and not what 3 by itself represents. In fact, there
is no way we can show what 3 by itself represents.

In contrast, number-phrases represent collections which are things in the
real-world that we can see and touch. This is exactly the reason why we use
number-phrases even if they make things more cumbersome.

2. Aside from anything else, we should realize that when textbooks use
the word number they are talking—usually without saying it—about the
concepts represented by the numerators that are actually printed.

EXAMPLE 1.29. When a textbook says “3 is the number of one-dollar bills
on the desk”, what is meant is “3 is the numerator that represents the number
of one-dollar bills on the desk”. Indeed, 3 is only a mark on paper that tells us

3Educologists will be glad to measure the progress accomplished since Chrystal’s Text-
book of Algebra infamous opening: “The student is already familiar with the distinction
between abstract and concrete arithmetic. The former is concerned with those laws of, and
operations with, numbers that are independent of the things numbered; the latter is taken
up with applications of the former to the numeration of various classes of things.”
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how many s there are in the real-world collection that is on the
desk.

So, when textbooks use the term number instead of the term numerator ,
they are not just using one term instead of another, they are, at best, blur-
ring the distinction between the real-world and the paper-world we use to
discuss the real-world4.

3. Number phrases allow us to be very precise as to what we are dealing
with. In particular, the use of number phrases allows us to distinguish:
• matters of quality, that is questions about the kind of the items under
consideration

from
• matters of quantity, that is questions about the number of the items

under consideration.

EXAMPLE 1.30. Given the collection sitting on a desk, we can
ask three very different questions:

• “What is on the desk?” which we answer in Arithmetic by writing the
counting-number-phrase

5 Washingtons

• “What kind of items are on the desk?” which we answer in Arithmetic
by writing the denominator

Washingtons
• “How many items are on the desk?” which we answer in Arithmetic by

writing the numerator
5

4. The distinction we make in SUBJECTArithmetic between denom-
inators and number-phrases with the numerator 1 is very similar to the
informal distinction we make in English between “a” and “one”.

EXAMPLE 1.31. In SUBJECTArithmetic, we distinguish the denominator
Washington from the number-phrase 1 Washington the same way as in English

4At worst, one can wonder if educologists are not just confusing the two worlds.
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we distinguish between
• “This looks like a five-dollar bill”
which, just like “This looks like a ten-dollar bill” or “This looks like a twenty-
dollar bill” is a qualitative statement because they all are statements about
what kind of bills they look like.
• “This looks like one five-dollar bill”
which, just like “This looks like two five-dollar bills” or “This looks like three
five-dollar bills”, is a quantitative statement because they all are statements
about how many bills it looks there are.

Quite often, though and as we will see in many different situations, the
numerator 1 “goes without saying”.

EXAMPLE 1.32.
3 Washingtons + Washingtons

is understood to mean
3 Washingtons + 1 Washington

and, to take an example from things to come, in the same manner
3x + x

is understood to mean
3x + 1x

So, even though we shall avoid letting the numerator 1 “go without saying”,
just in case and to be on the safe side, we set the

NOTE 1.4
When there is no numerator in front of a denominator and it is otherwise
clear that we are dealing with a counting number-phrase, it then goes
without saying that the numerator is understood to be 1.

NOTE 1.5 Unfortunately, this default rule is often abbreviated as “when
there is no numerator, the numerator is 1” which is dangerous because
when we say that there is no numerator it is tempting to think that the
numerator is 0!
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number-phrase,␣decimal
numerator,␣decimal
denominator

9 Decimal Number-Phrases

We will work not only with collections of items but also with amounts of
stuff and, just as we use counting number-phrases to represent collections of
items, in order to represent amounts of stuff we will use decimal number-
phrases that consist of a decimal numerator and a denominator:

Collection of Items Amount of Stuff
Counting Number-phrase Decimal Number-phrase

Kind of items Kind of stuff
Denominator Denominator

Number of items Quantity of stuff
Counting Numerator Decimal Numerator

EXAMPLE 1.33. We can represent twenty-four apples by the counting
number-phrase

24 Apples

but in order to represent an amount of gold, we need a decimal number-phrase
such as

31.72 Grams of gold

Unfortunately, this being a text on Basic Algebra, there was space
only for the smallest possible investigation of SUBJECTArithmetic, that is
one limited to the introduction, illustration and discussion of the concepts
strictly necessary to the understanding ofBasic Algebra. So, for lack
of space, this was done using only counting number-phrases even though,
as just noted above, many real-world situations require decimal number-
phrases instead.

More precisely, even though the investigation of decimal number-phrases
is intimately related to the representation of large collections, in the above
section and for lack of space we had to take a short cut, namely use ex-
tended counting rather than only basic counting together with combinations.
Had we had the space to develop the latter approach for representing large
collections, it would then have immediately and effortlessly led to decimal
number-phrases.
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So, here we will have to rely on the reader’s own knowledge of deci-
mal numbers. However, the interested reader will find a full investigation
in Self-Contained Arithmetic as well as in From Arithmetic To
Differential Calculus.
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count
start-digit
end-digit
count␣from␣...␣to␣...
direction

Chapter 2

Comparisons:
Equalities and Inequalities

Counting From A Counting Number-Phrase To Another, 23 • Comparing
Collections, 25 • Language For Comparisons, 31.

We investigate the first of the three fundamental processes involving two
collections. We will introduce the procedure in the case of basic collections
using basic counting number-phrases.

1 Counting From A Counting Number-Phrase To
Another

Before we can develop the procedures for these three fundamental processes,
we must make the concept of counting more flexible by allowing a count
• to start with any digit which we will call the start-digit. (So, the start-
digit doesn’t have anymore to be 1 as it always did in Chapter 1.)
• to end with any digit which we will call the end-digit. (So, the end-digit
may be “before” the start digit as well as “after” the start digit.)

More precisely, when we count from the start-digit to the end-digit:
i. We start just after the start-digit
ii. We stop just after the end-digit.

However, given a start-digit and a end-digit, we may have to count in either
one of two possible directions:

23
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count-up
count-down
precession

• We may have to count-up, that is we may have to use the succession
1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−→

which we read along the arrow, that is from left to right.

EXAMPLE 2.1. To count from the start-digit 3 to the end-digit 7:
i. We must count up, that is we must use the succession

1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−→
ii. We start counting up in the succession just after the start-digit 3, so
that 4 is the first digit we say,

4, . . .−−−→
iii. We stop counting up in the succession just after the end-digit 7 so that
7 is the last digit we say

. . . 7−−−→

Altogether, the count from the start-digit 3 to the end-digit 7 is
4, 5, 6, 7−−−−−→

• We may have to count-down, that is we may have to use the precession
1, 2, 3, 4, 5, 6, 7, 8, 9←−−−−−−−−−−−−−

which we read along the arrow, that is from right to left.

NOTE 2.1
If we prefer to read from left to right, we may also write the precession
as

9, 8, 7, 6, 5, 4, 3, 2, 1−−−−−−−−−−−−−→

which we read along the arrow, that is from left to right.

EXAMPLE 2.2. To count from the start-digit 6 to the end-digit 2:
i. We must count down, that is we must use the precession

9, 8, 7, 6, 5, 4, 3, 2, 1−−−−−−−−−−−−−→
ii. We start counting down in the precession after the start-digit 6 so that
5 is the first digit we say

5, . . .−−−−→

iii. We stop counting down in the precession after the end-digit 2 so that
2 is the last digit we say.

. . . 2−−−−→
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length␣(of␣a␣count)
compareAltogether, the count from the start-digit 6 to the end-digit 2 is

5,4,3,2−−−−→

NOTE 2.2
Memorizing the precession 9, 8, 7, 6, 5, 4, 3, 2, 1−−−−−−−−−−−−−→ just like we memorized
the succession 1, 2, 3, 4, 5, 6, 7, 8, 9−−−−−−−−−−−−−→ makes life a lot easier.

Finally, the length of a count from a start-digit to an end-digit is how
many digits we say regardless of the direction, that is whether up in the
succession or down in the precession.

EXAMPLE 2.3. When we count from the start-digit 2 to the end-digit 7,
we count

3, 4, 5, 6, 7−−−−−−−→

and the length of the count is 5.

EXAMPLE 2.4. When we count from the start-digit 8 to the end-digit 2,
we count

7,6,5,4,3,2−−−−−−→

and the length of the count is 6.

What that does, as in Chapter 1, is again to separate quality—represented
by the direction of the count, up or down, from quantity— represented by
the length of the count, how many digits we count.

NOTE 2.3
As already mentioned, we will only use basic counting, whether up or
down, but extended counting would work exactly the same way.

2 Comparing Collections
Given two collections, the first thing we usually want to do is to compare
the first collection to the second collection but an immediate issue is whether
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match one-to-one
leftover
relationship
hold␣(to)
simple
is-the-same-in-size-as

the kinds of items in the two collections are the same or different.
• When the two given collections involve different kinds of items, they don’t
they cannot be compared.

EXAMPLE 2.5. If Jane’s collection is and Nell’s col-

lection is , we don’t really want to compare them because that

would mean that we are really looking at the items as

and , that is that we would be ignoring some of the details in
the pictures.

• When the two given collections involve the same kind of items, the real-
world process we will use to compare the two collections will be tomatch
one-to-one each item of the first collection with an item of the second
collection and to look in which of the two collections the leftover items
are in.

When the two given collections involve the same kind of items, there are
six several different relationships that can hold from the first collection
to the second collection.

1. Up front, we have two very simple relationships:
• When there are no leftover objects, we will say that the first collection
is-the-same-in-size-as the second collection.

EXAMPLE 2.6. To compare in the real-world Jack’s

with Jill’s , we match Jack’s collection one-to-one with Jill’s
collection:
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is-different-in-size-from
Since there is no leftover item in either collection, the relationship between
Jack’s collection and Jill’s collection is that:

Jack’s collection is-the-same-in-size-as Jill’s collection

• When there are leftover objects, regardless of where they are, we will say
that the first collection is-different-in-size-from the second collection.

EXAMPLE 2.7. To compare Jack’s with Jill’s

in the real-world , we match Jack’s collection one-to-one
with Jill’s collection:



Since there are leftover items in one of the two collections, the relationship
between Jack’s collection and Jill’s collection is that:

Jack’s collection is-different-in-size-from Jill’s collection

EXAMPLE 2.8. To compare in the real-world Jack’s

with Jill’s , we match Jack’s collection one-to-one with Jill’s
collection:



Since there are leftover items in one of the two collections, the relationship
between Jack’s collection and Jill’s collection is that:

Jack’s collection is-different-in-size-from Jill’s collection
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strict
is-smaller-in-size-than
is-larger-in-size-than

2. When two collections are different-in-size, then there are two possible
strict relationships depending on which of the two collections the leftover
item, if any, are in:
• When the leftover items are in the second collection, we will say that the
first collection is-smaller-in-size-than the second collection.

EXAMPLE 2.9. To compare Jack’s with Jill’s

in the real-world , we match Jack’s collection one-to-one
with Jill’s collection:



Since the leftover items are in Jill’s collection, the relationship between
Jack’s collection and Jill’s collection is that:

Jack’s collection is-smaller-in-size-than Jill’s collection

• When the leftover objects are in the first collection, we will say that the
first collection is-larger-in-size-than the second collection.

EXAMPLE 2.10. To compare in the real-world Jack’s

with Jill’s , we match Jack’s collection one-to-one with Jill’s
collection:



Since the leftover items are in Jack’s collection, the relationship between
Jack’s collection and Jill’s collection is that:

Jack’s collection is-larger-in-size-than Jill’s collection
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mutually exclusive
is-no-larger-than

The relationship is the same as and the two strict relationships, is-smaller-
than and is-larger-than, are mutually exclusive in the sense that as soon
as we know that one of them holds, we know that neither one of the other
two can hold.

3. Quite often, though, instead of the above three relationships, we will
need to use another two relationships that we shall call lenient.

a. Instead of wanting to make sure that a first collection is-smaller-
than a second collection, we may just want to make sure that the first
collection is-no-larger-than the second collection, that is we may include
collections that are-the-same-as.
What this mean is that instead of requiring that, after the one-to-one match-
ing, the leftover items be in the second collection, we only require that the
leftover items not be in the first collection and this is of course the case
when the leftover items are in the second collection as before . . . but also
when there are no leftover items in either collection and therefore certainly
no leftover in the first collection.

EXAMPLE 2.11. If Jack’s collection is and Jill’s collection

is , then we have that:
Jack’s collection is no-larger-in-size-than Jill’s collection

since, after one-to-one matching,


there is no leftover item in Jack’s collection.

EXAMPLE 2.12. If Mike’s collection is and Jill’s collection

is , it is also the case that:

Mike’s collection is no-larger-in-size-than Jill’s collection
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is-no-smaller
since, after one-to-one matching,



there is no leftover item in either collection and therefore certainly no leftover
item in Mike’s collection.

b. Similarly, instead of wanting to make sure that a first collection
is-larger-than a second collection, we may just want to make sure that the
first collection is-no-smaller than the second collection, that is we include
collections that are-the-same.
What this mean in the real-world is that instead of requiring that, after
the one-to-one matching, the leftover items be in the first collection, we
only require that the leftover items not be in the second collection and this
is of course the case when the leftover items are in the first collection as
before . . . but also when there are no leftover items in either collection and
therefore certainly no leftover in the second collection.

EXAMPLE 2.13. If Dick’s collection is and Jane’s collec-

tion is , then we have that:
Dick’s collection is no-smaller-in-size-than Jane’s collection

since, after one-to-one matching,


there is no leftover item in Jane’s collection.

EXAMPLE 2.14. If Mary’s collection is and Jane’s collection

is , it is also the case that:
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is-equal-to
6=
is-not-equal-to
<
is-less-than
>
is-more-than
is less-than-or-equal-to
is more-than-or-equal-to

Mary’s collection is no-smaller-in-size-than Jane’s collection
since, after one-to-one matching,

there is no leftover item in either collection and therefore certainly no leftover
item in Jane’s collection.

The two lenient relationships are not mutually exclusive in the sense
that, given two collections, even if we know that one lenient relationship is
holding from the first collection to the second collection, we cannot be sure
that the other lenient relationship does not hold from the first collection to
the second collection because the first collection could be holding because
the first collection is-the-same-as the second collection in which case the
other lenient relationship would be holding too.

On the other hand, if both lenient relationships hold from a first collection
to a second collection, then we know for sure that the first collection is-the-
same-as the second collection.

3 Language For Comparisons
In order to represent on paper relationships between two collections, we
first need to expand our mathematical language beyond number-phrases.
To represent on paper the real-world simple relationships:
• is-the-same-in-size-as, we will use the verb which we will read as is-
equal-to,
• is-different-in-size-from, we will use the verb 6= which we will read as
is-not-equal-to,

To represent on paper the real-world strict relationships:
• is-smaller-in-size-than, we will use the verb <, which we will read as
is-less-than.
• is-larger-in-size-than, we will use the verb > which we will read as is-
more-than,

To represent on paper the real-world lenient relationships
• is-no-larger-in-size-than, we will use the verb , which we will read as is
less-than-or-equal-to.
• is-no-smaller-in-size-than, we will use the verb , which we will read as is
more-than-or-equal-to.
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start state
action
end state
fixed collection

Chapter 3

Addition and Subtraction

Attaching Collections, 34 • Addition, 35 • Procedure For Adding To,
38 • Detaching A Collection From A Collection, 40 • Sliding, 41.

We now investigate a kind of real-world processes which occurs in many
different types of situations, namely processes in which, given a start state,
we perform an action which then results in an end state.

EXAMPLE 3.1. Each time we use a credit card, whether to charge some-
thing of to make a payment, the start state is the balance on the credit card
just before, the action is whatever we are charging on the credit card or paying
on the credit, the end state is the new balance on the credit card.

In our case here,

• the start state will involve a collection of real-world items,
• the action will involve a fixed collection of the same kind of real-world

items,
• the end state will be the resulting collection (of the same kind of real-

world items).

We will then develop the corresponding paper-world procedures, first in
the case of basic collections using basic counting number-phrases and then
we will extend the procedure to extended collections using decimal-number
phrases.

33
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attach
start␣collection
end␣collection
merge

1 Attaching A Collection To A Collection

The first instance of this kind of real-world processes is when, given a fixed
collection of real-world items, we attach this fixed collection to start col-
lections which then result in end collections.

Fixed 
Collection 

Attach

 CollectionInput Collection
Output

EXAMPLE 3.2. When we buy something online, the seller usually adds
a fixed charge for "Shipping and Handling" to the price of what we bought,
regardless of that price. The list price of what we are buying is the start
collection (of dollars), the fixed charge for "Shipping and Handling" is the fixed
collection (of dollars) and the grand total we have to pay is the end collection
(of dollars).

To get the end collection in the real-world process:
i. We put the fixed collection and the start collection "next to each

other",
ii. We merge the fixed collection and the start collection so that the

end collection is made of the items in the initial collection together with the
items in the fixed collection.

 Collection
Input 
Collection

Output

Fixed 
Collection 



2. Addition 35

input number-phrase

EXAMPLE 3.3. Let the fixed collection be . Then, given

the start collection , what is the end collection?

Attach

?

We proceed as follows:
i. We put the fixed collection and the start collection next to each other

Attach

ii. We merge the start collection and the fixed collection:

Attach

iii. The end collection is:

2 Language For Attaching: Addition
In order to indicate in the paper-world that we want to attach to a start
collection a fixed collection, we need to expand our mathematical language.

1. All three collections of real-world items that are involved will of course
be represented by number-phrases:
• The collection in the start state will be represented by the input number-
phrase,
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addend number-phrase
output number-phrase
operation symbol
+−−−−−−→
+
arrow
specifying-phrase

• The fixed collection will be represented by the addend number-phrase,
• The collection in the end state will be represented by the output number-
phrase.
2. The next thing we need is an operation symbol to represent in the

paper-world the real-world process of attaching and we will use the symbol
xrightarrow
where + is read as “plus” and where the arrow indicates the direction from
input number-phrase to output number-phrase.

NOTE 3.1
It should be stated right away that this use of the symbol + is only one
among very many different uses of the symbol + and that this will in
turn create many difficulties. We shall deal with these difficulties one at
a time, as we encounter each new use of the symbol +

3. Given a start collection and an addend collection, we will repre-
sent the result of attaching the fixed collection to the start collection by
a specifying-phrase which we write as follows:
i. We write the input number phrase that represents the start collection,

ii. We write the symbol +−−−−−−−−→ to represent attaching,
iii. We write the addend number-phrase that represents the fixed collection
on top of the arrow.
Altogether then, the specifying-phrase that represents the result of attaching
to an start collection a fixed collection is:

input number-phrase + addend number-phrase−−−−−−−−−−−−−−−→

EXAMPLE 3.4. In order to represent the result of attaching to the start

collection the fixed collection we write the spec-
ifying phrase:

5 Washingtons +3 Washingtons−−−−−−−−−→

4. This language gives us a lot of flexibility:
• We can represent the end collection even before we attach the fixed col-
lection to the start collection (by way of a specifying number-phrase).
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identify
identification-sentence
=

• After we have attached the fixed collection to the start collection and
thus found the end collection, we can identify the specifying number-
phrase by way of an identification-sentence) which we write as follows:
i. We write the specifying number-phrase that represents the result of
the attachment,
ii. We write the number-phrase that represents the actual end collec-
tion.

input number-phrase + addend number-phrase−−−−−−−−−−−−−−−→ output number-phrase

EXAMPLE 3.5.

i. Before we attach to the start collection the fixed collection

, we can already represent the end collection by the specifying-
phrase

5 Washingtons +3 Washingtons−−−−−−−−−→

ii. After we have found that the result of attaching to the start collec-

tion the fixed collection is the end collection

we can represent the end collection by
9 Washingtons

iii. Altogether, the identification-sentence that identifies the end collection is:

6 Washingtons +3 Washingtons−−−−−−−−−−→ 9 Washingtons

5. Usually, though, we will not write things this way and we only did
it above to show how the mathematical language represents the real world.
As usual, some of it “goes without saying”:
• In the specifying phrase, the arrow goes without saying
• In the identification sentence, the arrow is replaced by the symbol =
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adding to
EXAMPLE 3.6. Instead of writing the specifying phrase

6 Washingtons + 3 Washingtons

we will often write

6 Washingtons + 3 Washingtons
and instead of writing the identification sentence

6 Washingtons + 3 Washingtons−−−−−−−−−−−→ 9 Washingtons
we will often write

6 Washingtons + 3 Washingtons = 9 Washingtons

3 Procedure For Adding To
We now want to develop a paper-world procedure, called adding to, that
will give us the output number-phrase for any input number-phrase in terms
of the addend number-phrase without recourse to the real world.

1. In order to add an addend number-phrase to an input number-phrase,
we count up from the numerator of the input number-phrase by a count equal
to the numerator of the addend number-phrase.
There are then two cases depending on whether, when we count up from the
numerator of the input number-phrase by a count equal to the numerator
of the addend number-phrase, we need to count past 9 or not.
• If we do not need to count-up past 9, the result of the addition is just
the end-digit.

EXAMPLE 3.7. To add 5 Washingtons to 3 Washingtons, that is, to
identify the specifying-phrase

3 Washingtons + 5 Washingtons
i. Starting from 3, we count-up 5:

4, 5, 6, 7, 8−−−−−−−→
ii. The end-digit is 8.
iii. We write the identification-sentence:

3 Washingtons + 5 Washingtons = 8 Washingtons

• If we need to count up past 9, then we must bundle and change ten of
the items.
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EXAMPLE 3.8. To add 8 Washingtons to 5 Washingtons, that is to
identify the specifying-phrase

5 Washingtons + 8 Washingtons
i. Starting from 5, we count up by a length equal to 8 but stop after ten:

4, 5, 6, 7, 8, 9, ten−−−−−−−−−−−→
ii. We bundle ten Washingtons and change for a 1 DEKAWashingtons and
count the rest

1, 2, 3−−−−→

iii. We write the identification-sentence:
5 Washingtons + 8 Washingtons = 1 DEKAWashingtons & 3 Washingtons

which of course we could also write
5 Washingtons + 8 Washingtons = 1.3 DEKAWashingtons

or, more usually,
5 Washingtons + 8 Washingtons = 13. Washingtons

or . . .

2. Actually, we normally proceed a bit differently, that is, instead of
basic counting up to Ten, interrupting ourselves to bundle and change, and
then start basic counting again, it is easier to use extended counting and
count all the way and then bundle and change what we must and count the
rest.
We are helped in this by the way the numerators in the extended succession
are pre-organized—at least for the most part.
When we say "twenty-three", that already tells us the result of the bundling
even if, "twelve" does not.

EXAMPLE 3.9. To add Jill’s 8 Washingtons to Jack’s 5 Washingtons, that
is to identify the specifying-phrase

5 Washingtons + 8 Washingtons
i. We count up from 5 by a length equal to 8 using extended-counting :

4, 5, 6, 7, 8, 9, ten, eleven, twelve, thirteen−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ii. Then we say that we can’t write thirteen Washingtons since we only
have digits up to 9 so that we should bundle ten Washingtons and change for
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undo
detach a 1 DEKAWashingtons with 3 Washingtons left

iii. We write the identification-sentence:
5 Washingtons + 8 Washingtons = 1 DEKAWashingtons & 3 Washingtons

that is, using a decimal number-phrase,

5 Washingtons + 8 Washingtons = 1.3 DEKAWashingtons

or, if we prefer,
5 Washingtons + 8 Washingtons = 13. Washingtons

or . . .

The difference is of course not a great one. It is only that we said that we
would deal with extended collections using only basic counting and indeed,
in the second example, we fudged a bit when, after having counted to thir-
teen, we said that after bundling and changing we had 3 left: officially, we
cannot do so since we have not yet introduced subtraction.
However, if the first example illustrates the fact that, when needed, we can
indeed do things “cleanly”, the second example illustrates the fact that, while
we are usually not willing to count very far, a bit of (extended) counting
beyond 9 makes life easier.

==================OK SO FAR===========

4 Detaching A Collection From A Collection

We now look at the action that undoes what the action of attaching does:
Given a fixed collection of real-world items, we will want to detach this
collection from start collections which then will result in end collections.

The real-world process is to mark off the items of the start collection
that are also in the fixed collection. Then, the unmarked items will make
up the end collection.

EXAMPLE 3.10.

To detach the fixed collection from the start collection
i. For each items that is in the fixed collection we remove one item from the
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sliding
start collection

ii. The remaining items in the start collection make up the end collection

5 Sliding
We now consider a different kind of real-world situations which we also
encounter very often. Consider two identical rulers placed face to face with
the 0 tick-marks next to each other. This is the initial state.

The action, called sliding, consists in moving the top ruler along the
bottom ruler until the 0 tick mark faces a given tick-mark on the bottom
ruler. This is the final state.

Now, each tick-mark on the bottom ruler faces a tick-mark on the top
ruler and the tick-mark of the top ruler is obtained by

EXAMPLE 3.11. Suppose we are driving 5 miles starting from milestone
172. The question then is what milestone do we end at.
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detach
resulting collection

Chapter 4

Subtraction

Detaching A Collection From Another, 43 • Language For Subtraction,
44 • Procedure For Subtracting A Number-Phrase, 46 • Subtraction As
Correction, 48.

We investigate the third of the three fundamental processes involving two
collections. We will introduce the procedure in the case of basic collections
using basic counting number-phrases and we will then extend the procedure
to extended collections using decimal-number phrases.

1 Detaching A Collection From Another

Given two collections, the third fundamental issue is to detach the sec-
ond collection from the first collection. This is the second instance of an
operation.

The real-world process is to mark off the items of the first collection that
are also in the second collection and to look at all the unmarked items as
making up a single collection that we shall also call the resulting collec-
tion.

EXAMPLE 4.1.

To detach Jill’s from Jack’s
i. We set Jill’s collection to the right of Jack’s collection

43



44 Chapter 4. Subtraction

−
minus

ii. We mark off the items in Jack’s collection that are also in Jill’s collection

iii. The unmarked items in the first collection make up the resulting collection

2 Language For Subtraction
In order to represent on paper the result of an operation, such as detaching
a second collection from a first collection, we need to expand again our
mathematical language but we will proceed in essentially the same manner
as we did with the language for addition.

1. The first thing we need is a symbol, called operator , to represent the
operation. In the case of detaching a second collection from a first collection,
we will of course use the operator −, read as “minus”.
To represent on paper the result of detaching a second collection from a first
collection, we will of course use the operator −INDEX[-]− read minus.
Here again, just as with the symbol +, this use of the symbol − is only one
among very many different uses of the symbol − and that this will create
in turn many difficulties. We shall deal with these difficulties one at a time,
as we encounter each new use of the symbol −.

NOTE 4.1
It should be stated right away, though, that this use of the symbol − is
only one among very many different uses of the symbol − and that this
will create in turn many difficulties. We shall deal with these difficulties
one at a time, as we encounter each new use of the symbol −.

2. Given two collections represented by number-phrases, we will repre-
sent detaching the second collection from the first by a specifying-phrase
that we write as follows:
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bar
identify
identification-sentence
arrowhead

i. We write the first number phrase:
first number phrase

ii. We write the symbol for subtracting:
first number phrase −

iii. We write the second number-phrase over the bar:

first number phrase
− second number phrase

Altogether then, the specifying phrase that corresponds to detaching from
a first collection a second collection is:

first number phrase − second number phrase

EXAMPLE 4.2. In order to say that we want to subtract from the first
number-phrase 5 Washingtons the second number-phrase 3 Washingtons we
write the specifying phrase:

5 Washingtons − 3 Washingtons

3. This language gives us a lot of flexibility:
• Before we count the result of attaching a second collection to a first
collection, we can already represent the result by using a specifying-
phrase.
• After we have found the result of attaching a second collection to a first

collection, we can represent the result by a number-phrase.
• Altogether, to summarize the whole process, we can identify the speci-
fying phrase with an identification-sentence which we write as follows
i. We write the specifying phrase
ii. We lengthen the bar with an arrowhead
iii. We write the number-phrase that represents the result.

EXAMPLE 4.3.

i. Before we detach from Jack’s Jill’s , we
can already represent the result by the specifying-phrase

6 Washingtons − 4 Washingtons

ii. After we have found that the result of detaching from Jack’s

Jill’s is we can represent the
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subtraction
result by

4 Washingtons
iii. Altogether, to summarize the whole process with an identification-sentence
we lengthen the bar with an arrowhead and we write the number-phrase that
represents the result of the detachment.

6 Washingtons − 2 Washingtons−−−−−−−−−−−→ 4 Washingtons

4. Usually, though, we will not write things this way and we only did it
above to show how the mathematical language represented the reality. As
usual, some of it “goes without saying”:
• In the specifying phrase, the bar goes without saying
• In the identification sentence, the arrowhead is replaced by the symbol

=INDEX[=]=

EXAMPLE 4.4. Instead of writing the specifying phrase
6 Washingtons − 2 Washingtons

we shall write
6 Washingtons− 2 Washingtons

and instead of writing the identification sentence
6 Washingtons − 2 Washingtons−−−−−−−−−−−→ 4 Washingtons

we shall write
6 Washingtons − 2 Washingtons = 4 Washingtons

3 Procedure For Subtracting A Number-Phrase

Given two collections, the paper procedure that gives (the numerator of) the
number-phrase that represents the result of detaching the second collection
from the first collection is called subtraction and depends on whether the
two number-phrases are basic counting number-phrases or decimal number-
phrases.

In order to subtract a second basic collection from a first basic collection,
we count down from the numerator of the first collection by a length equal
to the numerator of the second collection.

There are then two cases depending on whether, when we count down
from the numerator of the first number-phrase by a length equal to the
second numerator, we can complete the count or not.
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• If we can complete the count, then the result of the subtraction is just
the end-digit.

EXAMPLE 4.5.
To subtract Jill’s 3 Washingtons from Jack’s 7 Washingtons, that is to identify
the specifying-phrase

7 Washingtons− 3 Washingtons
i. Starting from 7, we count down by a length equal to 3:

6, 5, 4−−−−→
ii. We can complete the count and the end-digit is 4
iii. We write the identification-sentence:

7 Washingtons− 3 Washingtons = 4 Washingtons

• In particular, the end-digit can be 0.

EXAMPLE 4.6.
To subtract Jill’s 5 Washingtons from Jack’s 5 Washingtons, that is to identify
the specifying-phrase

5 Washingtons− 5 Washingtons
i. Starting from 5, we count down by a length equal to 5:

4, 3, 2, 1, 0−−−−−−−→
ii. We can complete the count and the end-digit is 0
iii. We write the identification-sentence:

5 Washingtons− 5 Washingtons = 0 Washingtons

• If we cannot complete the count, then the subtraction just cannot be
done. (At least in this type of situation. We shall see in the next Chapter
other situations in which we can end down past 0.)

EXAMPLE 4.7.
To subtract Jill’s 5 Washingtons from Jack’s 3 Washingtons, that is to identify
the specifying-phrase

3 Washingtons− 5 Washingtons
But, to identify the specifying-phrase, we would have to start from 3 and
count down by a length of 5 but, by the time we got to 0, we would have
counted only by a length of 3 and so we cannot complete the count which
is as it should be.
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outcast
incorrect
strike out
cancel out
adjustment

4 Subtraction As Correction

Subtraction often comes up after we have done a long string of additions
and realized that there is an outcast, that is a number-phrase that we
shouldn’t have added (for whatever reason), so that, as a consequence, the
total is incorrect.

EXAMPLE 4.8. Suppose we had an ice-cream stand and that we had added
sales as the day went which gave us the following specifying-phrase:
6 Washingtons + 3 Washingtons + 7 Washingtons + 9 Washingtons
and that at the end of day we identified the specifying-phrase which gave us

25 Washingtons

but that we then realized that 3 Washingtons was an outcast (it was not a
sale but money given for some other purpose) with the consequence that
25 Washingtons is incorrect in that it is not the sum total of the sales for
the day.

To get the correct total, we have the following two choices for the pro-
cedure:
• Procedure A would be to strike out the outcast and redo the entire
addition:

EXAMPLE 4.9. In the above example, we strike out the outcast
3 Washingtons
6 Washingtons + 3 Washingtons///////////////////+ 7 Washingtons + 9 Washingtons
which gives us

22 Washingtons

Of course, since Procedure A is going to involve a lot of unnecessary work
redoing all that had been done correctly, it is very inefficient.
• Procedure B would be to cancel out the effect of the outcast in the
incorrect total by subtracting the outcast from the incorrect total. (Ac-
countants call this “entering an adjustment”.)
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EXAMPLE 4.10. In the above example, we subtract 3 Washingtons (the
outcast) from 25 Washingtons (the incorrect total):
25 Washingtons− 3 Washingtons
which gives us:

22 Washingtons

We now want to see that the two procedures must give us the same result
either way. For that, we place the specifying-phrases in the two procedures
side by side and we see that that the remaining number-phrases are the
same either way.

EXAMPLE 4.11. In the above example, we have:
6 Washingtons + 3 Washingtons///////////////////+ 7 Washingtons + 9 Washingtons
and
6 Washingtons+(((((

((3 Washingtons+7 Washingtons+9 Washingtons−(((((
((3 Washingtons

We see that, either way, the remaining number-phrases are:
6 Washingtons + 7 Washingtons + 9 Washingtons
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59 • Adding a Signed Number-Phrase, 62 • Subtracting a Signed
Number-Phrase, 67 • Effect Of An Action On A State, 69 • From Plain To
Positive, 72.

We have seen in Chapter 1 that we can use plain number-phrases,
that is either counting number-phrases or decimal number-phrases, only in
situations where the items are all of the same one kind. We shall now
introduce and discuss a new type of number-phrase that we shall use in a
type of situations thatt occurs frequently in which the items are all of either
one of two kinds.

Just as we did for plain number-phrases in Chapters 2, 3, and 4, we will
have to define for this new type of number-phrase what we mean by:

i. To “compare” two number-phrases,
ii. To “add” a second number-phrase to a first number-phrase,
iii. To “subtract” a second number-phrase from a first number-phrase.

and in particular to develop the corresponding procedures.
What will complicate matters a little bit, though, is that the procedures

for the new type of number-phrases will involve the procedure that we de-
veloped for plain number-phrases. So, until we feel completely comfortable
with the distinction, we shall use new symbols for “comparison”, “addition”
and “subtraction” for the new kind of number-phrases 1.

1One can only wonder as to how Educologists can let their students use, without
warning, the same symbols in these rather different situations.
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cancel
two-way collections
action
step
state
degree
benchmark

1 Actions and States

Quite often we don’t deal with items that are all of the same kind but with
items of two different kinds and a special case of this is when two items of
different kinds cannot be together as they somehow cancel each other. As
a result, we will now consider what we shall call two-way collections, that
is collections of items that are all of one kind or all of another kind with
items of different kinds canceling each other.

1. In the real-world, two-way collections come up very frequently and
in many different types of situations but they generally fall in either one of
two types:
• In one type of two-way collections, called actions, the items are step in
either this-direction or that-direction.

EXAMPLE 5.1.
In fact, we already encountered in the previous chapter this kind of items:
counting up and counting down. Of course, the situation there was not
symmetrical: we could always count steps up but we could not always
count steps down. But there would have been no point counting at the
same time three steps up and five steps down since steps up would cancel
out steps down and this would have just amounted to counting two steps
down.

EXAMPLE 5.2.
– Actions that a businesswoman may take on a bank account are to deposit

three thousand dollars, withdraw two thousand dollars, etc
– Actions that a gambler may take are to win fifty-eight dollars, lose sixty-

two dollars, etc
– Actions that a mark may take on a horizontal line include moving two

feet leftward , five feet rightward , etc.
– Actions that a mark may take on a vertical line include moving five

inches upward , five inches downward , etc.

• In the other type of two-way collections, called states, the items are
degrees of one kind or another but they have to be either on this-side
or that-side of some benchmark.
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nature␣(of␣an␣action)
nature␣(of␣a␣state)
extent␣(of␣an␣action)
size␣(of␣a␣state)
direction␣(of␣an␣action)
side␣(of␣a␣state)

EXAMPLE 5.3.
– States that a business may be in include being three thousand dollars in

the red , being seven thousand dollars in the black, etc.
– States that a gambler may be in include being sixty-two dollars ahead

of the game, being thirty-seven dollars in the hole, etc.
– States that a mark may be in on a horizontal line with some benchmark

include being two feet to the left of the benchmark, being nine feet to
the right of the benchmark, etc.

– States that a mark may be in on a vertical line with some benchmark
include being five inches above the benchmark, being three inches below
the benchmark, etc.

2. Since all the items in a given two-way collection are of the same kind,
a two-way collection is essentially a collection with a twist. So, just as we
said that, in the real world,
• the nature of a collection is the kind of items in the collection,
• the extent of a collection is the number of items in the collection,

we shall now say that:
• the nature of an action is the kind of steps in the action and the
nature of a state is the kind of degrees in which the state can be
• the extent of an action is the number of steps in the action and the
size of a state is the number of degrees of the state.
• the direction of an action is the direction of the steps in the action
and the side of a state is the side of the degrees in the state.

EXAMPLE 5.4.
When a person climbs up and down a ladder, an action may be climbing
up seven rungs. Then,
– the nature of the action is climbing rungs
– the size of the action is seven
– the direction is up

2 Signed Number-Phrases
Plain number-phrases are not sufficient to represent on paper either actions
or states because they do not indicate the direction of the action or the side
of the state.
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signed number-phrase
record
standard direction
opposite direction
standard side
opposite side

EXAMPLE 5.5.
– 3000 Dollars does not say if the businesswoman made a deposit or a with-
drawal or if the business is in the red or in the black.

– 62 Dollars does not say if the gambler is ahead of the game or in the hole.
– 2 Feet does not say if the mark is to the left or to the right of the benchmark.
– 5 Inches does not say if the mark is moving up or down.

1. Since a two-way collection is just a collection with a direction or a
side, we will represent on paper a two-way collection by a signed number-
phrase that will consist of:
• a denominator to represent on paper the nature of the action (that is
the kind of the steps in the action) or of the state (that is the kind of
the degrees in the state).
• a numerator to represent on paper the extent of the action (that is the
number of steps in the action) or the extent of the state (that is the
number of degrees in the state),
• a sign to represent on paper the direction of the action (that is the
direction of the steps in the action) or the side of the state (that is the
side of the benchmark that the degrees of the state are on.)
2. However, in order to say what direction the action or what side the

state, we must always begin by recording for future reference:
• which direction is to be the standard direction and which direction is

therefore to be the opposite direction,
• which side of the benchmark is going to be the standard side and which
side is therefore to be the opposite side,

NOTE 5.1 Historically, it has long gone without saying that standard
was what was “good” and opposite what was “bad”.

EXAMPLE 5.6.
– To deposit money is usually considered to be “good” as it goes with

saving while to withdraw money is usually considered to be “bad” as
it goes with spending .

– To win is usually considered to be “good” while to lose is considered
to be “bad”.

– To go up is usually considered to be “good” while to go down is
usually considered to be “bad”.
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sign
+
positive
−
negative
signed-numerator
positive numerators
negative numerators

3. Once we have recorded what is standard and therefore what is op-
posite, we can use a sign to represent on paper the direction of the action
(that is the direction of the steps in the action) or the side of the state (that
is the side of the benchmark that the degrees of the state are on):
• we will use the sign +, read here as positive, to represent on paper

whatever is standard, whether an action or a state.
• we will use the sign −, read here as negative, to represent on paper

whatever is opposite, whether an action or a state.

NOTE 5.2 This use of the symbols + and − is entirely different from
their use in Chapter 1 where they denoted addition and subtraction. This
complicates reading the symbol as we need to rely on the context, that
is the text that is around the symbol, to decide what the symbol stands
for.

4. However, because this will make developing and using procedures a
lot easier, we will lump the sign together with the numerator and call the
result a signed-numerator. Signed-numerator with a + are said to be pos-
itive numerators and signed-numerators with a − are said to be negative
numerators.

NOTE 5.3 Historically, just as with standard and opposite and perhaps
as a result, positive has been identified with “good” and negative with
“bad”.

So, altogether, a signed number-phrase will consist of:
• a signed-numerator
• a denominator

EXAMPLE 5.7.
Say that we have put on record that the standard direction is to win money so
that to lose money is the opposite direction. Then,

When a real-world gambler: We write on paper :
• wins forty-seven dollars +47 Dollars
• loses sixty-two dollars −62 Dollars
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sign,␣of␣the␣numerator
size EXAMPLE 5.8.

Say we have put on record that the standard side is in-the-black so that in-
the-red is the opposite side. Then,

When a real-world business is: We write on paper :
• three thousand dollars in-the-black +3000 Dollars
• seven hundred dollars in-the-red −700 Dollars

5. We are using the same symbol, 0, both for
• the counting numerator that is left of the succession of counting numer-
ators 1, 2, 3, 4, . . .
• the signed numerator which is inbetween the succession of positive nu-
merators +1, +2, +3, +4, . . . and the recession of negative numerators
−1,−2,−3,−4, . . . .

In this case, we shall have to live with the ambiguiity and decide each time,
according to the context, which one the numerator 0 really is.

3 Size And Sign

On the other hand, given a signed numerator , we shall say that:
• the sign of the numerator is the sign which was put in front of the
plain numerator to make the signed numerator
• the size of the numerator is the plain numerator from which the signed

numerator was made.

EXAMPLE 5.9.

Sign of Signed Numerator =

 

Size of Signed Numerator =

Signed Numerator  = – 5

In other words, −5 is a signed-numerator whose size is 5 and whose sign is −.
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EXAMPLE 5.10.

Sign of Signed Numerator =

Size of Signed Numerator =

Signed Numerator  = + 3

In other words, +3 is a signed-numerator whose size is 3 and whose sign is +.

Indeed, signed number-phrases can contain more information than is
necessary for a particular purpose and then all we need is either the sign or
the size of the signed number-phrase.

1. In many circumstances, what matters is only the size of the signed
number-phrases and not the sign.

EXAMPLE 5.11. Say we are told that
• Jill’s balance is +70, 000, 000 Dollars
• Jack’s balance is −70, 000, 000 Dollars.
We can safely conclude that neither Jack nor Jill belongs to “the rest of us”.

EXAMPLE 5.12. If we are stopped on the turnpike doing +100 Miles
Hour , that

is while driving from Philadelphia to New York, or doing −100 Miles
Hour that is

while driving back from New York to Philadelphia , it does not matter which
way we were going: regardless of the direction, we are going to get into big
trouble.

So, in such cases, it is the size of the given signed numerator that matters.

EXAMPLE 5.13. The size of Jill’s +70, 000, 000 Dollars is 70, 000.000 and
the size of Jack’s −70, 000, 000 Dollars is also 70, 000, 000 Dollars.
So, what makes Jack and Jill different from “the rest of us” is the size of their
balance and not its sign.

EXAMPLE 5.14. The size of our speed when we are going +100 Miles
Hour

(that is from Philadelphia to New York) is 100 Miles
Hour and the size of our speed
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signed ruler
minus infinity
−∞
plus infinity
+∞

when we are going −100 Miles
Hour (that is from New York to Philadelphia) is also

100 Miles
Hour .

So, what gets us into trouble is the size of our speed.

2. In many other circumstances, what matters is only the sign of the
signed number-phrase and not the numerator .

EXAMPLE 5.15. Usually, banks do not accept negative balances, regardless
of their size. In other words, all bank care about is the sign of the balance.

EXAMPLE 5.16. If we are stopped going the wrong way on a one way
street, it won’t matter if we were well under the speed limit. In other words,
what gets us into trouble is the sign of our speed and not its size.

4 Graphic Illustrations

To graph a two-way collection represented on paper by a signed number-
phrase, we proceed essentially just as with counting number-phrases and/or
decimal number-phrases. The only differences are that on a signed ruler:
• we shall have the symbol for minus infinity, −∞, and the symbol for
plus infinity, +∞, at the corresponding ends of the ruler

Dollars
–∞ +∞

• the tick-marks, if any, are labeled with signed number-phrases.
As with all rulers and depending on the circumstances, 0 may or may

not appear.

EXAMPLE 5.17.

–3–4 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞

EXAMPLE 5.18.

–3000

–4000

–2000

–1000

0 +1000

–8000

–7000

–6000

–5000

Dollars
–∞ +∞
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algebraic viewpoint
$<$␣(signed)
$>$␣(signed)
$\leqq$␣(signed)
$\geqq$␣(signed)
algebra-compare

EXAMPLE 5.19.

– 0.008

– 0.009  

– 0.007

– 0.006

– 0.005

– 0.004

– 0.003

– 0.012

– 0.011

– 0.01

Dollars
–∞ +∞

EXAMPLE 5.20.

– 200

– 250

– 150

– 100

0– 50

+ 50

+ 100

+ 150

+ 200

Dollars
–∞ +∞

EXAMPLE 5.21.

– 390

– 420

– 360

– 330

– 270

– 240

– 210

– 190

– 160

– 300

Dollars
–∞ +∞

5 Comparing Signed Number-Phrases

We investigate the first fundamental process involving actions and states:
Given two actions or two states we would like to be able to compare the
signed number-phrases that represent them.

However, there are actually two viewpoints from which to compare signed
number-phrases.

1. From what we shall call the algebraic viewpoint, the comparison
depends both on the sign and the size of the two signed number-phrases.
In the real-world, the comparison corresponds to the relationship is-smaller-
than understood as is-poorer-than extended to the case when being in debt
is allowed.
It is traditional to use the same verbs as with counting number-phrases and
decimal number-phrases, that is: <, >, =, and 5, =.

a. There are two cases depending on the signs of the two signed
number-phrases:
• When the signs of the two signed number-phrases are the same

– any two positive number-phrases algebra-compare the same way
as their sizes compare
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algebra-more-than
algebra-less-than
is-left-of
is-right-of

EXAMPLE 5.22.
+365.75 Dollars > +219.28 Dollars

because 365.75 > 219.28.

– any two negative number-phrases algebra-compare the way opposite
to the way their sizes compare

EXAMPLE 5.23.
−432.69 Dollars < −184.41 Dollars

because 432.69 > 184.41.

• When the sign of the two signed number-phrases are opposite, we can
say either that
– any positive number-phrase is algebra-more-than any negative

number-phrase
or, dually, that
– any negative number-phrase is algebra-less-than any positive number-

phrase

EXAMPLE 5.24.
−2386.77 Dollars < +17.871 Dollars

because any negative number-phrase is less-than any positive number-
phrase.

b. In other words, when we picture on a ruler the signed number-
phrases involved in an algebraic comparison, an algebraic comparison is
about the relative positions of the two signed number-phrases relative to
each other:
• is-algebra-less-than is pictured as is-left-of
• is-algebra-more-than is pictured as is-right-of

EXAMPLE 5.25.
• The algebra-comparison sentence

−4 Dollars < +2 Dollars
corresponds to the fact that in the graphic

–3–4 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞
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size viewpoint
is-larger-in-size-than
is-smaller-in-size-than

the mark that represents −4 is-left-of the mark that represents +2
• The algebra-comparison sentence

−1 Dollars > −4 Dollars
corresponds to the fact that in the graphics

–3–4 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞

the mark that represents −1 is-right-of the mark that represents −4

This illustrates the reason that we can reuse the same verbs with signed
number-phrases as we did with counting number-phrases and decimal number-
phrases.

2. From what we shall call the size viewpoint, the comparison depends
only on the size of the two signed number-phrases and not on the sign.

a. It is quite usual in the real-world to say that a hundred dollar debt
is larger than a fifty dollar debt even though someone owing a hundred
dollars is-poorer-than a person owing fifty dollars.
So, we will say that:
• A first signed number-phrase is-larger-in-size-than a second signed

number-phrase when the size of the first signed number-phrase is larger
than the size of the second signed number-phrase.

or, dually, we can say
• A first signed number-phrase is-smaller-in-size-than a second signed

number-phrase when the size of the first signed number-phrase is smaller
than the size of the second signed number-phrase.

We shall not use symbols and we shall just write the words.

EXAMPLE 5.26.
We have of course that

+365.75 Dollars is-larger-in-size-than + 219.28 Dollars
which corresponds to the fact that 365.75, the size of the first signed number-
phrase, is larger than 219.28, the size of the second signed number-phrase.
We also have that

−365.75 Dollars is-larger-in-size-than − 219.28 Dollars
which corresponds to the fact that 365.75, the size of the first signed number-
phrase, is larger than 219.28, the size of the second signed number-phrase.
And we also have that

−365.75 Dollars is-larger-in-size-than + 219.28 Dollars
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is-farther-away-from-the-
center

follow up
which corresponds to the fact that 365.75, the size of the first signed number-
phrase, is larger than 219.28, the size of the second signed number-phrase.

None of this has anything to do with the fact that, from the algebra view-
point,

+365.75 Dollars > +219.28 Dollars
−365.75 Dollars < −219.28 Dollars
−365.75 Dollars < +219.28 Dollars

b. In other words, when we illustrate on a ruler the signed number-
phrases involved in a size comparison, the comparison is about which nu-
merator is-farther-away-from-the-center.

EXAMPLE 5.27.
• The size-comparison sentence

−4 Dollars is-larger-in-size-than + 1 Dollars
corresponds to the fact that in the graphic

–3–4 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞

the mark that represents −4 Dollars is farther-away-from-the-center-than
the mark that represents +1 Dollars.

• The size-comparison sentence
−4 Dollars is-larger-in-size-than − 3 Dollars

corresponds to the fact that in the graphic

–3–4 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞

the mark that represents −4 farther-away-from-the-center-than the mark
that represents −3

6 Adding a Signed Number-Phrase
We investigate the second fundamental process involving actions and states.

1. Just as in in the case of collections we could attach a second collection
to a first collection, here we can
• follow up a first action with a second action.

EXAMPLE 5.28.
– a gambler may win forty-five dollars and then follow up with winning
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merge
adding
⊕

sixty-two dollars.
– a gambler may win thirty-one dollars and then follow up with losing

forty-four dollars.
– a gambler may lose twenty-one dollars and then follow up with winning

fifty-seven dollars.
– a gambler may lose seventy-eight dollars and then follow up with losing

thirty-four dollars.

• merge a first state with a second state

EXAMPLE 5.29.
– a business that is three thousand dollars in the black may merge with a

business that is six hundred dollars in the black.
– a business that is three hundred dollars in the black may merge with a

business that is five hundred dollars in the red .
– a business that is two thousand dollars in the red may merge with a

business that is seven hundred dollars in the black.
– a business that is seven hundred dollars in the red may merge with a

business that is two hundred dollars in the red .

NOTE 5.4 English forces us to use a different word order here: while
we attached a second collection to a first collection, here we must say
that we follow up a first action with a second action. In order to be
consistent, and although it is not necessary, we will also say that we
merge a first state with a second state.

2. Then, just like adding a counting-number-phrases was the paper pro-
cedure to get the result of attaching a collection, adding a signed number-
phrase will be the paper procedure to get the result of following up an action
and/or merging a state.
In order to distinguish adding signed number-phrases from adding counting
number-phrases as we develop the procedure, we shall use for a while the
symbol ⊕. Later, we will just use + and learn to rely on the context.

3. Just like, in Chapter 1, we introduced counting number-phrases with
slashes, /, to discuss addition of signed number-phrases, we will use tem-
porarily arrows of two kinds, ← and →.
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EXAMPLE 5.30.
We will use temporarily
→ → → → → Dollars instead of +5 Dollars

and
← ← ← ← ← Dollars instead of −5 Dollars.

When adding a signed number-phrase, we must distinguish two cases.
a. The second signed number-phrase has the same sign as the first

signed number-phrase. Then, all the items are of the same kind and so
following up is the same as attaching. So, in that case, to get the size of the
result, we add the sizes of the two signed number-phrases.

EXAMPLE 5.31.
In the real-world , when we: We write on paper :

deposit five dollars → → → → → Dollars
and then ⊕
deposit three dollars, → → → Dollars
altogether =
this [→ → → → → ⊕ → → →] Dollars
is the same as =
when → → → → → → → → Dollars
we =
deposit eight dollars +8 Dollars

or

EXAMPLE 5.32.
In the real-world , when we We write on paper :

withdraw five dollars ← ← ← ← ← Dollars
and then ⊕
withdraw three dollars, ← ← ← Dollars
altogether =
this [← ← ← ← ← ⊕ ← ← ←] Dollars
is the same as =
when ← ← ← ← ← ← ← ← Dollars
we =
withdraw eight dollars −8 Dollars
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b. The second signed number-phrase has the opposite sign from the
first signed number-phrase. Then, the items are of the same kind and so
following up is the same as attaching. So, in that case, to get the size of the
result, we add the sizes of the two signed number-phrases.

EXAMPLE 5.33.
In the real-world , when we We write on paper :

deposit three dollars → → → Dollars
and then ⊕
withdraw five dollars, ← ← ← ← ← Dollars
altogether =
this [ → → → ⊕ ← ← ← ← ←] Dollars
is [→ → → ← ← ← ← ←] Dollars
the same [→ → →/// ←///← ← ← ←] Dollars
as [→ →/// ←///← ← ←] Dollars
when [→/// ←///← ←] Dollars
we just ← ← Dollars
withdraw two dollars −2 Dollars

or

EXAMPLE 5.34.
In the real-world , when we We write on paper :

deposit three dollars → → → Dollars
and then ⊕
withdraw five dollars, ← ← ← ← ← Dollars
altogether =
this [ → → → ⊕ ← ← ← ← ←] Dollars
is [→ → → ← ← ← ← ←] Dollars
the same [→ → →/// ←///← ← ← ←] Dollars
as [→ →/// ←///← ← ←] Dollars
when [→/// ←///← ←] Dollars
we just ← ← Dollars
withdraw two dollars −2 Dollars
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THEOREM 5.1
To add signed-numerators:
• When the two signed number-phrases have the same sign,

– We get the sign of the result by taking the common sign
– We get the size of the result by adding the two sizes.

• When the two signed number-phrase have opposite signs, we must
first compare the sizes of the two signed number-phrases and then
– We get the sign of the result by taking the sign of the signed

number-phrase whose size is larger ,
– We get the size of the result by subtracting the smaller size

from the larger size.

EXAMPLE 5.35. To identify the specifying-phrase (+3)⊕ (+5) and since
(+3) and (+5) have the same sign, we proceed as follows:
• We get the sign of the result by taking the common sign which gives us +
• We get the size of the result by adding the sizes 3 and 8 which gives us 8
In symbols,

(+3)⊕ (+5) = (+[3 + 5])
= (+8)

EXAMPLE 5.36. To identify the specifying-phrase (+3)⊕ (−5) and since
(+3) and (−5) have opposite signs, we must compare the sizes. Since 3 < 5,
• We get the sign of the result by taking the sign of the number-phrase with
the larger size which gives us −

• We get the size of the result by subtracting the smaller size, 3, from the
larger size, 5 which gives us 2

In symbols,
(+3)⊕ (−5) = (−[5− 3])

= (−2)
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7 Subtracting a Signed Number-Phrase

We investigate the third fundamental process involving actions and states.
While, in the case of collections, detaching a collection made immediate

sense as “un-attaching”, in the case of actions “un-following up” and in the
case of states “un-merging” do not make immediate sense. So, instead, we
shall look at subtraction from the point of view of correction after we have
done a long string of signed-additions and realized that there is an incorrect
entry, that is a signed number-phrase that we shouldn’t have added (for
whatever reason), so that the total is incorrect.

1. Up front, things would seem to work out exactly as in the case of
un-signed number-phrases.

EXAMPLE 5.37. Suppose that we work in a bank and that we had added
transactions as the day went which gave us the following specifying phrase

−2 Dollars ⊕ −7 Dollars ⊕ +5 Dollars ⊕ . . . ⊕ +3 Dollars and that at the

end of day we identified the specifying-phrase which gave us
−132 Dollars

but that we then realized that −7 Dollars was an outcast (it was not for a
transaction but for money involved in some other matter) with the consequence
that −132 Dollars is incorrect in that it is not the sum total of the transaction
for the day.

2. To get the correct total, we have the following two choices for the
procedure:
• Procedure A would be to strike out the incorrect signed number-phrase

and redo the entire addition:

EXAMPLE 5.38. In the above example, we would strike out the incor-
rect entry −7 Dollars
−2 Dollars ⊕ −7 Dollars////////////// ⊕ +5 Dollars ⊕ . . . ⊕ +3 Dollars

Of course, since Procedure A is going to involve a lot of unnecessary
work redoing all that had been done correctly, it is very inefficient.

• Procedure B would be to cancel out the effect of the incorrect entry on
the incorrect total by subtracting the incorrect entry from the incorrect
total.
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add␣the␣opposite
EXAMPLE 5.39. In the above example, we would subtract the incorrect
entry −7 Dollars from the incorrect total −132 Dollars
−132 Dollars 	 −7 Dollars
except that, at this point, we have no procedure for 	! Indeed, at this
point, the only procedure we have for subtracting is for subtracting unsigned
number-phrases.

On the other hand, the obvious way to cancel out the effect of the incor-
rect entry on the incorrect total and that it is by adding the opposite
of the incorrect entry to the incorrect total. (Accountants call this “en-
tering an adjustment”.)

EXAMPLE 5.40. In the above example, we would add the opposite
of the incorrect entry −7 Dollars, that is we would add −7 Dollars to the
incorrect total −132 Dollars
−132 Dollars ⊕ +7 Dollars

3. We now want to see that the two procedures must give us the same
result either way. For that, we place the specifying-phrases in the two pro-
cedures side by side and we see that that the remaining number-phrases are
the same either way.

EXAMPLE 5.41. In the above example, we place the specifying-phrases in
the two procedures side by side:
• The specifying-phrase in Procedure A is:
−2 Dollars ⊕ −7 Dollars////////////// ⊕ +5 Dollars ⊕ . . . ⊕ +3 Dollars

• The specifying-phrase in Procedure B is:
−2 Dollars ⊕ (((((−7 Dollars ⊕ +5 Dollars ⊕ . . . ⊕ +3 Dollars ⊕ (((((+7 Dollars

We see that, either way, the remaining number-phrases are:
−2 Dollars ⊕ +5 Dollars ⊕ . . . ⊕ +3 Dollars

4. Altogether then:
• Adding the opposite of the incorrect entry (Procedure B):

−132 Dollars ⊕ + 7 Dollars
necessarily amounts to exactly the same as
• Striking out the incorrect entry (Procedure A):

−132 Dollars 	 − 7 Dollars
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subtractSince Procedure B is much faster than Procedure A, we say that the pro-
cedure for subtracting a signed number-phrase will be to add its opposite.

EXAMPLE 5.42. In order to identify the specifying-phrase (+3) 	(+5) ,
i. we identify instead the specifying-phrase (+3) ⊕(−5)
ii. we do the addition which gives us −2

EXAMPLE 5.43. In order to identify the specifying-phrase (−3) 	(−5) ,
i. we identify instead the specifying-phrase (−3) ⊕(+5)
ii. we do the addition which gives us +2

EXAMPLE 5.44. In order to identify the specifying-phrase (−3) 	(+5) ,
i. we identify instead the specifying-phrase (−3) ⊕(−5)
ii. we do the addition which gives us −8

EXAMPLE 5.45. In order to identify the specifying-phrase (+3) 	(−5) ,
i. we identify instead the specifying-phrase (+3) ⊕(+5)
ii. we do the addition which gives us +8

8 Effect Of An Action On A State

We now look at the connection between states and actions.
1. A state does not exist in isolation but is always one of many.

EXAMPLE 5.46.
The state of an account is usually different on different days.



70 Chapter 5. Signed Number-Phrases

initial state
final state
change
gain
loss

Given two states, we shall refer to the first one as the initial state and to
the second one as the final state. The change from the initial state to the
final state can be up in which case we shall call the change a gain or can
be down in which case we shall call the change a loss.
On paper, we shall use + for a gain and we shall use − for a loss.

EXAMPLE 5.47.
• At the beginning of a month, Jill’s account was two dollars in-the-red
• At the end of the month, Jill’s account was three dollars in-the-black
So, during that month Jill’s account went up by five dollars and we shall write
the gain as +5 Dollars.

–3 –2 –1 0 +1 +2 +3 +4 +5

Dollars
–∞ +∞

Change:   +5

States:

EXAMPLE 5.48.
• At the beginning of a month, Jack’s account was two dollars in-the-black
• At the end of the month, Jack’s account was five dollars in-the-red
So, during that month Jack’s account went down by seven dollars and we shall
write the loss as −7 Dollars.

–3 –2 –1 0 +1 +2 +3–4–5

Dollars
–∞ +∞

Change:   –7

States: –6

THEOREM 5.2
Regardless of what the sign of the initial state and the sign of the
final state are, we have that

change = final state 	 initial state

EXAMPLE 5.49.
• At the beginning of a month, Jill’s account was two dollars in-the-red
• At the end of the month, Jill’s account was three dollars in-the-black

change = +3 Dollars 	 −2 Dollars
= +3 Dollars ⊕ +2 Dollars
= +5 Dollars
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EXAMPLE 5.50.
• At the beginning of a month, Jack’s account was two dollars in-the-black
• At the end of the month, Jack’s account was five dollars in-the-red

change = −5 Dollars 	 +2 Dollars
= −5 Dollars ⊕ −2 Dollars
= −7 Dollars

2. A change always happens as the result of an action.

EXAMPLE 5.51.
On an account,
• A deposit results in a gain,
• A withdrawal results in a loss.

In fact, we have exactly
action = change

so that, as a consequence of the previous THEOREM, actions and states
are related as follows:

THEOREM 5.3 [Conservation Theorem]
action = final state	 initial state

EXAMPLE 5.52.
• On Monday, Jill’s account was five dollars in-the-red ,
• On Tuesday, Jill deposits seven dollars.
So, we have:
i.

Action = +7 Dollars
ii.

–3 –2 –1 0 +1 +2 +3–4–5

Dollars
–∞ +∞

Action:   –7

States: –6
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So, on Wednesday, Jill’s account is two dollars in-the-black
iii. Then we compute the change:

Change = Final State	 Initial State
= +2 Dollars	−5 Dollars
= +2 Dollars⊕+5 Dollars
= +7 Dollars

And we have indeed that
action = final state − initial state

What happened is that each state is the result of all prior actions. So, by
subtracting the initial state from the final state, we eliminate the effect of
all the actions that resulted in the initial state, that is the effect of all the
actions except the effect of the last one, namely the seven dollars deposit.

9 From Plain To Positive

We now have two kinds of number-phrases: plain number-phrases and signed
number-phrases. The two, though, overlap and we want to analyze the
connections between the two and what is gained when we go from using
plain number-phrases to using signed number-phrases.

1. We developed
• plain number-phrases in order to deal with collections of items that are
all of one kind,
• signed number-phrases in order to deal with collections of items that
are all of one kind or all of another kind—with items of different kinds
canceling each other.

But then, given collections of items that are all of one kind, it often happens
that we can eventually think of another kind of items that cancel the first
kind of items.

EXAMPLE 5.53. We may start counting steps to find out how much we
walked . But eventually, we may want to know how far we progressed , being
that there are steps backward as well as step forward and, if it doesn’t matter
what kind of steps they are when it comes to how much we walked , it does
matter very much when it comes to how far we progressed and so we need to
keep track of the direction of the steps.
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2. But then, we can represent the original collection of items in two
ways:

• With a plain number-phrase
• With a positive number-phrase

EXAMPLE 5.54. Given a collection of seven steps (necessarily all in the
same direction since all items in a collection have to be the same), we can
represent the collection by:
• the plain number-phrase

7 Steps
• or we can adopt that direction as standard direction and then represent the
collection by the positive number-phrase

+7 Steps

3. We now check that, when we do an addition, we can go either one of
two routes:

• We can first replace the two plain number-phrases by positive number-
phrases and then oplus the two positive number-phrases,
• We can add the two plain number-phrases and then replace the result of
the addition by a positive number-phrase.

Both routes get us to the same result.

EXAMPLE 5.55.

+7 Steps 7 Steps 

+3 Steps 3 Steps 

+4 Steps 4 Steps 
Replace

Replace

Replace

This works also with subtraction.

EXAMPLE 5.56.
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+5 Steps 5 Steps 

+3 Steps 3 Steps 

+8 Steps 8 Steps 
Replace

Replace

Replace

NOTE 5.5 The reader should check on her/his own that if, instead of
replacing plain number-phrases by positive number-phrases, we were to
replace plain number-phrases by negative number-phrases, then things
would not always work in the sense that the two routes would not always
result with the same number-phrase.



worth
unit-worth
value
unit-value

Chapter 6

Co-Multiplication and Values

Co-Multiplication, 75 • Signed-Co-multiplication, 78.

.
We seldom deal with a collection without wanting to know what the

(money?) worth of the collection is, that is how much money the collection
could be exchanged for.

1 Co-Multiplication

Since all the items in a collection are the same, to find the worth of that
collection, we need only know the unit-worth of the items, that is the
amount of money that any one of these items can be exchanged for.

EXAMPLE 6.1. Given a collection of five apples, and given that the unit-
worth of apples is seven cents, the real-world process for finding the worth of
the collection is to exchange each apple for seven cents. Altogether, we end
up exchanging the whole collection for thirty-five cents which is therefore the
worth of the collection.

We now want to develop a paper procedure to get the number-phrase
that represents the worth of the given collection, which we will call value,
in terms of the number-phrase that represents the unit-worth of the items
in the collection, which we will call unit-value.

75
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co-denominator 1. We know how to write the number-phrase that represents the given
collection and how to write its value, that is the number-phrase that repre-
sents its worth, but what is not obvious is how we should write the unit-value
that is the number-phrase that represents the unit-worth.

EXAMPLE 6.2. In EXAMPLE 1, we represent the collection of five apples
by writing the number-phrase 5 Apples and we represent its worth by writing
its value, that is the number-phrase 35 Cents.
What is not obvious is how to write the unit-value of the Apples, that is the
number-phrase that represents the unit-worth of the apples, that is the fact
that “each apple is worth seven cents”.

More specifically, we know what the numerator of the unit-value should be
but what we don’t know is how to write the denominator of the unit-value
which we will call co-denominator.
Looking at the real-world shows that the procedure for finding the value
must involve multiplication so that the specifying-phrase must look like:
Number-phrase for collection × Unit-value = Number-phrase for money

EXAMPLE 6.3. In EXAMPLE 2, the number-phrase that represents the
collection is 5 Apples and the numerator of the unit-phrase that represents the
unit-value of the items is 7 so the specifying-phrase must look like

5 Apples × 7 ???
where ??? stands for the co-denominator .

2. The co-denominator should be such that the procedure for going from
the specifying phrase to the result should prevent the denominator of the
number-phrase for the collection from appearing in the result and, at the
same time, be such as to force the denominator of the number-phrase for
the value to appear in the result.

EXAMPLE 6.4. In EXAMPLE 3, since we must have
5 Apples × 7 ??? = 35 Cents

the procedure to go from the specifying phrase on the left, that is 5 Apples ×
7 ???, to the result on the right, that is 35 Cents, must
• prevent Apples from appearing on the right
• but force Cents to appear on the right.
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co-multiplication
co-number-phrase
evaluate

3. What we will do is to write the co-denominator just like a fraction
with:
• the denominator of the value above the bar
• the denominator of the items below the bar .

EXAMPLE 6.5. In EXAMPLE 4, we write Cents
Apple in place of ??? so that the

specifying-phrase becomes
5 Apples × 7 Cents

Apple

That way, the procedure for identifying such a specifying phrase, called
co-multiplication, is quite simply stated:
i. multiply the numerators
ii. multiply the denominators with cancellation.

EXAMPLE 6.6. When we carry out the procedure on the specifying phrase
in EXAMPLE 5, we get

5 Apples × 7 Cents
Apple = (5× 7)

(
���

�Apples × Cents
���Apple

)
= 35 Cents

which is what we needed to represent the real-world situation in EXAMPLE 1.

4. From now on, in order to remind ourselves that the reason why unit-
values are written this way is to make it easy to co-multiply, we shall call
them co-number-phrases1.
Also, just as we often say “To count a collection” as a short for “To find
the numerator of the number-phrase that represents a collection”, we shall
say “To evaluate a collection” as a short for “To find the numerator of the
number-phrase that represents the value of a collection”.

NOTE 6.1
Co-multiplication is at the heart of a part of mathematics called extscDi-
mensional Analysis that is much used in sciences such as extscPhysics,
extscMechanics, extscChemistry and extscEngineering where people
have to “cancel” denominators all the time.

1Educologists will of course have recognized number-phrases and co-number-phrases
for the vectors and co-vectors that they are—albeit one-dimensional ones.
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extend

EXAMPLE 6.7.
5 Hours × 7 Miles

Hour = (5× 7)
(
���Hours× Miles

��Hour

)
= 35 Miles

EXAMPLE 6.8.
5 Square-Inches × 7 Pound

Square-Inch = (5×7)
(
((((

(((Square-Inches× Pound
((((Square-Inch

)
= 35 Pounds

Co-multiplication is also central to a part of mathematics called extscLin-
ear Algebra that is in turn of major importance both in many other parts
of mathematics and for all sort of applications in sciences such as extscE-
conomics.

EXAMPLE 6.9.
5 Hours × 7 Dollars

Hour = (5× 7)
(
���Hours × Dollar

��Hour

)
= 35 Dollars

More modestly, co-multiplication also arises in percentage problems:

EXAMPLE 6.10.
5 Dollars × 7 Cents

Dollar = (5× 7)
(
���

�Dollars× Cents
���Dollar

)
= 35 Cents

2 Effect of Transactions on States:
Signed Co-Multiplication

We now want to extend the concept of co-multiplication to signed-number-
phrases in order to deal with actions and states.

1. We begin by looking at the real-world. As before, we want to inves-
tigate the change in a given state, gain or loss, that results from a given
transaction, “in” or “out” as before but with two-way collections of “good”
items or “bad” items.

EXAMPLE 6.11. Consider a store where, for whatever reason best left
to the reader’s imagination, collections of apples can either get in or out of
the store. Moreover, the collections are really two-way collections in that the
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signed co-number-phrase
apples can be either good—inasmuch as they will generate a sales profit—or
bad—inasmuch as they will have to be disposed of at a cost.

2. We now look at the way we will represent things on paper.
a. To represent collections that can get in or out, we use signed

number-phrases and we use a + sign for collections that get in and a −
sign for collections that get out.
So, we will represent
• collections getting “in” by positive number-phrases,
• collections getting “out” by negative number-phrases,

EXAMPLE 6.12. In the above example, we would represent
• a collection of three apples getting in the store by the number-phrase

+3 Apples
• a collection of three apples getting out of the store by the number-phrase
−3 Apples

b. To represent unit-values that can be gains or losses, we use signed
co-number-phrase and we use a + sign to represent gains and a − sign
to represent losses.
So, we will represent
• the unit-value of “good” items by positive co-number-phrases,
• the unit-value of “bad” items by negative co-number-phrases,

EXAMPLE 6.13. In the above example, we would represent
• the unit-value of apples that will generate a sales profit of seven cents per
apples by the co-number-phrase +7 Cents

Apple
• the unit-value of apples that will generate a disposal cost of seven cents per
apple by the co-number-phrase −7 Cents

Apple

3. Looking at the effect that transactions (of two-way collections) can
have on (money) states, that is at the fact that:
• A two-way collection of “good” items getting “in” makes for a “good”

change.
• A two-way collection of “good” items getting “out” makes for a “bad”

change.
• A two-way collection of “bad” items getting “in” makes for a “bad”

change.



80 Chapter 6. Co-Multiplication and Values

signed co-multiplication • A two-way collection of “bad” items getting “out” makes for a “good”
change.

we can now write the procedure for signed co-multiplication for which
we will use the symbol ⊗:
i. multiply the denominators (with cancellation).
ii. multiply the numerators according to the way gains and losses occur:
• (+)⊗ (+) gives (+)

EXAMPLE 6.14.
Three apples get in the store. +3 Apples
The apples have a unit-value of seven cents-per-apple gain. +7 Cents

Apple

The specifying phrase is [+3 Apples]⊗
[
+7 Cents

Apple

]
We co-multiply [(+3)⊗ (+7)]

[
��
��Apples × Cents

���Apple

]
We get a twenty-one cent gain. = +21 Cents

• (+)⊗ (−) gives (+)

EXAMPLE 6.15.
Three apples get in the store. +3 Apples
The apples have a unit-value of seven cents-per-apple loss. −7 Cents

Apple

The specifying phrase is [+3 Apples]⊗
[
−7 Cents

Apple

]
We co-multiply [(+3)⊗ (−7)]

[
���

�Apples × Cents
���Apple

]
We get a twenty-one cent loss. = −21 Cents

• (−)⊗ (+) gives (+)

EXAMPLE 6.16.
Three apples get out of the store. −3 Apples
The apples have a unit-value of seven cents-per-apple gain. +7 Cents

Apple

The specifying phrase is [−3 Apples]⊗
[
+7 Cents

Apple

]
We co-multiply [(−3)⊗ (+7)]

[
���

�Apples × Cents
���Apple

]
We get a twenty-one cent loss. = −21 Cents

• (−)⊗ (−) gives (+)
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EXAMPLE 6.17.
Three apples get out of the store. −3 Apples
The apples have a unit-value of seven cents-per-apple loss. −7 Cents

Apple

The specifying phrase is [−3 Apples]⊗
[
−7 Cents

Apple

]
We co-multiply [(−3)⊗ (−7)]

[
��

��Apples × Cents
���Apple

]
We get a twenty-one cent gain. = +21 Cents

NOTE 6.2
The choice of symbols, + to represent good and − to represent bad , was
not an arbitrary choice because of the way they interact with the symbols
for in and out. We leave it as an exercise for the reader to investigate
what happens when other choices are made.

4. Just as with addition and subtraction, in the case of co-multiplication
too, we can replace plain number-phrases by positive number-phrases .

EXAMPLE 6.18.

3  

24 Seconds 

Step
Seconds

+3  Step
Seconds

+ 24 Seconds 

  

+8 Steps 8 Steps 
Replace

Replace

Replace
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select
requirement
meet
enter
noun
blank
formChapter 7

Basic Problems 1:
(Counting Numerators)

Forms, Data Sets And Solution Subsets, 85 • Collections Meeting A
Requirement, 88 • Basic Formulas, 91 • Basic Problems, 100.

In the real world, we often select collections on the basis of require-
ments that these collections must meet. After introducing some more
mathematical language and discussing real-word situations, we will develop
a paper world approach and introduce what will be our general procedure
when dealing with such problems.

1 Forms, Data Sets And Solution Subsets
We begin by looking at the way we deal in extscEnglish with the selection
of collections in the real world.

=======Begin WORK ZONE=======
1. Essentially, what we use are “incomplete sentences” like those we

encounter on certain exams or when we have to enter a noun in the blanks
of a form.

EXAMPLE 7.1. The following

is a past President of the United States.

is a form in which the box is the blank in which we are supposed to enter a
noun.

85
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instruction
nonsense
sentence

2. The instruction to enter some given noun in the blank of a form
may result in:
• nonsense, that is words that say nothing about the real world.

EXAMPLE 7.2.
The instruction to enter the data,

Mathematics

in the blank of the form

is a past President of the United States.

results in

Mathematics is a past President of the United States.

which is nonsense.

• a sentence, that is words that say something about the real world but
that, like something we may write on a exam, can be TRUE or FALSE

EXAMPLE 7.3.
Given the form

is a past President of the United States.

– The instruction to enter the noun,

Jennifer Lopez

in the blank of the form results in

Jennifer
Lopez

is a past President of the United States.

which is a sentence that (unfortunately) happens to be false.
– The instruction to enter the noun

Bill Clinton

in the blank of the form results in

Bill Clinton is a past President of the United States.

which is a sentence that happens to be true.

3. In order to avoid having to deal with nonsense, that is in order to
make sure that when we enter a noun we always get a sentence, regardless
of whether that sentence turns out to be true or false, we will always have
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data set
curly brackets
problem
solution
non-solution

a data set from which to take the nouns.
We shall write the data set by writing the data within a pair of curly
brackets

EXAMPLE 7.4. Given the form

is a past President of the United States.

the following could be a data set
{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford}

but the following could not be a data set
{Bill Clinton, Ronald Reagan, Jennifer Lopez, Mathematics , Henry Ford}

4. A problem will consist of a form together with a data set.

EXAMPLE 7.5. The form

is a past President of the United States.

and the data set
{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford}

make up a problem.

a. Given a problem, that is given a data set and a form,
• a solution (of the given problem) is a noun such that, when we enter
this noun into the blank of the form, the result in a sentence that is
true
• a non-solution (of the given problem) is a noun such that, when we
enter this noun into the blank of the form, the result in a sentence that
is false

EXAMPLE 7.6.
Given the problem consisting of
the form

is a past President of the United States.

and the data set
{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford}
• The solutions of the problem are

Bill Clinton, Ronald Reagan, John Kennedy
• The non-solutions of the problem are
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solution subset
select
set of selectable collections
require
gauge collection
select subset

Jennifer Lopez, Henry Ford

b. Given a problem, that is given a data set and a form, the solution
subset for the problem consists of all the solutions.
We write a solution subset the same way as we write s data set, that is we
write the solutions between brackets { }.

EXAMPLE 7.7. Given the problem consisting of
the form

is a past President of the United States.

and the data set
{Bill Clinton, Ronald Reagan, Jennifer Lopez, John Kennedy, Henry Ford} the
solution subset of that problem is

{Bill Clinton, Ronald Reagan, John Kennedy}

=======EndWORK ZONE========WZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZWZ

2 Collections Meeting A Requirement
The simplest way to select collections from a given set of selectable col-
lections

is to require them to compare in a given way to a given gauge col-
lection which we do by matching the collections one-to-one with the gauge
collection. (See Chapter 2.) The result is what we will call the select
subset.

EXAMPLE 7.8.
Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections)
are:

If the starting bid (gauge collection) for a particular object is three dollars (a
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selectable collection), the bids that Jack could make (select subset) would then
be:

1. The gauge collection may or may not be a selectable collection.

EXAMPLE 7.9.
Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections)
are:

• If the starting bid for a particular object is three dollars (a selectable collec-
tion), then the bids that he could make (select subset) would be:

• If the starting bid for a particular object is three dollars and forty cents (not
a selectable collection), then the bids that he could make (select subset)
would be:

2. The way the selectable collections are required to compare with the
gauge collection can be to be:
• larger-in-size than the gauge collection,

or
• smaller-in-size than the gauge collection,

or
• same-in-size as the gauge collection.

or
• different-in-size from the gauge collection,

or
• no-larger-in-size than the gauge collection,

or
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empty
full

• no-smaller-in-size than the gauge collection,

EXAMPLE 7.10.
Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction correspond to the collections
of one-dollar bills that he can use (set of selectable collections):

• If it is the starting bid for a particular object that is three dollars, then the
bids that Jack could make (select subset) would be:

• If it is the current bid for a particular object that is three dollars, then the
bids that Jack could make would be:

3. Occasionally, the subset of selected collections can be emptymeaning
that none of the selectable collections meets the given requirement.

EXAMPLE 7.11.
Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections)
are:

If the starting bid (gauge collection) for a particular object is seven dollars,
then Jack cannot make any bid so that the select subset is empty .

4. Occasionally, the subset of selected collections can be full meaning
that all of the selectable collections meet the given requirement.

EXAMPLE 7.12.
Jack has the following collection of one-dollar bills
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unspecified numerator
x
specifying-formula
formulaSo the bids that he can at all make in an auction (set of selectable collections)

are:

If the starting bid (gauge collection) for a particular object is one dollars, then
the select subset is full .

There is of course nothing difficult with the one-to-one matching pro-
cess involved in checking whether selectable collections compare or do not
compare in a given way with a given gauge collection, but, as with mostreal-
world processes, all this one-to-one matching of items is certainly going to
get very quickly very tedious.

3 Basic Formulas

In order to represent on paper real-world the various situations involving
the selection on the basis of a requirement of a subset of selected collection
from among a set of selectable collections we will use:
• Number-phrases to represent the collections,
• The six verbs that were introduced in Chapter 2 to compare collections

>, <, =, 6=, 5, =
• A special kind of form to represent the requirement.

1. The main difficulty with forms as we discussed them in Section 7.1
above is with the blanks. So we begin by introducing a kind of form that
will be appropriate for “computations”.

a. Instead of blanks, we will use an unspecified numerator such as,
for instance, the letter x .

EXAMPLE 7.13.
Instead of writing

< 5

we will write
x < 5

b. A specifying-formula —we will often say formula for short—is
a kind of forms in which:
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equation
inequation
instruction
replace

• the verb can be any one of:
>, <, =, 6=, 5, =

• the nouns are numerators
• the common denominator is factored out.

EXAMPLE 7.14. The following are specifying-formulas
x 5 8

x + 3 = 8
3× x < 12

+3⊗ x⊕−7 = −12

We will distinguish between:
• Equations, that is specifying-formulas that involve the verb

=
• Inequations1, that is specifying-formulas that involve any one of the
other five verbs:

>, <, 6=, 5, =
c. Then, instead of giving the instruction

enter the given numerator in the blank.
we will give the instruction

replace the unspecified numerator x by the given numerator.

EXAMPLE 7.15.
Instead of giving the instruction

Enter 7 in the blank of the form:
< 5.

we will give the instruction
Replace x by 7 in the formula:

x < 5

d. While a formula is not a sentence because it does not say anything
about the real world (how could it since all that x stands for is a blank!),
once we have replaced in a formula the unspecified numerator x by a given
numerator, we have of course a sentence. (That this sentence is going to be

1Although supposedly exceedingly concerned with the relevance of mathematics to the
“ordinary life” of their students—as opposed to their “school life” one can only suppose,
but judging by the textbooks they produce in vast numbers, Educologists are strangely
indifferent to the fact that, in the real world, inequations are vastly more prevalent than
equations.
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code
vertical bar

either true or false depending on the given numerator is beside the point
here.)

EXAMPLE 7.16. The specifying-formula
x < 5

is not a sentence because it does not sat anything about the real world since x
does not stand for a given numerator.
The instruction to replace x by 7 in the specifying-formula

x < 5
results in

7 < 5
which is a sentence. (That it happens to be false is beside the point here.)

e. What will complicate matters a bit is that we will often code the
instruction to replace the unspecified numerator x by some given numerator
into the specifying-formula itself. For that, we will
i. draw, to the right of the specifying formula a vertical bar extending a
bit below the line, which we read as “where”
ii. write to the bottom right of the vertical bar :

– the unspecified numerator x
followed by
– the symbol :=, to be read as “is to be replaced by”,

followed by
– the given numerator

EXAMPLE 7.17.
Instead of using the instruction

Replace x by 7 in the specifying-formula:
x < 5

we shall write the instruction right into the specifying formula as follows:
x < 5|x:=7

and the result is to be read as:
x < 5 where x is to be replaced by 7.

The reason this complicates matters is that while
x < 5

is a specifying-formula,
x < 5 where x is to be replaced by 7.

is a sentence since it is the same as the sentence
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formula,␣associated
7 < 5

f. In particular, we have that:
• replacing the unspecified numerator by a given numerator in an inequa-
tion results in an inequality.

EXAMPLE 7.18.

Using a form, we would write: Using a formula, we will write:

“Before”: > 3.14 x > 3.14
Inequation (neither true nor false) (neither true nor false)

“Action“: >  3.14

7.82

x > 3.14|x:=7.82
Enter 7.82 in the blank Replace x by 7.82

“After”: >  3.147.82 7.82 > 3.14
Inequality is true is true

• replacing the unspecified numerator by a given numerator in an equation
results in an equality.

EXAMPLE 7.19.
Using a form, we would write: Using a formula, we will write:

“Before”: = +5 x = +5
Equation (neither true nor false) (neither true nor false)

“Action“: =  +5

–3

x = +5|x:=−3
Enter −3 in the blank Replace x by −3

“After”: =  +5–3 −3 = +5
Equality is false is false

2. Given a formula, the associated formulas for that formula are the
formulas that differ from the given formula only by the verb.
Crucial for the general procedure that we will develop in the next chapter
and given an inequation regardless of whether this given inequation is strict
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associated equation
associated strict
inequation

or lenient, are:
• The associated equation, that is the equation we obtain by replacing
the verb in the given inequation by the verb =.

EXAMPLE 7.20. The equation associated with the lenient inequation
−3⊗ x = +90.43

is the equation
−3⊗ x = +90.43

EXAMPLE 7.21. The equation associated with the strict inequation
x⊕−14.08 < +53.71

is the equation
x⊕−14.08 = +53.71

• The associated strict inequation, that is the inequation we obtain
by replacing the verb in the given inequation by the corresponding strict
verb.

EXAMPLE 7.22. Given the lenient inequation
x + 6.08 = 17.82

the associated strict inequation is
x + 6.08 > 17.82

So, the strict inequation associated to a strict inequation is the strict
inequation itself.

EXAMPLE 7.23. Given the strict inequation
x	−6.08 < −44.78

the associated strict inequation is
x	−6.08 < −44.78

While certainly surprising, this will help us developing a general proce-
dure in the next chapter.

In particular, we can say that a lenient inequation gives the choice between
the associated strict inequation and the associated equation.

EXAMPLE 7.24. The lenient inequation
x 5 +53.71

gives the choice between the associated strict inequation:



96 Chapter 7. Basic Problems 1 Counting Numerators

basic formulas
unspecified numerator
gauge numerator
declare

x < +53.71
and the associated equation

x = +53.71
For instance,

−61.05 is a solution of x 5 +53.71 because −61.05 is a solution of
x < +53.71

and
+53.71 is a solution of x 5 +53.71 because +53.71 is a solution of

x = +53.71

3. The simplest kind of specifying formula, which we will call basic for-
mulas, are formulas involving two nouns related by a verb in the following
manner:
i. The first noun is the unspecified numerator x,
ii. The verb is any of the verbs introduced in Chapter 2 to compare collec-
tions:
iii. The second noun is a given gauge numerator

EXAMPLE 7.25. The following specifying-phrases are basic formulas:
x < 5

x = −3
x 6= −52.19

but the following specifying phrases are not basic formulas:
x + 3 = 8
3× x < 12

3⊗ x⊕−7 = −12

EXAMPLE 7.26.
Given the data set

{2 Dollars, 3 Dollars, 4 Dollars, 5 Dollars, 6 Dollars, 7 Dollars, 8 Dollars}
and the formula

x Dollars > 5 Dollars
the solution subset is

{6 Dollars, 7 Dollars, 8 Dollars}

4. However, in dealing with number-phrases we will want to avoid writ-
ing the denominator too many times. What we will do is to declare up
front what the denominator is going to be. Then, we will be able to fac-
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factor␣out
common denominator
unspecified numerator

tor out the common denominator which occurs in the data set, in the
formula and in the solution subset.
In fact, from now on, instead of calling x a place-holder , we shall call x an
unspecified numerator so that, once the data set has been declared, a
formula will only involve numerators.

EXAMPLE 7.27.
We can rewrite EXAMPLE 14 as follows:
Given the problem in Dollars with the data set

{2, 3, 4, 5, 6, 7, 8}
and the formula (where x is an unspecified numerator and 5 is the gauge
numerator)

x > 5
the solution subset is

{6, 7, 8}

Moreover, we will use the following

NOTE 7.1 W hen there is no denominator in the formula, it goes
without saying that the denominators in the formula are the same as the
denominator in the data set.

EXAMPLE 7.28.
Given the data set

{2, 3, 4, 5, 6, 7, 8} Dollars
instead of writing the formula

x Dollars > 5 Dollars
we don’t write the denominator Dollars and we write only:

x > 5
where both x and 5 are numerators.

Altogether, this will result in a great economy of writing since we write
the denominator only once but we should always keep in mind the denomi-
nator that has been declared with the data set.

EXAMPLE 7.29.
When we say:

Given {2, 3, 4, 5, 6, 7, 8} Dollars and x > 5
this is a shorthand for:
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x0
equation,␣basic
inequation,␣basic␣simple
inequation,␣basic␣strict

Given the data set
{2 Dollars, 3 Dollars, 4 Dollars, 5 Dollars, 6 Dollars, 7 Dollars, 8 Dollars}

and the formula,
x Dollars > 5 Dollars

In order to talk in general about basic formulas, we will use the symbol x0
to stand for the gauge numerator .

5. We will sort basic formulas according to the kind of verb that is
involved and we will distinguish four types of basic formula corresponding
to the four types of comparison sentences that we encountered in Chapter
2.

• Basic equations are basic formulas of the type:
x = x0

EXAMPLE 7.30.
The formula

x = 31.19
is a basic equation

• Basic simple inequations are basic formulas of type:
x 6= x0

EXAMPLE 7.31.
The formula

x 6= 742.05
is a basic simple inequation

• Basic strict inequations are basic formulas of type:
x > x0 or x < x0

EXAMPLE 7.32.
The formulas

x > 132.17
and

x < −283.41
are both basic strict inequations
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inequation,␣basic␣lenient
basic problem
associated

EXAMPLE 7.33.

• Basic lenient inequations are basic formulas of type:
x 5 x0 or x = x0

EXAMPLE 7.34.
The formulas

x = 132.17
and

x 5 +283.41
are both basic lenient inequations

6. A basic problem with thus be a problem in which
• the data set consists of number-phrases
• the formula is a basic formula
• the common denominator has been factored out and declared up-front.

EXAMPLE 7.35. Given the basic problem in Dollars where
• The data set is:

{2, 3, 4, 5, 6, 7, 8}
• The formula is:

x > 5
(where x is an unspecified numerator and 5 is the gauge numerator)

the solution subset is
{6, 7, 8}

These types of basic formulas are associated in several ways.
i. A lenient inequation gives a choice between the two formulas that

are associated with it: its associated equation and its associated strict in-
equation.

EXAMPLE 7.36.
The lenient inequation in Dollars

x 5 +53.71
gives the choice between its two associated formulas together:

x < +53.71
x = +53.71
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For instance,
−61.05 is a solution of x 5 +53.71 because −61.05 is a solution of

x < +53.71
+53.71 is a solution of x 5 +53.71 because +53.71 is a solution of

x = +53.71

EXAMPLE 7.37.
The formula

x > 13.72

does not make a definite, true or false, statement but

x > 13.72|x:=71.56

does make a definite, true or false, statement as we can see by looking
at what we get after we have replaced the unspecified numerator x by the
numerator 71.56, namely the (true) inequality

71.56 > 13.72

In other words,

x > 13.72|x:=71.56

is a sentence.

This will turn out to be important when we will want to check if a given
numerator is a solution or a non-solution because, as opposed to a formula
which is neither true nor false, a sentence is either true or false.

4 Basic Problems
Given a basic problem involving counting number-phrases,

i. We determine the solution subset by replacing the unspecified numer-
ator successively by each and every numerator in the data set. We then have
comparison sentences that are true or false depending on
• which one of the six verbs is the verb in the formula.
• which way, up or down or not at all, we have to count from the numerator
replacing the unspecified numerator to the given gauge numerator

(See Chapter 2.)



4. Basic Problems 101

graph
dot,␣solid
dot,␣hollow
name

ii. We represent the solution subset:

• To graph the solution subset, we will use:
– a solid dot to represent a solution:

– a hollow dot to represent a non-solution:

• To name the solution subset, we will use, just as for data sets, two curly
brackets, { }, and write the solutions in-between the curly brackets.

1. Usually, a problem has both non-solutions and solutions.

EXAMPLE 7.38.
I. In the real world, Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections)
are:

If the starting bid for a particular object is three dollars (a selectable collection),
then the bids that he could make (select subset) would be:

II. On paper, we represent this by the following problem:
• We represent the set of selectable collections by the data set:

{1, 2, 3, 4, 5} Dollars
• We represent the requirement that the bid must be no less than three dollars
by the formula

x = 3
III. To determine the solution subset we check each and every numerator in
the data set. The verb = requires that, from the numerator that replaces the
unspecified numerator to the gauge numerator, we must count down or must
not count.
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empty
x = 3|x:=1 is false because, from 1 to 3, we must count up
x = 3|x:=2 is false because, from 2 to 3, we must count up
x = 3|x:=3 is true because, from 3 to 3, we must not count
x = 3|x:=4 is true because, from 4 to 3, we must count down
x = 3|x:=5 is true because, from 5 to 3, we must count down

So:

1 is a non-solution
2 is a non-solution
3 is a solution
4 is a solution
5 is a solution

IV. We represent the solution subset
• The graph of the solution subset is:

Dollars1 2 3 4 5

• The name of the solution subset is:
{3, 4, 5} Dollars

2. Occasionally, it can happen that there is no solution in which case
we say that the solution subset is empty.

EXAMPLE 7.39.
I. In the real world, Jack has the following collection of one-dollar bills
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So the bids that he can at all make in an auction (set of selectable collections)
are:

If the starting bid for a particular object is seven dollars (a selectable collection),
then he would not be able to make any bid (the select subset is empty):
II. On paper, we represent this by the following problem:
• We represent the set of selectable collections by the data set:

{1, 2, 3, 4, 5} Dollars
• We represent the requirement that the bid must be no less than three dollars
by the formula

x = 7
III. To determine the solution subset we check each and every numerator in
the data set. The verb = requires that, from the numerator that replaces the
unspecified numerator to the gauge numerator, we must count down or must
not count.

x = 7|x:=1 is false because, from 1 to 7, we must count up
x = 7|x:=2 is false because, from 2 to 7, we must count up
x = 7|x:=3 is false because, from 3 to 7, we must count up
x = 7|x:=4 is false because, from 4 to 7, we must count up
x = 7|x:=5 is false because, from 5 to 7, we must count up

So:

1 is a non-solution
2 is a non-solution
3 is a non-solution
4 is a non-solution
5 is a non-solution
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full

IV. We represent the solution subset
• The graph of the solution subset is:

Dollars1 2 3 4 5

• The name of the solution subset is:
{ } Dollars

3. Occasionally, it can happen that there is no non-solution in which
case we say that the solution subset is full.

EXAMPLE 7.40.
I. In the real world, Jack has the following collection of one-dollar bills

So the bids that he can at all make in an auction (set of selectable collections)
are:

If the starting bid for a particular object is one dollars (a selectable collection),
then he can any bid any selectable collection (the select subset is full):
II. On paper, we represent this by the following problem:
• We represent the set of selectable collections by the data set:

{1, 2, 3, 4, 5} Dollars
• We represent the requirement that the bid must be no less than three dollars
by the formula

x = 1
III. To determine the solution subset we check each and every numerator in
the data set. The verb = requires that, from the numerator that replaces the
unspecified numerator to the gauge numerator, we must count down or must
not count.
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infinite
x = 1|x:=1 is true because, from 1 to 1, we must not count
x = 1|x:=2 is true because, from 2 to 1, we must count down
x = 1|x:=3 is true because, from 3 to 1, we must count down
x = 1|x:=4 is true because, from 4 to 1, we must count down
x = 1|x:=5 is true because, from 5 to 1, we must count down

So:

1 is a solution
2 is a solution
3 is a solution
4 is a solution
5 is a solution

IV. We represent the solution subset
• The graph of the solution subset is:

Dollars1 2 3 4 5

• The name of the solution subset is:
{1, 2, 3, 4, 5} Dollars

4. When the data set is infinite, we cannot check every numerator in
the data set and we must make the case that beyond a certain numerator,
the numerators are all solutions or all non-solutions.

EXAMPLE 7.41.
I. On paper, we represent such a situation by the following problem:
• We represent the set of selectable collections by the data set:
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{1, 2, 3, 4, 5, . . . } Dollars
where ... is read “and so on”.

• We represent the requirement that the bid must be no less than three dollars
by the formula

x = 3
II. To determine the solution subset we are supposed to check each and every
numerator in the data set. The verb = requires that, from the numerator that
replaces the unspecified numerator to the gauge numerator, we must count
down or must not count.

i. We start by checking each and every numerator in the data set until we
pass the gauge numerator 3:

x = 3|x:=1 is false because, from 1 to 3, we must count up
x = 3|x:=2 is false because, from 2 to 3, we must count up
x = 3|x:=3 is true because, from 3 to 3, we must not count
x = 3|x:=4 is true because, from 4 to 3, we must count down

So:

1 is a non-solution
2 is a non-solution
3 is a solution
4 is a solution

ii. We now make the case that any numerator beyond 4, that is 5, 6, 7, . . . ,
is a solution:
• Since, from any numerator beyond 4, that is 5, 6, 7, . . . , to 4, we must

count down,
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• And since, from 4 to the gauge 3, we must count down,
• It follows that from any numerator beyond 4, that is 5, 6, 7, . . . , to the

gauge 3, we must count down.
So, any numerator beyond 4, that is 5, 6, 7, . . . is also going to be a solution.
III. We represent the solution subset
• The graph of the solution subset is:

Dollars1 2 3 4 and so on5

where we actually write “and so on” because . . . would run the risk of not
being seen.

• The name of the solution subset is:
{1, 2, 3, 4, 5, . . . } Dollars

where we use . . . to mean “and so on”.

5. When the data set involves signed numerators, we proceed essentially
in the same manner as with plain numerators.

EXAMPLE 7.42.
I. On paper, we represent such a situation by the following problem:
• We represent the set of selectable collections by the data set:

{−5,−4,−3,−2,−1, 0, +1, +2, +3, +4, +5, . . . } Dollars
where . . . is read “and so on”.

• We represent the requirement that the balance must be more than a three
dollar debt by the formula

x > −3
II. i. We start by checking each and every numerator in the data set until
we pass the gauge numerator 3:

x = −3|x:=−5 is false because, from −5 to −3, we must count up
x = −3|x:=−4 is false because, from −4 to −3, we must count up
x = −3|x:=−3 is true because, from −3 to −3, we must not count
x = −3|x:=−2 is true because, from −2 to −3, we must count down
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So:

−5 is a non-solution
−4 is a non-solution
−3 is a solution
−2 is a solution

ii. We now make the case that any numerator beyond −2, that is
−1, 0, +1, +2, . . . is a solution:
• Since, from any numerator beyond −2, that is −1, 0, +1, +2, . . . , to −2,
we must count down,

• And since, from −2 to the gauge −3, we must count down,
• It follows that from any numerator beyond −2, that is −1, 0, +1, +2, . . .
to the gauge −3, we must count down.

So, any numerator beyond −2, that is −1, 0, +1, +2, . . . , is also going to be a
solution.
III. We represent the solution subset
• The graph of the solution subset is:

Dollars
and so on+3+2+1 0–1–3–3 –2

where we actually write “and so on” because . . . would run the risk of not
being seen.

• The name of the solution subset is:
{−3,−2,−1, 0, +1, +2, +3, . . . } Dollars

where we use . . . to mean “and so on”.



Chapter 8

Basic Problems 2:
Decimal Numerators

Basic Equation Problems, 110 • Basic Inequation Problems, 111 • The
Four Basic Inequation Problems, 115.

We continue our investigation of extscBasic Problems in the case when
the numerators are decimal numerators rather than counting numerators as
was the case in the previous chapter.

The reason we are investigating the case of decimal numerators sepa-
rately is that we cannot compare decimal numerators just by counting up or
counting down as we did in the previous chapter where the numerators were
counting numerators. While there is of course a procedure for comparing
decimal numerators, we will not use it here for two reasons:
• We have not discussed in this book the comparison procedures for decimal
numerators since, for reasons of space and time, we have had to take
decimal numerators for granted,
• As it happens, we will not need to use any comparison procedure because
we will introduce a general procedure that is extremely powerful in that
it will allow us to investigate not only extscBasic Problems in the case
when the numerators are decimal but also many other types of problems.

So, this chapter is turned towards the chapters to follow for which it is in
fact a direct preparation as well as a foundation.

Finally, we shall use

109
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NOTE 8.1
When no data set is declared , it will go without saying that the data set
consists of all signed decimal numerators.

But, of course, in order to make sense in terms of the real world, we will
still have to declare the denominator .

Also, to graph solution subsets, we will use rulers that have no tick-mark
other than the ones directly relevant to the problem at hand but will have
the symbol for minus infinity, −∞, and the symbol for plus infinity, +∞,
at the corresponding ends of the ruler:

Dollars
–∞ +∞

1 Basic Equation Problems

When a problem involves an equation with decimal number-phrases, things
remain pretty much the same as with counting number-phrases because
equations usually do not have many solutions.

In the present case of a basic equation,
i. We determine the solution subset from the fact that the one and only

one solution is the gauge numerator.
ii. We represent the solution subset just as in the case of counting nu-

merators, namely:
• To graph the solution subset, we will use:

– a solid dot to represent a solution:

– Since, here, there is no reason to consider any numerator aside from
the gauge, there is no non-solution and so no need for hollow dots.

• To name the solution subset, just as for data sets, we will use two curly
brackets,{ }, and write the solution in-between the curly brackets.

EXAMPLE 8.1. Given the problem in Dollars in which
• the data set consists of all signed decimal numerators
• the formula is the basic equation

x = −13.72
we proceed as follows:
• The only solution is −13.72



2. Basic Inequation Problems 111

boundary
interior• The graph of the solution subset is

Dollars
–13.72

–∞ +∞

• The name of the solution subset is
{−13.72} Dollars

2 Basic Inequation Problems

In the case of an inequation, though, things are very different with dec-
imal numerators from what they were with counting numerators because
inequations can have too many solutions for us to handle them individually
and we will develop and use a general procedure which we will call PASCH
PROCEDURE.

1. Roughly, to determine the solution subset of a given inequation prob-
lem with decimal numerators, we will proceed in two stages:
I. We will locate the boundary of its solution subset, that is the solution
subset of the associated equation problem.
II. We will locate the interior of its solution subset, that is the solution
subset of the associated strict inequation problem.

EXAMPLE 8.2. Given the problem in Dollars in which
• the data set consists of all signed decimal numerators
• the formula is the lenient inequation

x = −13.72
we will locate separately:

i. the boundary of the solution subset, that is the solution subset of the
associated equation

x = −13.72
ii. the interior of the solution subset, that is the solution subset of the

associated strict inequation
x > −13.72

As already noted in the previous chapter, when the problem involves a strict
inequation in the first place, this would appear rather senseless but, in fact,
it is precisely by distinguishing the boundary from the interior that we will
be able us to develop a general procedure.
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boundary point
section EXAMPLE 8.3. Given the problem in Dollars in which

• the data set consists of all signed decimal numerators
• the formula is the basic inequation

x < −55.06
we will locate separately:

i. the boundary of the solution subset, that is the solution subset of the
associated equation

x = −55.06
ii. the interior of the solution subset, that is the solution subset of the

associated strict inequation
x < −55.06

2. More precisely, in the case of a given basic inequation problem,
I. We locate the boundary as follows:

i. There is only one boundary point namely the gauge.
ii. The boundary point, though, may be a solution or a non-solution of

the given inequation problem and we must check which it is:
• If the basic inequation is strict, then the boundary point is a non-
solution and is therefore non-included in the solution set.
• If the basic inequation is lenient, then the boundary point is a solution
and is therefore included in the solution set.

II. We locate the interior as follows:
i. The boundary point separates the data set in two sections, Section A

and Section B.
ii. We pick a test numerator in each of Section A and Section B and we

check if the test point is a solution or a non-solution of the given inequation.
iii. We conclude with the help of

THEOREM 8.1 (Pasch)

• If the test numerator in a section is a solution, then all numerators
in that same section are included in the solution subset.
• If the test numerator in a section is a non-solution, then all numer-
ators in that same section are non-included in the solution subset.

NOTE 8.2
Why the PASCH THEOREM should be the case requires of course an
explanation as, up front, there is no obvious reason why this should be
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half-line
ray,␣solid
ray,␣hollow

so. However, while the explanation is certainly not difficult and in fact
rather interesting, it has been relegated to the supplementary text for
the sake of saving time.

3. The solution subset of a basic inequation problem with decimal nu-
merators is called a half-line. In order to represent a half-line,

i. We graph the half-line as follows:
i. We graph the boundary of the half-line exactly the same way as we

graphed counting number-phrases that is we use
• a solid dot to graph a boundary point that is a solution (is included in

the half-line):

• a hollow dot to graph a boundary point that is a non-solution (is non-
included in the half-line):

ii. • We graph the sections of the data set that make up interior of
the half-line with a solid ray

because this is what we would get if we were to draw a whole lot of
solid dots right next to each other to graph all the decimal numerators
that are solutions:

• We graph the sections of the data set that are not in the interior of the
half-line with a hollow ray

because this is what we would get if we were to draw a whole lot of
hollow dots right next to each other to graph all the decimal numerators
that are non-solutions:

NOTE 8.3
Once done investigating a problem, though, it is customary only to
indicate the solution subset. In other words, it is customary to use
the following
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square bracket
round parenthesis
infinity NOTE 8.4

It goes without saying that those parts of the data set that
are not marked as being included in the solution subset are
in fact non-included in the solution subset.

ii. To name the half-line
i. We name the boundary by writing on the side of the boundary point:
• a square bracket when the inequation is lenient (when the verb does

involve the symbol =, that is when the verb is either 5 or =).
• a round parenthesis when the inequation is strict (when the verb
does not involve the symbol =, that is when the verb is either < or >).

and by writing a round parenthesis on the other side.
ii. We name the interior by separating the boundary point x0 by a

comma from a symbol for infinity depending on the verb:
• x0, +∞ when the inequation is x > x0 or x = x0
• −∞, x0 when the inequation is x < x0 or x 5 x0
iii. Altogether then, the name of a half-line will be one of the following:
• When the inequation is strict:

(x0, +∞) or (−∞, x0)
• When the inequation is lenient:

[x0, +∞) or (−∞, x0]

NOTE 8.5
One advantage of marking only those parts of the data set that are
included in the solution subset is that the graph and the name then
correspond exactly.

EXAMPLE 8.4. Given the graph

Dollarsx
0–∞ +∞Interior

Boundary

the corresponding name is
(x0, +∞)
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kind␣(of␣half-line)3 The Four Basic Inequation Problems
There are four kinds of basic inequation problems and they correspond to
four different kinds of half-line:

verb . . . . . . involves > . . . involves <

. . . is strict,
(does not
involve =)

x > x0 x < x0

x0–∞ +∞

Interior
Boundary

x0–∞ +∞

Interior
Boundary

(x0, +∞) (−∞, x0)

. . . is lenient
(involves =)

x = x0 x 5 x0

x0–∞ +∞

Interior
Boundary

x0–∞ +∞

Interior
Boundary

[x0, +∞) (−∞, x0]

NOTE 8.6
Recall that it goes without saying that those parts of the data set that
are not marked as being included in the solution subset are in fact non-
included in the solution subset.

We now look at an example of each one of these four kinds of basic
inequation problems.

1. Basic strict inequations of the kind x > x0

EXAMPLE 8.5. Given the basic inequation problem in Dollars in which
• the data set consists of all possible signed decimal numbers of Dollars.
• the formula is

x > +37.42
we proceed as follows:

I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

x = +37.42
whose solution is its gauge numerator +37.42
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Dollars+37.42
–∞ +∞

Boundary point

ii. We check whether the boundary point +37.42 is included or non-included
in the solution subset. Since the inequation is strict,

x > +37.42|x:=+37.42 is false
we get that the boundary point +37.42 is non-included in the solution subset
and we graph it with a hollow dot:

Dollars
+37.42

–∞ +∞

Boundary point

II. We determine the interior of the solution subset:
i. The boundary point +37.42 separates the data set in two sections.

Dollars+37.42
–∞ +∞

Section A Section B
Boundary point

ii. We test Section A with, for instance, −100, and since
x > +37.42|x:=−100 is false

we get that −100 is a non-solution of the inequation
x > +37.42

and the PASCH THEOREM then tells us that all the numerators in Section A
are non-included in the solution subset and we graph Section A with a hollow
ray:

Dollars+37.42
–∞ +∞

Section A Section B

iii. We test Section B with, for instance, +100, and since
x > +37.42|x:=+100 is true

we get that +100 is a solution of the inequation
x > +37.42

and the PASCH THEOREM then tells us that all the numerators in Section B
are included in the solution subset and we graph Section B with a solid ray:

Dollars+37.42
–∞ +∞

Section A Section B

III. Altogether, we represent the solution subset of the inequation problem
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in Dollars
x > +37.42

as follows:
• The graph of the solution subset is (we use DEFAULT RULE #4)

Dollars+37.42
–∞ +∞Interior

Boundary

• The name of the solution subset is
(+37.42, +∞) Dollars

2. Basic strict inequations of the kind x < x0

EXAMPLE 8.6. Given the basic inequation problem in Dollars in which
• the data set consists of all possible signed decimal numbers of Dollars.
• the formula is

x < −153.86
we proceed as follows:

I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

x = −153.86
whose solution is its gauge numerator −153.86

Dollars–153.86
–∞ +∞

Boundary point

ii. We check whether the boundary point −153.86 is included or non-included
in the solution subset. Since the inequation is strict,

x < −153.86|x:=−153.86 is false
we get that the boundary point −153.86 is non-included in the solution subset
and we graph it with a hollow dot:

Dollars
–153.86

–∞ +∞

Boundary point

II. We determine the interior of the solution subset:
i. The boundary point −153.86 separates the data set in two sections.
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Dollars–153.86
–∞ +∞

Section A Section B
Boundary point

ii. We test Section A with, for instance, −1000, and since
x < −153.86|x:=−1000 is true

we get that −1000 is a solution of the inequation
x < −153.86

and the PASCH THEOREM then tells us that all numerators in Section A are
included in the solution subset and we graph Section A with a solid ray:

Dollars–153.86
–∞ +∞

Section A Section B

iii. We test Section B with, for instance, +1000, and since
x < −153.86|x:=+1000 is false

we get that +1000 is a non-solution of the inequation
x < −153.86

and the PASCH THEOREM then tells us that all numerators in Section B are
non-included in the solution subset and we graph Section B with a hollow ray:

Dollars–153.86
–∞ +∞

Section A Section B

III. Altogether, we represent the solution subset of the inequation problem
in Dollars

x < −153.86
as follows:
• The graph of the solution subset is (we use DEFAULT RULE #4)

Dollars–153.86
–∞ +∞
Interior

Boundary

• The name of the solution subset is
(−∞,−153.86) Dollars

3. Basic lenient inequations of the kind x = x0
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EXAMPLE 8.7. Given the basic inequation problem in Dollars in which
• the data set consists of all possible signed decimal numbers of Dollars.
• the formula is

x = −93.78
we proceed as follows:

I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

x = −93.78
whose solution is its gauge numerator −93.78

Dollars–93.78
–∞ +∞

Boundary point

ii. We check whether the boundary point −93.78 is included or non-included
in the solution subset. Since the inequation is lenient,

x = −93.78|x:=−93.78 is true
so that the boundary point −93.78 is included in the solution subset and we
graph it with a solid dot:

Dollars
–93.78

–∞ +∞

Boundary point

II. We determine the interior of the solution subset:
i. The boundary point −93.78 separates the data set in two sections.

Dollars–93.78
–∞ +∞

Section A Section B
Boundary point

ii. We test Section A with, for instance, −1000, and since
x = −93.78|x:=−1000 is false

we get that −1000 is a non-solution of the inequation
x = −93.78

and the PASCH THEOREM then tells us that all the numerators in Section A
are non-included in the solution subset and we graph Section A with a hollow
ray:

Dollars–93.78
–∞ +∞

Section A Section B

iii. We test Section B with, for instance, +1000, and since
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x = −93.78|x:=+1000 is true
we get that +1000 is a solution of the inequation

x = −93.78
and the PASCH THEOREM then tells us that all numerators in Section B are
included in the solution subset and we graph Section B with a solid ray:

Dollars–93.78
–∞ +∞

Section A Section B

III. Altogether, we represent the solution subset of the inequation problem
in Dollars

x = −93.78
as follows:
• The graph of the solution subset is (we use DEFAULT RULE #4)

Dollars–93.78
–∞ +∞Interior

Boundary

• The name of the solution subset is
[−93.78, +∞) Dollars

4. Basic lenient inequations of the kind x 5 x0

EXAMPLE 8.8. Given the basic inequation problem in Dollars in which
• the data set consists of all possible signed decimal numbers of Dollars.
• the formula is

x 5 −358.13
we proceed as follows:

I. We determine the boundary of the solution subset:
i. To locate the boundary point we use the associated equation

x = −358.13
whose solution is its gauge numerator −358.13

Dollars–358.13
–∞ +∞

Boundary point

ii. We check whether the boundary point −358.13 is included or non-included
in the solution subset. Since the inequation is strict,

x 5 −358.13|x:=−358.13 is false
and the boundary point −358.13 is included in the solution subset and we graph
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it with a solid dot:

Dollars
–358.13

–∞ +∞

Boundary point

II. We determine the interior of the solution subset:
i. The boundary point −358.13 separates the data set in two sections.

Dollars–358.13
–∞ +∞

Section A Section B
Boundary point

ii. We test Section A with, for instance, −100, and since
x 5 −358.13|x:=−100 is false

we get that −100 is a non-solution of the inequation
x 5 −358.13

and the PASCH THEOREM then tells us that all the numerators in Section A
are non-included in the solution subset and we graph Section A with a hollow
ray:

Dollars–358.13
–∞ +∞

Section A Section B

iii. We test Section B with, for instance, +100, and since
x 5 −358.13|x:=+100 is true

we get that +100 is a solution of the inequation
x 5 −358.13

and the PASCH THEOREM then tells us that all the numerators in Section B
are included in the solution subset and we graph Section B with a solid ray:

Dollars–358.13
–∞ +∞

Section A Section B

III. Altogether, we represent the solution subset of the inequation problem
in Dollars

x 5 −358.13
as follows:
• The graph of the solution subset is (we use DEFAULT RULE #4)
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Dollars–358.13
–∞ +∞
Interior

Boundary

• The name of the solution subset is
(−∞,−358.13] Dollars
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Chapter 9

Translation & Dilation
Problems

Translation Problems, 124 • Solving Translation Problems, 127 • Dilation
Problems, 132 • Solving Dilation Problems, 136.

A large part of extscAlgebra is concerned with the investigation of the
solution subset of problems. In this chapter, we begin with problems barely
more complicated than basic problems.

We will continue to use the PASCH PROCEDURE so that we will be able
to focus on solving the associated equation to locate the boundary point of
the solution subset.

The approach that we will follow, which we will call the REDUCTION
APPROACH, will be to reduce the original equation to an equation of a
kind we have already investigated and which we can therefore solve and
we will call that equation the reduced equation. Of course, the reduced
equation will have to be equivalent to the original equation in the sense
that the reduced equation will have to have the same solution subset as the
original equation. This will be automatically ensured as long as we can
invoke the

THEOREM 9.1 [Fairness] Given any equation, as long as,
whatever we do onto one side of the verb =, we do exactly the same
onto the other side of the verb =, we get an equivalent equation.

123
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NOTE 9.1
While the Fairness Theorem seems obviously true, making the case that
it is true is not that easy because what is not obvious is on what evidence
to base the case. We will thus leave this issue for when the reader takes
a course in extscMathematical Logic.

After we have located the boundary point, we will find the interior of the
solution subset just by following the GENERAL PROCEDURE we introduced in
the case of basic problems.

The only—small—difficulty will be that, although similar in nature, dif-
ferent problems may involve numerators of different kinds:
• plain counting numerators to represent numbers of items,
• signed counting numerators to represent two-way numbers of items,
• plain decimal numerators to represent quantities of stuff,
• signed decimal numerators to represent two-way quantities of stuff.

1 Translation Problems
The simplest kind of real-world situations is where, given a collection, we
attach another collection and we then want the result to compare in a given
way with a given gauge collection.

1. More precisely, in order for the result to compare in a given way with
the given gauge collection, we have two possibilities depending on what we
are given:
• When we are given the initial collection, we will have to find what col-
lection(s) can be attached.

EXAMPLE 9.1. Jill already has two and half tons of sand in her dump-
truck and she wants to know how much more sand she can load given that
her dump-truck is licensed for carrying seven and a quarter tons.

• When we are given what collection is to be attached, we will have to find
out what initial collections are possible.

EXAMPLE 9.2. Jack knows his aunt will give him three apples as he
visits her on the way to school but he wants to have more than seven apples
for his friends at school. How many apples could he take with him as he
sets out?
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problem,␣translation2. In order to represent these kinds of real-world situations, we just need
one denominator to represent the kind of items in the collections.

EXAMPLE 9.3. We represent Jill’s real-world situation in EXAMPLE 1 by
the inequation

2.5 Tons of sand + x Tons of sand 5 7.25 Tons of sand
where 2.5 Tons of sand represents what Jane has already loaded,
7.25 Tons of sand represents the gauge and x Tons of sand represent what she
can load on the way.

EXAMPLE 9.4. We represent Jack’s real-world situation in EXAMPLE 2 by
the inequation

x Apples + 3 Apples > 7 Apples
where x Apples represents Jack’s initial collection of apples, 3 Apples represents
the collection his aunt will give him and where 7 Apples represents the gauge.

Since we have a common denominator , we can factor out this common
denominator. We then see that, from the investigation viewpoint, the kind
of formula we get in both types of situations is essentially the same so that
we won’t have to deal with them separately. We will call this kind of problem
a translation problem.

EXAMPLE 9.5. We can factor out the common denominator Tons of sand
in the inequation in EXAMPLE 3

2.5 Tons of sand + x Tons of sand 5 7.25 Tons of sand
which gives us the translation problem in Tons of sand

2.5 + x 5 7.25

EXAMPLE 9.6. We can factor out the common denominator Apples in the
inequation in EXAMPLE 4

x Apples + 3 Apples > 7 Apples
which gives us the translation problem in Apples

x + 3 > 7

3. So far, for the sake of simplicity, we have been dealing only with
simple collections but we will also have to deal with two-way collections
and it will indeed matter whether the real-world situations involve simple
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formula,␣translation
equation,␣translation
inequation,␣translation

collections or two-way collections because plain numerators cannot always
be subtracted from while signed numerators can always be subtracted from.
So, we will have to deal separately with problems involving plain numerators
and problems involving signed numerators.

EXAMPLE 9.7. Given that his starting balance is three dollars and twenty
cents in the red, Mike wants to know how many dollars he can gain or lose
given that his ending balance has to be higher than seven dollars and seventy
five cents in the red.
We represent this real-world situation by the translation problem in Dollars

−3.25⊕ x > −7.75
where x stands for a signed numerator.

4. Depending on how we want the resulting collection to compare with
the given gauge, the formula, called translation formula, may involve any
one of the following verbs: 6=, >, <, =, 5 and =, and we will also use the
terms translation equation and translation inequation.

EXAMPLE 9.8. Given an initial collection with three apples and a gauge
collection with seven apples, the problem can involve any of the following trans-
lation inequations:

3 + x 6= 7
3 + x < 7
3 + x > 7
3 + x 5 7
3 + x = 7

as well as with the translation equation
3 + x = 7

5. Translation problems are the simplest problems after basic problems
and, in fact, basic problems are a special case of translation problems: If the
number of items in the given collection in a translation problem is 0, then
the translation problem is really just a basic problem.

EXAMPLE 9.9. If, in EXAMPLE 1, Jill had no apple instead of three, then
the translation problem in Apples would be

0 + x > 7
which boils down to the basic inequation in Apples

x > 7
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2 Solving Translation Problems

We now turn to the investigation of the solution subset of translation prob-
lems which we will do in accordance with the GENERAL PROCEDURE.

1. We locate the boundary point of the solution subset. This involves
the following steps:
i. We write the associated equation for the given problem.

EXAMPLE 9.10. Given the inequation in Apples
3 + x > 7

the associated equation in Apples is
3 + x = 7

ii. We try to solve the associated equation by way of the REDUCTION APPROACH,
that is we try to reduce the given translation problem to a basic problem
by subtracting from both sides the numerator that is being added to x. The
Fairness Theorem will then ensure that the resulting basic equation is
equivalent to the original given translation equation.
This, though, is where it matters if the equation involves plain numerators
or signed numerators and we look at the two cases separately.
• If the numerators involved in the equation are plain numerators, we may

or may not be able to subtract depending on whether the numerator of
the gauge is larger or smaller than the numerator being added to x.

EXAMPLE 9.11. Given the plain equation in Apples
3 + x = 7

we subtract 3 from both sides
3 + x − 3 = 7 − 3

which boils down to the basic equation in Apples
x = 4

which the Fairness Theorem ensures to be equivalent to the translation
equation in Apples

3 + x = 7
which therefore has the solution of the basic equation, 4, as its own solu-
tion.

EXAMPLE 9.12. Given the plain equation in Apples
7 + x = 4
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we cannot subtract 7 from the right side so we cannot subtract 7 from
both sides as required by the Fairness Theorem.
So, the original translation equation

7 + x = 4
cannot be reduced to a basic equation and therefore has no solution.

• If the numerators involved in the equation are signed numerators, we
can always subtract since “ominussing” means “oplussing the opposite”.

EXAMPLE 9.13. Given the signed equation in Apples
+7⊕ x = +3

we “ominus” +7 from both sides, that is we “oplus” both sides with the
opposite of +7

+7⊕ x ⊕− 7 = +3 ⊕− 7
which boils down to the basic equation in Apples

x = −4
which the Fairness Theorem ensures to be equivalent to the original
signed translation equation in Apples

+7⊕ x = +3
which therefore has the solution of the basic equation, +4, as its own
solution.

2. We locate the interior of the solution subset according to the GENERAL
PROCEDURE. (For the sake of showing complete investigations, we will men-
tion in each EXAMPLE the step where we locate the boundary point.)

EXAMPLE 9.14. Given the translation problem in Apples:
3 + x > 7

i. To locate the boundary of the solution subset:
i. We solve the associated equation using the REDUCTION APPROACH: 4

Apples
0 4

ii. Since the inequation is strict, the boundary point 4 Apples is non-included
in the solution subset and so we graph it with a hollow dot.

Apples
0 4

ii. To locate the interior of the solution subset:
i. The boundary point 4 Apples divides the data set into two sections:
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Section A Section B

Apples
0 4

ii. We test Section A, for instance with 2. and, since
3 + x > 7|x:=2 is false

we get that 2 is a non-solution of the inequation in Apples
3 + x > 7

and Pasch’s Theorem then tells us that all number-phrases in Section A are
non-included in the solution subset.

Section A Section B

Apples
0 42

iii. We test Section B, for instance with 5, and, since
3 + x > 7|x:=5 is true

we get that 5 is a solution of the inequation in Apples
3 + x > 7

and Pasch’s Theorem then tells us that all number-phrases in Section B are
included in the solution subset.

Section A Section B

Apples
0 54

iii. Altogether , we represent the solution subset of the inequation in Apples
3 + x > 7

as follows:
• The graph of the solution subset is

Apples
540 6 7 8 etc

• The name of the solution subset is
{5, 6, 7, 8, 9, etc} Apples

EXAMPLE 9.15. Given the plain translation problem in Apples:
8 + x < 2

i. To locate the boundary of the solution subset:
i. The REDUCTION APPROACH does not work so that the associated equation

has no solution.
ii. As a result, the solution subset has no boundary point.

ii. To locate the interior of the solution subset:
i. Since there is no boundary point, the interior of the solution subset is

either the full data set (all number-phrases are included) or is empty (no
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number-phrase is included):
ii. We test with, for instance, 3 and, since

8 + x < 2|where x:=3 is false
we get that 3 is a non-solution of the inequation in Apples

8 + x < 2
and Pasch’s Theorem then tells us that all number-phrases are non-included
in the solution subset.
iii. Altogether , we represent the solution subset of the inequation in Apples

8 + x < 2
as follows:
• The graph of the solution subset is

Apples
0 3 54 6 7 8 etc21

(While, normally, we do not mark the non-solutions, here we mark them as
otherwise we would be leaving the ruler unmarked which would be ambigu-
ous.)

• The name of the solution subset is
{ } Apples

EXAMPLE 9.16. Given the plain translation problem in Apples:
8 + x > 2

i. To locate the boundary of the solution subset:
i. The REDUCTION APPROACH does not work so that the associated equation

has no solution.
ii. As a result, the solution subset has no boundary point.

ii. To locate the interior of the solution subset:
i. Since there is no boundary point, the interior of the solution subset is

either the full data set (all number-phrases are included) or is empty (no
number-phrase is included):

ii. We test with, for instance, 3 and, since
8 + x > 2|where x:=3 is true

we get that 3 is a solution of the inequation in Apples
8 + x > 2

and Pasch’s Theorem then tells us that all number-phrases are included in
the solution subset.
iii. Altogether , we represent the solution subset of the inequation in Apples

8 + x > 2
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as follows:
• The graph of the solution subset is

Apples
0 3 54 6 7 8 etc21

• The name of the solution subset is
{0, 1, 2, 3, 4, 5, 6, 7, 8, etc} Apples

EXAMPLE 9.17. Given the translation problem in Dollars:
−3.08⊕ x 5 −57.82

i. To locate the boundary of the solution subset:
i. We solve the associated equation using the REDUCTION APPROACH:

−54.74
Dollars-54.74

+∞–∞

ii. Since the inequation is lenient, the boundary point is included in the
solution subset and so we graph it with a solid dot.

Dollars-54.74
+∞–∞

ii. To locate the interior of the solution subset:
i. The boundary point −54.74 Dollars divides the data set into two sections:

Section A Section B
Dollars-54.74

+∞–∞

ii. We test Section A with, for instance, −1000 and, since
−3.08⊕ x 5 −57.82|where x:=−1000 is true

we get that −1000 is a solution of the inequation in Dollars
−3.08⊕ x 5 −57.82

and Pasch’s Theorem then tells us that all number-phrases in Section A are
included in the solution subset.

Section A Section B
Dollars-54.74

+∞–∞ -1000

iii. We test Section B with, for instance, 5 and, since
3 + x > 7|where x:=+1000 is true

we get that +1000 is a none-solution of the inequation in Dollars
3 + x > 7

and Pasch’s Theorem then tells us that all number-phrases in Section B are
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non-included in the solution subset.
Section A Section B

Dollars-54.74
+∞–∞ +1000

iii. Altogether , the solution subset of the inequation in Dollars
3 + x > 7

is a ray which we represent as follows:
• The graph of the solution subset is

Dollars-54.74
+∞–∞

• The name of the solution subset is
(−∞,−54.74] Dollars

3 Dilation Problems

Another kind of real-world situation, almost as simple as those represented
by translation problems but very different in nature, is where we want to
find the situations in which the money worth of a collection compares in a
given way with a given money gauge.

1. More precisely, in order for the worth to compare in a given way with
the given money gauge, we have two possibilities depending on what we are
given.
• When we are given the number of items in the collection, we will have to
find what unit-worths will let the worth of the collection compare with
the gauge in the given way.

EXAMPLE 9.18. The BananaCompany is twelve dollars in the black
and just lost three apples. So, whether or not the BananaCompany is still
in the black will depend on the going unit profit/removal worth of the
good/bad apples.

EXAMPLE 9.19. Dick wants to sell three and a half pounds of flour
but he needs at least fourteen dollars and seventy cents. So, whether or
not he will be able to sell the flour will depend on the going unit worth of
the flour.
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• When we are given the unit-worth of the items in the collection, we will
have to find what numbers of items will let the worth of the collection
compare with the gauge in the given way.

EXAMPLE 9.20.

EXAMPLE 9.21. Jane wants to sell flour at four dollars and twenty
cents a pound and she needs fourteen dollars and seventy cents. How much
flour can she sell?

EXAMPLE 9.22. The CranberryCompany is seven dollars in the black
and cannot be in the red. It needs to get bad cranberries removed. So,
how many pounds of cranberries it can get rid of will depend on the going
unit worth of the cranberry removal.

2. In order to represent these kinds of real-worls situations, we need
three denominators:
i. A denominator to represent the kind of items,
ii. A denominator to represent the denomination (that is “kind of money”)
in which the money gauge is given,
iii. A co-denominator to represent the unit-worth of the items expressed in
that denomination.

EXAMPLE 9.23. We represent the BananaCompany real-world situation
in EXAMPLE 18 by the inequation

−3 Apples× x Dollars
Apple = −12 Dollars

where −3 Apples represents the three apples that were lost, x Dollars
Apple represents

the unit profit/removal worth of the apples and −12 Dollars represents the
money gauge.

EXAMPLE 9.24. We represent Dick’s real-world situation in EXAMPLE 19
by the inequation

3.5 Pounds of flour × x Dollars
Pound of flour = 14.70 Dollars

where the unit value x Dollars
Apple represents the unit-worth of the apples and where

−12.70 Dollars represents the money gauge.
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problem,␣dilation
EXAMPLE 9.25. We represent Jack’s real-world situation in EXAMPLE 20
by the inequation

x Apples× 4 Dollars
Apple 5 12 Dollars

where the unit value x Dollars
Apple represents the unit-worth of the apples and where

12 Dollars represents the money gauge.

EXAMPLE 9.26. We represent Jane’s real-world situation in EXAMPLE 21
by the inequation

x Pounds of flour × 4.20 Dollars
Pound of flour 5 14.70 Dollars

where the unit value 4.20 Dollars
Pound of flour represents the unit-worth of the flour and

where 14.70 Dollars represents the money gauge.

However, when we carry out the co-multiplication, we get a common
denominator which is the denominator that represents the denomination in
which the collection of items—or the amount of stuff—is to be evaluated.
We can then factor out this common denominator and we can then see that
the kind of formula we get in both types of situations is essentially the same
and we will call the resulting kind of problem a dilation problem.

EXAMPLE 9.27. When we carry out the co-multiplication in EXAMPLE 22,
we get

−3����Apples× x Dollars
���Apple = −12 Dollars

that is
[−3× x] Dollars = −12 Dollars

where we can factor out the common denomnator which gives us the dilation
problem in Dollars

−3× x = −12

EXAMPLE 9.28. When we carry out the co-multiplication in EXAMPLE 24,
we get

x����Apples× 4 Dollars
���Apple 5 12 Dollars

that is
[x× 4] Dollars 5 12 Dollars
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formula,␣dilation
equation,␣dilation
inequation,␣dilation

where we can factor out the common denominator which gives us the dilation
problem in Dollars

x× 4 5 12

EXAMPLE 9.29. When we carry out the co-multiplication in EXAMPLE 23,
we get

3.5(((((
((Pounds of flour × x Dollars

((((
(Pound of flour 5 14.70 Dollars

that is
[3.5× x] Dollars 5 14.70 Dollars

where we can factor out the common denomnator which gives us the dilation
problem in Dollars

3.5× x 5 14.70

EXAMPLE 9.30. When we carry out the co-multiplication in EXAMPLE 25,
we get

x((((
(((Pounds of flour × 4.20 Dollars

((((
(Pound of flour 5 14.70 Dollars

that is
[x× 4.20] Dollars 5 14.70 Dollars

where we can factor out the common denomnator which gives us the dilation
problem in Dollars

x× 4.20 5 14.70

3. We will see that for the purpose of investigating dilation problems, it
will not really matter whether the real-world situations that they represent
involve simple situations or two-way situations. What will very much matter
is whether the real-world situations involve items that can be divided or
items that cannot be divided because counting numerators cannot always
be divided while decimal numerators can always be divided.
So, we will deal separately with problems involving counting numerators and
problems involving decimal numerators.

4. The formula in a dilation problem may involve any one of the following
verbs: 6=, >, <, =, 5 and =. It is called a dilation formula and we will
also use the terms dilation equation and dilation inequation.
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EXAMPLE 9.31. In EXAMPLE 18, depending on the situation, we could
have to solve any of the following dilation formulas in Dollars:

3× x 6= 4.95
3× x < 4.95
3× x > 4.95
3× x 5 4.95
3× x = 4.95

and/or the associated equation in Dollars
3× x = 4.95

5. In some ways, dilation problems are very similar to translation prob-
lems. In particular, basic problems are also a special case of dilation prob-
lems: If the number of items in the collection in a dilation problem is 1,
then the dilation problem is really just a basic problem.

EXAMPLE 9.32. If Jill’s collection in EXAMPLE 18 included only one apple
instead of three apples, then the dilation problem would be

1 Apples× x Dollars
Apple 5 4.95 Dollars

which boils down to the basic inequation in Dollars
x 5 4.95

4 Solving Dilation Problems

We can now turn to the investigation of dilation problems which we will do
according to the GENERAL PROCEDURE.

1. We locate the boundary point of the solution subset. This involves
the following steps:
i. We write the associated equation for the given problem.

EXAMPLE 9.33. Given the dilation problem in Dollars in EXAMPLE 32
3× x 5 12

the associated equation in Dollars is
3× x = 12

EXAMPLE 9.34. Given the dilation problem in Dollars in EXAMPLE 35
x× 4.20 5 14.70
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the associated equation in Dollars is
x× 4.20 = 14.70

ii. We try to solve the associated equation by way of the REDUCTION APPROACH,
that is we try to reduce the given dilation problem to a basic problem by
dividing both sides by the numerator that is being multiplied by x. The
Fairness Theorem will then ensure that the resulting basic equation is
equivalent to the original given translation equation.
This, though, is where it matters if the equation involves counting numera-
tors or decimal numerators and we look at the two cases separately.
• If the numerators involved in the equation are counting numerators, we
may or may not be able to divide depending on whether the numerator
of the gauge is or is not a multiple of the numerator being multiplied
by x.

EXAMPLE 9.35. Given the associated equation in Live Rabbits
3× x = 12

we can divide both sides by 3
3× x ÷3 = 12 ÷3

which boils down to the basic equation in Live Rabbits
x = 4

which the Fairness Theorem ensures to be equivalent to the original
dilation problem in Live Rabbits

3× x = 12
which therefore has the solution of the basic equation, 4, as its own solu-
tion.

EXAMPLE 9.36. Given the associated equation in Live Rabbits
3× x = 13

we cannot divide 13 by 3 so we cannot divide both sides by 3 as required
by the Fairness Theorem.
So, the original dilation equation,

3× x = 13
cannot be reduced to a basic equation and therefore has no solution. This
of course corresponds to the fact that we cannot have fractions of live
rabbits.

• If the numerators involved in the equation are decimal numerators, we
can always divide.
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EXAMPLE 9.37. Given the equation in Grams of Gold
x× 3.2 = 13.76

we can divide both sides by 3.2
x× 3.2 ÷3.2 = 13.76 ÷3.2

which boils down to the basic equation in Grams of Gold
x = 4.3

which the Fairness Theorem ensures to be equivalent to the original
dilation problem in Grams of Gold

x× 3.2 = 13.76
which therefore has the solution of the basic equation, 4, as its own solu-
tion.

2. We locate the interior of the solution subset according to the GENERAL
PROCEDURE. (For the sake of showing complete investigations, we will men-
tion in each EXAMPLE the step in which we locate the boundary point.)

EXAMPLE 9.38. Given the dilation problem in Dollars:
3× x 5 4.95

i. To get the boundary of the solution subset
i. We locate the boundary point as above: 1.65

Dollars
0 +∞1.65

ii. Since the inequation is lenient, the boundary point is included in the
solution subset and so we graph it with a solid dot.

Dollars
0 +∞1.65

ii. To get the interior of the solution subset
i. The boundary point 1.65 Dollars divides the data set into two sections:

Dollars
+∞1.65

Section A Section B

0

ii. We test Section A with, for instance, 1 and, since
3× x 5 4.95|where x:=1 is true

we get that 1 is a solution of the inequation in Dollars
3× x 5 4.95

and Pasch’s Theorem then tells us that all number-phrases in Section A are
included in the solution subset.
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Dollars
+∞1.65

Section A Section B

0

iii. We test Section B with, for instance, 5 and, since
3× x > 4.95|where x:=5 is false

we get that 5 is a non-solution of the inequation in Dollars
3× x 5 4.95

and Pasch’s Theorem then tells us that all number-phrases in Section B are
non-included in the solution subset.

Dollars
+∞1.65

Section A Section B

0

iii. Altogether , we represent the solution subset of the inequation in Dollars
3× x 5 4.95

as follows:
• The graph of the solution subset is

Dollars
+∞1.65

0

• The name of the solution subset is
(−∞, 1.65) Dollars
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Chapter 10

Affine Problems

Introduction, 141 • Solving Affine Problems, 143.

1 Introduction

The most frequent type of real-world situations is where we want to find the
situations in which the money worth of a collection plus some fixed money
amount compares in a given way with a given gauge.

1. The corresponding problem is called an affine problem and we shall
also use the terms affine formula, affine equation and affine inequa-
tion.
The number-phrase that represents the fixed money amount is called the
constant term.

EXAMPLE 10.1. Jane wants to buy three apples but there is a fixed
transaction charge of four dollars and fifty cents and the most she wants to
spend is twenty-three dollars and thirty-four cents. So, whether or not she will
be able to get the three apples will depend on the on the going unit-worth of
the apples.
The real-world situation is represented by the inequation

3 Apples× x Dollars
Apple + 4.5 Dollars 5 23.34 Dollars

where 4.5 Dollars is the constant term.

141
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When we carry out the co-multiplication we get the affine inequation
3����Apples× x Dollars

���Apple + 4.5 Dollars 5 23.34 Dollars
[3× x] Dollars + 4.5 Dollars 5 23.34 Dollars

When we factor out the common denominator Dollars, we get the affine problem
in Dollars

3× x + 4.5 5 23.34

2. Translation problems and dilation problems as well as basic problems
turn out to be special cases of affine problems which are therefore a more
general type of problems:
• If the number of items in an affine problem is 1, then the affine problem
is really just a translation problem.

EXAMPLE 10.2. If the number of items in EXAMPLE 1 were 1 instead
of 3, then the inequation would be

1 Apples× x Dollars
Apple + 4.5 Dollars 5 23.34 Dollars

which boils down to the inequation in Dollars
x + 4.5 5 23.34

which is a translation problem.

• If the fixed number-phrase in an affine problem is 0, then that affine
problem is really just a dilation problem.

EXAMPLE 10.3. If the fixed number-phrase in EXAMPLE 1 were
0 Dollars instead of 4.5 Dollars, then the inequation would be

3 Apples× x Dollars
Apple + 0 Dollars 5 23.35 Dollars

which boils down to the inequation in Dollars
3× x 5 23.35

which is a dilation problem.

• If, in an affine problem, both the additional number-phrase is 0 and
the number of items is 1, then that affine problem is really just a basic
problem.

EXAMPLE 10.4. If, in EXAMPLE 24 the number of items were 1 instead
of 3 and the additional number-phrase were 0 Dollars instead of 4.5 Dollars,
then the inequation would be
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1 Apples× x Dollars
Apple + 0 Dollars 5 23.35 Dollars

which boils down to the inequation in Dollars
x 5 23.35

which is a basic problem.

2 Solving Affine Problems

We now turn to the investigation of the solution subset of affine problems
which we will do in accordance with the PASCH PROCEDURE. The inves-
tigation of affine problems will proceed much in the same way as that of
translation and dilation problems. As usual, the only difficulty will be that,
although similar in nature, problems may involve numerators of different
kinds:
• plain counting numerators to represent numbers of items,
• signed counting numerators to represent two-way numbers of items,
• plain decimal numerators to represent quantities of stuff,
• signed decimal numerators to represent two-way quantities of stuff.

1. We locate the boundary point of the solution subset. This involves
the following steps:
i. We write the associated equation for the given problem:

EXAMPLE 10.5. Given the affine problem in Dollars in EXAMPLE 1
3× x + 4.5 5 23.34

the associated equation in Dollars is
3× x + 4.5 = 23.34

ii. We try to solve the associated equation in two stages by way of the
REDUCTION APPROACH:

i. We try to reduce the affine problem to a dilation problem by subtract-
ing the fixed term from both sides so as to be able to invoke the Fairness
Theorem,

ii. We then try to reduce the resulting dilation problem to a basic prob-
lem by dividing by the coefficient of x both sides so as to be able to invoke
the Fairness Theorem.

EXAMPLE 10.6. Given the affine equation in Dollars in EXAMPLE 2
3× x + 4.5 = 23.34
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i. We subtract 4.5 from both sides:
3× x + 4.5 −4.5 = 23.34 −4.5

which boils down to the dilation equation in Dollars
3× x = 18.84

ii. We divide both sides by 3
3× x ÷3 = 18.84 ÷3

which boils down to the basic equation in Dollars
x = 6.28

2. We locate the interior of the solution subset according to the GENERAL
PROCEDURE. (For the sake of completion, we include in the EXAMPLE the
step in which we get the boundary point.

EXAMPLE 10.7. Given the affine problem in Dollars in EXAMPLE 1:
3× x + 4.5 5 23.34

i. To get the boundary of the solution subset
i. We locate the boundary point as in EXAMPLE 6: 6.28

Dollars
0 +∞6.28

ii. Since the inequation is lenient, the boundary point is included in the
solution subset and so we graph it with a solid dot.

Dollars
0 +∞6.28

ii. We locate the interior of the solution subset
i. The boundary point 6.28 Dollars divides the data set into two sections:

Dollars
+∞6.28

Section A Section B

0

ii. We test Section A with, for instance, 0.1 and, since
3× x + 4.5 5 23.34|x:=0.1 is true

we get that 0.1 is a solution of the inequation in Dollars
3× x + 4.5 5 23.34

and Pasch’s Theorem then tells us that all number-phrases in Section A are
included in the solution subset.

Dollars
+∞6.28

Section A Section B

0

iii. We test Section B with, for instance, +5.0 and, since
3× x + 4.5 5 23.34|x:=1000 is false
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we get that 1000 is a non-solution of the inequation in Dollars
3× x + 4.5 5 23.34

and Pasch’s Theorem then tells us that all number-phrases in Section B are
non-included in the solution subset.

Dollars
+∞6.28

Section A Section B

0

iii. Altogether , we represent the solution subset of the inequation in Dollars
3× x + 4.5 5 23.34

as follows:
• The graph of the solution subset is

Dollars
+∞6.28

0

• The name of the solution subset is
(0, 6.28) Dollars

EXAMPLE 10.8.

EXAMPLE 10.9.

EXAMPLE 10.10.

EXAMPLE 10.11.

EXAMPLE 10.12.

EXAMPLE 10.13.

EXAMPLE 10.14.
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Chapter 11

Double Basic Problems

Double Basic Equation Problems, 147 • Problems of Type BETWEEN,
149 • Problems of Type BEYOND, 160 • Other Double Basic Problems, 171.

We now investigate double basic problems, that is problems that
involve two basic formulas which can be
• two basic equations
or
• two basic inequations
or
• one basic equation and one basic inequation
These two formulas will be connected by one of the following connectors:

BOTH,
EITHER ONE OR BOTH,
EITHER ONE BUT NOT BOTH.

As we did with single problems, we will use the PASCH PROCEDURE, that is
we will

i. Locate the boundary of the solution subset of the double problem,
ii. Locate the interior of the solution subset of the double problem

using test points and the Pasch Theorem,

1 Double Basic Equation Problems
We begin with problems that involve two basic equations with one of the
above connectors and with the condition that the two gauge number-

147
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OR
problem,␣double␣basic␣equation

phrases x1 and x2 be different.
1. Since the connector used in a double basic problem can any one of

three possible connectors, up front, there will be three types of double basic
equation problems.
• Double basic equation problems involving the connector BOTH:

both
{

x = x1

x = x2
(with the condition that x1 6= x2)

But double problems of this type have no solution. (Why not?)
• Double basic equation problems involving the connector EITHER ONE
AND BOTH:

either one or both
{

x = x1

x = x2
(with the condition that x1 6= x2)

Double problems of this type have two solutions, namely the two gauge
numerators, x1 and x2.
• Double basic equation problems involving the connector EITHER ONE
BUT NOT BOTH:

either one but not both
{

x = x1

x = x2
(with the condition that x1 6= x2)

Double problems of this type have the same two solutions as above,
namely the two gauge numerators, x1 and x2, since here the specification
BUT NOT BOTH is superfluous. (Why?)
2. So, since in the case of double basic equation problems it makes no

difference whether we use EITHER ONE AND BOTH or EITHER ONE
BUT NOT BOTH, we will just write OR and what we will mean by double
basic equation problem will be only problems of the type:

or
{

x = x1

x = x2
(with the condition that x1 6= x2)

EXAMPLE 11.1.
We represent the solution subset of the double basic equation problem in Dollars

or
{

x = +32.67
x = −17.92

as follows:
• The graph of the solution subset is

-17.92

+32.67

Dollars
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between
gauge-numerators
problem,␣of␣type␣BETWEEN

• The name of the solution subset is{
− 17.92, +32.67

}
Dollars

2 Problems of Type BETWEEN
These are the first of the two types of double basic inequation problems that
we shall investigate in full in this chapter.

1. Given a set of selectable collections and given two gauge collections,
we can specify a subset of the set of selectable collections by the require-
ment that the size of the collections be between the sizes of the two gauge
collections.

EXAMPLE 11.2.
The legal occupancy of a movie theater is that it can seat at most five hundred
viewers but the the owner of the movie theater may decide that showing the
movie to fewer than sixty viewers is not worth it. Thus, the collection of viewers
in any show is between sixty and five hundred viewers.

In other words, we require that the size of the collections in the subset be
BOTH
• larger than the size of the smaller of the two gauge collections

AND
• smaller than the size of the larger of the two gauge collections
2. We now discuss the paper representation in some generality.
a. We start with two gauge-numerators, x1 and x1, that is with the

numerators of the number-phrases that represent the two gauge collections.
One of the gauge numerators has of course to be smaller than the other and
so, for the sake of convenience, we shall let

x1 < x2

so that here
• x1 will be the smaller of the two gauge numerators
• x2 will be the larger of the two gauge numerators

b. Since each one of the two verbs can be either strict of lenient, there
will be four kinds of problems of type BETWEEN:

both
{

x > x1

x < x2
both

{
x = x1

x 5 x2
both

{
x = x1

x < x2
both

{
x > x1

x 5 x2
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interval
boundary␣(of␣an␣interval)
boundary␣points␣(of␣an␣interval)
interior␣(of␣an␣interval)
segment

3. The solution subset of any problem of type BETWEEN is called an
interval:
• The boundary of an interval consists of the two gauge numerators
because they are solutions of the associated double equation problem

or
{

x = x1

x = x2
The two gauge numerators are then called boundary points of the
interval.

Lower boundary point

Upper boundary point

Denominator

Boundary of the INTERVAL

However, the double basic equation problem

or
{

x = x1

x = x2
being associated with a double basic inequation problem, each one of
the two boundary points may be included or non-included in the solu-
tion subset of the double inequation problem depending on whether the
corresponding inequation is strict or lenient. So, we will have to check
that.
We shall graph the boundary points as usual, that is with a solid dot for
a boundary point that is included in the solution subset and a hollow
dot for a boundary point that is non-included in the solution subset.
• The interior of an interval consists of all the numerators that are
between the two gauge numerators, that is, the interior consists of all
numerators that are BOTH larger than the smaller gauge numerator
AND smaller than the larger gauge numerator. So, we represent the
interior of the interval by a segment.

Lower boundary point

Upper boundary point

Denominator

Interior of the INTERVAL

4. We now investigate an EXAMPLE of each one of the four kinds of
problem of type BETWEEN.
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I. Problems of type BETWEEN of the kind both
{

x > x1

x < x2

EXAMPLE 11.3.
Given the problem in Dollars

both
{

x > −37.41
x < +68.92

this is a problem of type BETWEEN and we get its solution subset according
to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x > −37.41|x:=−37.41 is false
x < +68.92|x:=−37.41 is true

and since, in order for −37.41 to be a solution with the connector BOTH,
−37.41 has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=−37.41
x < +68.92|x:=−37.41

is false

so that −37.41 is non-included in the solution subset and we must graph
−37.41 with a hollow dot.

• Since we have
x > −37.41|x:=+68.92 is true
x < +68.92|x:=+68.92 is false

and since, in order for +68.92 to be a solution with the connector BOTH,
+68.92 has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=+68.92
x < +68.92|x:=+68.92

is false

so that +68.92 is non-included in the solution subset and we must graph
+68.92 with a hollow dot.

Altogether, we have
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–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x > −37.41|x:=−1000 is false
x < +68.92|x:=−1000 is true

and since, in order for −1000 to be a solution with the connector BOTH, −1000
has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=−1000
x < +68.92|x:=−1000

is false

so that −1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section A are non-included in the solution
subset.

iii. We test Section B with, for instance, 0. Since we have
x > −37.41|x:=0 is true
x < +68.92|x:=0 is true

and since, in order for 0 to be a solution with the connector BOTH, 0 has to
satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=0
x < +68.92|x:=0

is true

so that 0 is included in the solution subset. Pasch’s Theorem then tells us
that all number-phrases in Section B are included in the solution subset.

iv. We test Section C with, for instance, +1000. Since we have
x > −37.41|x:=+1000 is true
x < +68.92|x:=+1000 is false

and since, in order for +1000 to be a solution with the connector BOTH, +1000
has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=+1000
x < +68.92|x:=+1000

is false

so that +1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section A are non-included in the solution
subset.
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3. We represent and describe the solution subset of the problem of type BE-
TWEEN in Dollars

both
{

x > −37.41
x < +68.92

• The graph of the solution subset is the lower-open, upper-open segment

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-open, upper-open interval(
− 37.41, +68.92

)
Dollars

II. Problems of type BETWEEN of the kind both
{

x = x1

x 5 x2

EXAMPLE 11.4.
Given the problem in Dollars

both
{

x = −37.41
x 5 +68.92

this is a problem of type BETWEEN and we get its solution subset according
to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x = −37.41|x:=−37.41 is true
x 5 +68.92|x:=−37.41 is true

and since, in order for −37.41 to be a solution with the connector BOTH,
−37.41 has to satisfy BOTH formulas, we have that

both
{

x = −37.41|x:=−37.41
x 5 +68.92|x:=−37.41

is true

so that−37.41 is included in the solution subset and we must graph−37.41
with a sokid dot.
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• Since we have
x = −37.41|x:=+68.92 is true
x 5 +68.92|x:=+68.92 is true

and since, in order for +68.92 to be a solution with the connector BOTH,
+68.92 has to satisfy BOTH formulas, we have that

both
{

x = −37.41|x:=+68.92
x 5 +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
with a solid dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x = −37.41|x:=−1000 is false
x 5 +68.92|x:=−1000 is true

and since, in order for −1000 to be a solution with the connector BOTH, −1000
has to satisfy BOTH formulas, we have that

both
{

x = −37.41|x:=−1000
x 5 +68.92|x:=−1000

is false

so that −1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section A are non-included in the solution
subset.

iii. We test Section B with, for instance, 0. Since we have
x = −37.41|x:=0 is true
x 5 +68.92|x:=0 is true

and since, in order for 0 to be a solution with the connector BOTH, 0 has to
satisfy BOTH formulas, we have that

both
{

x = −37.41|x:=0
x 5 +68.92|x:=0

is true

so that 0 is included in the solution subset. Pasch’s Theorem then tells us
that all number-phrases in Section B are included in the solution subset.
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iv. We test Section C with, for instance, +1000. Since we have
x = −37.41|x:=+1000 is true
x 5 +68.92|x:=+1000 is false

and since, in order for +1000 to be a solution with the connector BOTH, +1000
has to satisfy BOTH formulas, we have that

both
{

x = −37.41|x:=+1000
x 5 +68.92|x:=+1000

is false

so that +1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section A are non-included in the solution
subset.
3. We represent and describe the solution subset of the problem of type BE-
TWEEN in Dollars

both
{

x = −37.41
x 5 +68.92

• The graph of the solution subset is the lower-closed , upper-closed segment

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-closed , upper-closed interval[
− 37.41, +68.92

]
Dollars

III. Problems of type BETWEEN of the kind both
{

x = x1

x < x2

EXAMPLE 11.5.
Given the problem in Dollars

both
{

x = −37.41
x < +68.92

This is a problem of type BETWEEN and so we should expect the solution set
to be a bounded interval .
As always when the inequations are not basic, we get the solution subset by
first locating the boundary of the solution subset and then the interior of the
solution subset.
i. To locate the boundary of the solution subset, we solve each one of the two
associated equations

x = −37.41
x = +68.92

which gives us two boundary points and three intervals:
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–37.41

+68.92

Dollars
Interval A Interval B Interval C

ii. To determine if the boundary points are in the solution subset, we check
each one against the double inequation:
• Checking −37.41 against the two inequations we get:

x = −37.41|x←−37.41 is true
x < +68.92|x←−37.41 is true

and since BOTH sentences are true, we have that

both
{

x = −37.41|x←−37.41
x < +68.92|x←−37.41

is true

So −37.41 is a solution and we code −37.41 on the graph with a solid dot:

–37.41

+68.92

Dollars

• Checking +68.92 against the two inequations we get:
x = −37.41|x←+68.92 is true

x < +68.92|x←−+68.92 is false
and since not BOTH sentences are true we have that

both
{

x = −37.41|x←+68.92
x < +68.92|x←+68.92

is false

So +68.92 is not a solution and we code +68.92 on the graph with a hollow
dot:

–37.41

+68.92

Dollars

iii. To locate the interior of the solution subset, we test each one of the three
intervals, A, B, and C, by taking some number in the interval and checking
that number against the double inequation:
• To test Interval A we take some number smaller than −37.41, say −1000,

and we check that number against the double inequations. We get:
x = −37.41|x←−1000 is false
x < +68.92|x←−1000 is true

and since not BOTH sentences area true we have that

both
{

x = −37.41|x←−1000
x < +68.92|x←−1000

is false

As a result, −1000 is not a solution and, by the PASCH Theorem, none of
the numbers in Interval A is a solution. And so we code Interval A on the
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graph with a hollow line:

–37.41

+68.92

Dollars
Interval A

• To test Interval C we take some number larger than +68.92, say +1000,
and we check that number against the double inequations. We get:

x = −37.41|x←+1000 is true
x < +68.92|x←+1000 is false

and since not BOTH sentences are true we have that

both
{

x = −37.41|x←+1000
x < +68.92|x←+1000

is false

As a result, +1000 is not a solution and, by the PASCH Theorem, none of
the numbers in Interval C is a solution. And so we code Interval C on the
graph with a hollow line:

–37.41

+68.92

Dollars
Interval C

• To test Interval B, we take some number between −37.41 and +68.92, say
0, and check that number against the double inequations. We get:

x = −37.41|x←0 is true
x < +68.92|x←0 is true

and since BOTH sentences are true we have that

both
{

x = −37.41|x←0
x < +68.92|x←0

is true

As a result, 0 is a solution and, by the PASCH Theorem, every number in
Interval B is a solution. And so we code Interval B on the graph with a
solid line:

–37.41

+68.92

Dollars
Interval B

Altogether then, the graph of the solution subset of the given double inequation
is:

–37.41

+68.92

Dollars
Interval BInterval A Interval C

However, it is customary to draw only

–37.41

+68.92

Dollars
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We can then write the name of the solution subset:[
− 37.41, +68.92

)
Dollars

IV. Problems of type BETWEEN of the kind both
{

x > x1

x 5 x2

EXAMPLE 11.6.
Given the problem in Dollars

both
{

x > −37.41
x 5 +68.92

this is a problem of type BETWEEN and we get its solution subset according
to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x > −37.41|x:=−37.41 is false
x 5 +68.92|x:=−37.41 is true

and since, in order for −37.41 to be a solution with the connector BOTH,
−37.41 has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=−37.41
x 5 +68.92|x:=−37.41

is false

so that −37.41 is non-included in the solution subset and we must graph
−37.41 with a hollow dot.

• Since we have
x > −37.41|x:=+68.92 is true
x 5 +68.92|x:=+68.92 is true

and since, in order for +68.92 to be a solution with the connector BOTH,
+68.92 has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=+68.92
x 5 +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
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with a solid dot.
Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x > −37.41|x:=−1000 is false
x 5 +68.92|x:=−1000 is true

and since, in order for −1000 to be a solution with the connector BOTH, −1000
has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=−1000
x 5 +68.92|x:=−1000

is false

so that −1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section A are non-included in the solution
subset.

iii. We test Section B with, for instance, 0. Since we have
x > −37.41|x:=0 is true
x 5 +68.92|x:=0 is true

and since, in order for 0 to be a solution with the connector BOTH, 0 has to
satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=0
x 5 +68.92|x:=0

is true

so that 0 is included in the solution subset. Pasch’s Theorem then tells us
that all number-phrases in Section B are included in the solution subset.

iv. We test Section C with, for instance, +1000. Since we have
x > −37.41|x:=+1000 is true
x 5 +68.92|x:=+1000 is false

and since, in order for +1000 to be a solution with the connector BOTH, +1000
has to satisfy BOTH formulas, we have that

both
{

x > −37.41|x:=+1000
x 5 +68.92|x:=+1000

is false

so that +1000 is non-included in the solution subset. Pasch’s Theorem then
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beyond
tells us that all number-phrases in Section A are non-included in the solution
subset.
3. We represent and describe the solution subset of the problem of type BE-
TWEEN in Dollars

both
{

x > −37.41
x 5 +68.92

• The graph of the solution subset is the lower-open, upper-closed segment

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-open, upper-closed interval(
− 37.41, +68.92

]
Dollars

3 Problems of Type BEYOND
These are the second of the two types of double basic inequation problems
that we shall investigate in full in this chapter but the development of this
investigation will be completely similar to that for the problems of type
BETWEEN.

1. Given a set of selectable collections and given two gauge collections,
we can specify a subset of collections by the requirement that the size of the
collections be beyond the sizes of the two gauge collections.

EXAMPLE 11.7.
It is often said that in order to qualify for a one million dollar loan, you must
be worth either more than one hundred million dollars or already be in debt
for one hundred millions dollars. Thus, your worth must be beyond minus one
hundred million dollars and plus one hundred millions dollars

In other words, we require that the size of the collections in the subset be
EITHER
• smaller than the size of the smaller of the two gauge collections

OR
• larger than the size of the larger of the two gauge collections

NOTE 11.1
Here we don’t have to say whether AND BOTH or BUT NOT BOTH
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problem␣(of␣type␣BEYOND
exterval
boundary␣(of␣an␣exterval)
boundary␣points␣(of␣an␣exterval)

since a collection cannot be at the same time larger than the larger of
the two gauge collections and smaller than the smaller of the two gauge
collections. So, here again, we will just sat OR

2. We now discuss the paper representation in some generality.
a. We start with two gauge-numerators, x1 and x1, that is with the

numerators of the number-phrases that represent the two gauge collections.
One of the gauge numerators has of course to be smaller than the other and
so, for the sake of convenience, we shall call let

x1 < x2

so that
• x1 will be the smaller of the two gauge numerators
• x2 will be the larger of the two gauge numerators

b. Since each one of the two verbs can be either strict of lenient, there
will be four kinds of problems of type BEYOND:

or
{

x < x1

x > x2
or
{

x 5 x1

x = x2
or
{

x 5 x1

x > x2
or
{

x < x1

x = x2

3. The solution subset of any problem of type BEYOND is called an
exterval1:
• The boundary of an exterval consists of the two gauge numerators which

are called boundary points of the exterval.

Lower boundary point

Upper boundary point

Denominator

Boundary of the EXTERVAL

However, the double basic equation problem

or
{

x = x1

x = x2
being associated with a double basic inequation problem, each one of
the two boundary points may be included or non-included in the solu-
tion subset of the double inequation problem depending on whether the
1The author fervently hopes that Educologists will not object to this term. While

decidedly unheard of—so far, it makes perfect sense, at least etymologically.
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interior␣(of␣an␣exterval)
double ray
∪
union

corresponding inequation is strict or lenient.
We shall graph the boundary points as usual, that is with a solid dot for
a boundary point that is included in the solution subset and a hollow
dot for a boundary point that is non-included in the solution subset.
• The interior of an exterval consists of all the numerators that are beyond
the two gauge numerators, that is, the interior consists of all numerators
that are EITHER larger than the larger gauge numerator OR smaller
than the smaller gauge numerator. So, we represent the interior of the
exterval by a double ray. Since an exterval is made of two rays, we will
use the symbol ∪, read “union”, to name the assembly.

Lower boundary point

Upper boundary point

Denominator

Interior of the EXTERVAL

4. We now investigate an EXAMPLE of each one of the four kinds of
problem of type BEYOND.

I. Problems of type BEYOND of the kind or
{

x < x1

x > x2

EXAMPLE 11.8.
Given the problem in Dollars

or
{

x < −37.41
x > +68.92

this is a problem of type BEYOND. We get the solution subset as usual, that
is according to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x < −37.41|x:=−37.41 is false
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x > +68.92|x:=−37.41 is false
and since, in order for −37.41 to be a solution with the connector OR,
−37.41 has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=−37.41
x > +68.92|x:=−37.41

is false

so that −37.41 is non-included in the solution subset and we must graph
−37.41 with a hollow dot.

• Since we have
x < −37.41|x:=+68.92 is false
x > +68.92|x:=+68.92 is false

and since, in order for +68.92 to be a solution with the connector OR,
+68.92 has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=+68.92
x > +68.92|x:=+68.92

is false

so that +68.92 is non-included in the solution subset and we must graph
+68.92 with a hollow dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x < −37.41|x:=−1000 is true
x > +68.92|x:=−1000 is false

and since, in order for −1000 to be a solution with the connector OR, −1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=−1000
x > +68.92|x:=−1000

is true

so that −1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 0. Since we have
x < −37.41|x:=0 is false
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x > +68.92|x:=0 is false
and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy
AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=0
x > +68.92|x:=0

is false

so that 0 is non-included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section B are non-included in the solution subset.

iv. We test Section C with, for instance, +1000. In order for +1000 to be a
solution of the double problem, +1000 has to satisfy ONE of the inequations.
Since we have

x < −37.41|x:=+1000 is false
x > +68.92|x:=+1000 is true

and since, in order for +1000 to be a solution with the connector OR, +1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=+1000
x > +68.92|x:=+1000

is true

so that +1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BE-
YOND in Dollars

both
{

x < −37.41
x > +68.92

• The graph of the solution subset is the lower-open, upper-open double ray

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-open, upper-open exterval(
−∞,−37.41

)
∪
(

+ 68.92, +∞
)
Dollars

II. Problems of type BEYOND of the kind or
{

x 5 x1

x = x2

EXAMPLE 11.9.
Given the problem in Dollars

or
{

x 5 −37.41
x = +68.92

this is a problem of type BEYOND. We get the solution subset as usual, that
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is according to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x 5 −37.41|x:=−37.41 is true
x = +68.92|x:=−37.41 is false

and since, in order for −37.41 to be a solution with the connector OR,
−37.41 has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=−37.41
x = +68.92|x:=−37.41

is true

so that−37.41 is included in the solution subset and we must graph−37.41
with a solid dot.

• Since we have
x 5 −37.41|x:=+68.92 is false
x = +68.92|x:=+68.92 is true

and since, in order for +68.92 to be a solution with the connector OR,
+68.92 has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=+68.92
x = +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
with a solid dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
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x 5 −37.41|x:=−1000 is true
x = +68.92|x:=−1000 is false

and since, in order for −1000 to be a solution with the connector OR, −1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=−1000
x = +68.92|x:=−1000

is true

so that −1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 0. Since we have
x 5 −37.41|x:=0 is false
x = +68.92|x:=0 is false

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy
AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=0
x = +68.92|x:=0

is false

so that 0 is non-included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section B are non-included in the solution subset.

iv. We test Section C with, for instance, +1000. Since we have
x 5 −37.41|x:=+1000 is false
x = +68.92|x:=+1000 is true

and since, in order for +1000 to be a solution with the connector OR, +1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=+1000
x = +68.92|x:=+1000

is true

so that +1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BE-
YOND in Dollars

or
{

x 5 −37.41
x = +68.92

• The graph of the solution subset is the lower-closed , upper-closed double
ray

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-closed , upper-closed exterval(
−∞,−37.41

]
∪
[

+ 68.92, +∞
)
Dollars
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III. Problems of type BEYOND of the kind or
{

x 5 x1

x > x2

EXAMPLE 11.10.
Given the problem in Dollars

or
{

x 5 −37.41
x > +68.92

this is a problem of type BEYOND. We get the solution subset as usual, that
is according to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x 5 −37.41|x:=−37.41 is true
x > +68.92|x:=−37.41 is false

and since, in order for −37.41 to be a solution with the connector OR,
−37.41 has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=−37.41
x > +68.92|x:=−37.41

is true

so that−37.41 is included in the solution subset and we must graph−37.41
with a solid dot.

• Since we have
x 5 −37.41|x:=+68.92 is false
x > +68.92|x:=+68.92 is false

and since, in order for +68.92 to be a solution with the connector OR,
+68.92 has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=+68.92
x > +68.92|x:=+68.92

is false

so that +68.92 is non-included in the solution subset and we must graph
+68.92 with a hollow dot.

–37.41

+68.92

Dollars
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2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x 5 −37.41|x:=−1000 is true
x > +68.92|x:=−1000 is false

and since, in order for −1000 to be a solution with the connector OR, −1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=−1000
x > +68.92|x:=−1000

is true

so that −1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 0. Since we have
x 5 −37.41|x:=0 is false
x > +68.92|x:=0 is false

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy
AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=0
x > +68.92|x:=0

is false

so that 0 is non-included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section B are non-included in the solution subset.

iv. We test Section C with, for instance, +1000. Since we have
x 5 −37.41|x:=+1000 is false
x > +68.92|x:=+1000 is true

and since, in order for +1000 to be a solution with the connector OR, +1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x 5 −37.41|x:=+1000
x > +68.92|x:=+1000

is true

so that +1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BE-
YOND in Dollars

or
{

x 5 −37.41
x > +68.92
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• The graph of the solution subset is the lower-open, upper-open double ray

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-open, upper-open exterval(
−∞,−37.41

]
∪
(

+ 68.92, +∞
)
Dollars

IV. Problems of type BEYOND of the kind or
{

x < x1

x = x2

EXAMPLE 11.11.
Given the problem in Dollars

or
{

x < −37.41
x = +68.92

this is a problem of type BEYOND. We get the solution subset as usual, that
is according to thePASCH PROCEDURE:
1. We locate the boundary of the solution subset. This involves the following
steps:

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x < −37.41|x:=−37.41 is false
x = +68.92|x:=−37.41 is false

and since, in order for −37.41 to be a solution with the connector OR,
−37.41 has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=−37.41
x = +68.92|x:=−37.41

is false

so that −37.41 is non-included in the solution subset and we must graph
−37.41 with a hollow dot.

• Since we have
x < −37.41|x:=+68.92 is false
x = +68.92|x:=+68.92 is true

and since, in order for +68.92 to be a solution with the connector OR,
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+68.92 has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=+68.92
x = +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
with a solid dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps:

i. The boundary points divide the data set into three sections

–37.41

+68.92

Dollars
Section A Section B Section C

ii. We test Section A with, for instance, −1000. Since we have
x < −37.41|x:=−1000 is true
x = +68.92|x:=−1000 is false

and since, in order for −1000 to be a solution with the connector OR, −1000
has to satisfy AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=−1000
x = +68.92|x:=−1000

is true

so that −1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.

iii. We test Section B with, for instance, 0. Since we have
x < −37.41|x:=0 is false
x = +68.92|x:=0 is false

and since, in order for 0 to be a solution with the connector OR, 0 has to satisfy
AT LEAST ONE formula, we have that

or
{

x < −37.41|x:=0
x = +68.92|x:=0

is false

so that 0 is non-included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section B are non-included in the solution subset.

iv. We test Section C with, for instance, +1000. Since we have
x < −37.41|x:=+1000 is false
x = +68.92|x:=+1000 is true

and since, in order for +1000 to be a solution with the connector OR, +1000
has to satisfy AT LEAST ONE formula, we have that
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\
except

or
{

x < −37.41|x:=+1000
x = +68.92|x:=+1000

is true

so that +1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.
3. We represent and describe the solution subset of the problem of type BE-
YOND in Dollars

both
{

x < −37.41
x = +68.92

• The graph of the solution subset is the lower-open, upper-open double ray

–37.41

+68.92

Dollars

• The name of the solution subset is the lower-open, upper-open exterval(
−∞,−37.41

)
∪
[

+ 68.92, +∞
)
Dollars

4 Other Double Basic Problems

Even with just basic inequations and equations, there is large number of
possible double problems and it is not possible to memorize them. On the
other hand, thePASCH PROCEDURE that we used in the case of problems of
type BETWEEN of type and problems of type BEYOND of type continues
to work.

Here, though, we will usually not be able to just say OR and we usually
will have to specify EITHER ONE OR BOTH or EITHER ONE BUT NOT
BOTH.

While we will continue to use the symbol ∪, it will also be occasionally
convenient to use the symbol \, read except when naming the solution
subset.

EXAMPLE 11.12.
Given the double basic inequation problem in Dollars

either one or both
{

x < −37.41
x = +68.92

we get its solution subset according to thePASCH PROCEDURE.
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1. We locate the boundary of the solution subset. This involves the following
steps.
i. We solve the double basic equation problem associated with the given prob-
lem:

or
{

x = −37.41
x = +68.92

which gives us the boundary point −37.41 and the potential solution +68.92.
ii. We check if the boundary point −37.41 and the potential solution +68.92
are in the solution subset.
• Since we have

x < −37.41|x:=−37.41 is false
x = +68.92|x:=−37.41 is false

and since, in order for −37.41 to be a solution with the connector EITHER
ONE OR BOTH, −37.41 has to satisfy AT LEAST ONE formula, we have
that

either one or both
{

x < −37.41|x:=−37.41
x = +68.92|x:=−37.41

is false

so that −37.41 is non-included in the solution subset and we must graph
−37.41 with a hollow dot.

• Since we have
x < −37.41|x:=+68.92 is false
x = +68.92|x:=+68.92 is true

and since, in order to be a solution with the connector EITHER ONE OR
BOTH, +68.92 has to satisfy AT LEAST ONE formula, we have that

either one or both
{

x < −37.41|x:=+68.92
x = +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
with a sokid dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps.
i. The boundary point divides the data set in two sections

–37.41

Dollars
Section A Section B
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ii. We test Section A with, for instance, −1000. Since we have
x < −37.41|x:=−1000 is true
x = +68.92|x:=−1000 is false

and since in order for −1000 to be a solution with the connector EITHER ONE
OR BOTH, −1000 has to satisfy AT LEAST ONE formula, we have that

either one or both
{

x = −37.41|x:=−1000
x < +68.92|x:=−1000

is true

so that −1000 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section A are included in the solution subset.
iii. We test Section B with, for instance, +1000. Since we have

x < −37.41|x:=+1000 is false
x = +68.92|x:=+1000 is false

and since in order for +1000 to be a solution with the connector EITHER ONE
OR BOTH, +1000 has to satisfy AT LEAST ONE formula, we have that

either one or both
{

x = −37.41|x:=+1000
x < +68.92|x:=+1000

is false

so that +1000 is non-included in the solution subset. Pasch’s Theorem then
tells us that all number-phrases in Section B (other than +68.82 which was
dealt with separately above) are non-included in the solution subset.
3. We represent and describe the solution subset of the problem in Dollars

either one or both
{

x < −37.41
x = +68.92

• The graph of the solution subset is

–37.41

+68.92

Dollars

• The name of the solution subset is(
−∞,−37.41

)
∪
{

+ 68.92
}
Dollars

EXAMPLE 11.13.
Given the double basic inequation problem in Dollars

either one but not both
{

x < −37.41
x 5 +68.92

we get the solution subset according to thePASCH PROCEDURE.
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1. We locate the boundary of the solution subset. This involves the following
steps.

i. We solve the double basic equation problem associated with the given
problem:

or
{

x = −37.41
x = +68.92

which gives us the boundary points −37.41 and +68.92.
ii. We check if the boundary points are in the solution subset.
• Since we have

x < −37.41|x:=−37.41 is false
x 5 +68.92|x:=−37.41 is true

and since, in order for −37.41 to be a solution with the connector EITHER
ONE BUT NOT BOTH, −37.41 has to satisfy EXACTLY ONE formula,
we have that

either one but not both
{

x < −37.41|x:=−37.41
x 5 +68.92|x:=−37.41

is true

so that−37.41 is included in the solution subset and we must graph−37.41
with a solid dot.

• Since we have
x < −37.41|x:=+68.92 is false
x 5 +68.92|x:=+68.92 is true

and since, in order to be a solution with the connector EITHER ONE BUT
NOT BOTH, +68.92 has to satisfy EXACTLY ONE formula, we have that

either one but not both
{

x < −37.41|x:=+68.92
x 5 +68.92|x:=+68.92

is true

so that +68.92 is included in the solution subset and we must graph +68.92
with a solid dot.

Altogether, we have

–37.41

+68.92

Dollars

2. We locate the interior of the solution subset. This involves the following
steps.

WORK ==============================
i. The boundary points divide the data set into three sections
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–37.41

+68.92

Dollars
Section A Section B Section C

ii.
iii.
iv.

3.
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Chapter 12

Double Affine Problems

We conclude Part Two with double problems which are just like those in
the preceding chapter but with affine problems instead of basic problems.

Conceptually, since affine problems can be reduced to basic problems,
there will be absolutely nothing new in this chapter which serves only to
show how much our investment in thePASCH PROCEDURE and the REDUCTION
APPROACH will pay.

As a result, the only difficulty will be the “staying power” that will be
required by the length of some of the computations.

EXAMPLE 12.1.
Solve the double problem in Dollars

both
{

+3x + 4.51 5 +23.35
+2.34 < +2x

1. The formula +3x + 4.51 5 +23.35 is an affine inequation and the formula
+2.34 < +2x is a basic inequation so we should be able to find the solution
subset on the basis of our previous work. At this point, though, we are not in
a position to tell what “named” type of problem this is, if any.
2. We locate the boundary of the double problem by looking for the boundary
point of each inequation, that is by solving the equation associated with each
inequation.

a. The equation associated with the inequation 3x + 4.51 5 +23.35 is
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+3x + 4.51 = +23.35
i. In order to reduce this affine equation to a basic equation, we must get rid
of +4.51 on the right side which we do by adding its opposite −4.51 on both
sides so as to be able to invoke the Fairness Theorem:

+3x + 4.51 −4.51 = +23.35 −4.51
+3x = +18.84

Then, dividing by +3 on both sides
+3x ÷(+3) = +18.84 ÷(+3)

gives the basic equation
x = +6.28

and therefore the boundary point +6.28.
ii. We check if the boundary point +6.28 is included or non-included in the
solution subset.
Since we have

+3x + 4.51 5 +23.35|x:=+6.28 is true
+2.34 < +2x|x:=+6.28 is true

and since, in order for +6.28 to be a solution with the connector BOTH, +6.28
has to satisfy BOTH formulas, we have that

both
{

+3x + 4.51 5 +23.35|x:=+6.28
+2.34 < +2x|x:=+6.28

is true

so that +6.28 is included in the solution subset and we must graph +6.28 with
a solid dot.

b. The equation associated with the inequation +2.34 < +2x is:
+2.34 = +2x

i. We reduce to a basic equation by dividing both sides by +2
x = +1.17

and therefore the boundary point is +1.17
ii. We check if the boundary point +1.17 is included or non-included in the
solution subset.
Since we have

+3x + 4.51 5 +23.35|x:=+1.17 is true
+2.34 < +2x|x:=+1.17 is false

and since, in order for +1.17 to be a solution with the connector BOTH, +1.17
has to satisfy BOTH formulas, we have that



179

both
{

+3x + 4.51 5 +23.35|x:=+1.17
+2.34 < +2x|x:=+1.17

is false

so that +1.17 is non-included in the solution subset and we must graph +6.28
with a hollow dot.

c. The boundary is
Dollars+6.28

–∞ +∞+1.17

3. We locate the interior of the double problem by testing each one of the
three sections determined by the two boundary points:

Dollars+6.28
+1.17

Section A Section B Section C

–∞ +∞

• We test Section A with, for instance, −1000. That is, we must evaluate
the two formulas in the given problem with −1000.

+3x + 4.51 5 +23.35|x:=−1000
+2.34 < +2x|x:=−1000

that is
+3 · (−1000) + 4.51 5 +23.35

+2.34 < +2 · (−1000)
that is

−3000 + 4.51 5 +23.35
+2.34 < −2000

that is
−2995.49 5 +23.35 which is true

+2.34 < −2000 which is false
Since, in order for −1000 to be a solution with the connector BOTH, −1000
has to satisfy BOTH formulas, we have that

both
{

+3x + 4.51 5 +23.35|x:=−1000
+2.34 < +2x|x=−1000

is false

so that −1000 is non-included in the solution subset. Pasch’s Theorem
then tells us that all number-phrases in Section A are non-included in the
solution subset.

• We test Section B with, for instance, +2. (We cannot test with 0 since
0 is not in Section B.) That is, we must evaluate the two formulas in the
given problem with +2.

+3x + 4.51 5 +23.35|x:=+2
+2.34 < +2x|x:=+2
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that is
+3 · (+2) + 4.51 5 +23.35

+2.34 < +2 · (+2)
that is

+6 + 4.51 5 +23.35
+2.34 < +4

that is
+10.51 5 +23.35 which is true

+2.34 < +4 which is true
Since, in order for +2 to be a solution with the connector BOTH, +2 has
to satisfy BOTH formulas, we have that

both
{

+3x + 4.51 5 +23.35|x:=+2
+2.34 < +2x|x=+2

is true

so that +2 is included in the solution subset. Pasch’s Theorem then tells
us that all number-phrases in Section B are included in the solution subset.

• We test Section C with, for instance, +1000. That is, we must evaluate
the two formulas in the given problem with +1000.

+3x + 4.51 5 +23.35|x:=+1000
+2.34 < +2x|x:=+1000

that is
+3 · (+1000) + 4.51 5 +23.35

+2.34 < +2 · (+1000)
that is

+3000 + 4.51 5 +23.35
+2.34 < +2000

that is
+3004.51 5 +23.35 which is false

+2.34 < +2000 which is true
Since, in order for +1000 to be a solution with the connector BOTH, +1000
has to satisfy BOTH formulas, we have that

both
{

+3x + 4.51 5 +23.35|x:=+1000
+2.34 < +2x|x=+1000

is false

so that −1000 is non-included in the solution subset. Pasch’s Theorem
then tells us that all number-phrases in Section A are non-included in the
solution subset.

4. We represent and describe the solution subset of the problem in Dollars
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both
{

+3x + 4.51 5 +23.35
+2.34 < +2x

• The graph of the solution subset is
Dollars+6.28

+1.17
–∞ +∞

• The name of the solution subset is(
+ 1.17, +6.28

]
Dollars
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repeat
involution

Chapter 13

Repeated Multiplications
and Divisions

A Problem With English, 185 • Templates, 187 • The Order of Operations,
192 • The Way to Powers, 194 • Power Language, 198.

Given a number-phrase we investigate what is involved in repeated
multiplications or repeated divisions by a given numerator , something which
used to be called involution1.

1 A Problem With English

English can be confusing when we want to indicate “how many times” an
operation is to be repeated.

1. One source of confusion is the word “times” because multiplication
may not be involved at all.

EXAMPLE 13.1.

EXAMPLE 13.2.
When we tell someone

Divide 375 Dollars 3 times by 5

1Educologists will surely deplore this departure from the usual “modern” treatment.
Yet, it is difficult to see how conflating unary operators and binary operations can be
helpful.
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multiplication is not involved and we just mean:
Divide 375 Dollars

i. a first time by 5—which gives 75 Dollars as a result,
ii. a second time by 5—which gives 15 Dollars as a result,
iii. a third time by 5—which gives 3 Dollars as a result.

NOTE 13.1
In fact, the use of “first time”, “second time”, etc is also a bit misleading
since, when we “divide for the second time”, we are not dividing the initial
number-phrase a second time but the result of the first division for the
first time. Etc.

2. Another source of confusion is when we do not pay attention to the
exact place of the word “by”.

EXAMPLE 13.3.
While, as we saw in EXAMPLE 1,

Divide 375 Dollars 3 times by 5
results in

3 Dollars
it is easily confused with

Divide 375 Dollars by 3 times 5
that is

Divide 375 Dollars by 15
whose results is

25 Dollars

3. A workaround would seem just to avoid using the word “by” but it
is awkward and even misleading when we say it and downright dangerous
when we write it.

EXAMPLE 13.4.
To say

multiply 7 Dollars by 2, 3 times
can be correctly understood but requires to stop markedly after the 2 as, oth-
erwise, it will be understood to mean

multiply 7 Dollars by 2 OR by 3.
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coefficient
base
plain exponent
staggered template
copy

EXAMPLE 13.5.
To write

multiply 7 Dollars by 2, 3 times
can be correctly understood but requires paying attention to the comma be-
tween the 2 and the 3 as otherwise it will be understood to mean

Multiply 7 Dollars by 23

4. What we will now do will be to develop a specialized language to deal
with repeated operations. Perhaps surprisingly, though, writing specifying-
phrases for repeated operations is not quite a simple matter.

2 Templates

We begin by looking at the way we actually go about repeating operations.

1. Given a number-phrase, whose numerator we will refer to as the co-
efficient, and:
• given a numerator , called the base, by which the given number-phrase

is to be repeatedly multiplied or repeatedly divided,
• given a numerator , called the plain exponent, to indicate how many

multiplications or how many divisions we want done on the coefficient,
the simplest way to specify how many repeated multiplications or how many
divisions we want done on the number-coefficient is to use a staggered
template in which each operation is done on a separate line with a separate
copy of the base.

EXAMPLE 13.6.
When we want the number-phrase +7 Dollars multiplied by 6 copies of −2, we
say that
• the coefficient is +7,
• the base from which we make the copies is −2,
• the plain exponent is 6
and we write the following staggered template:
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+7 Dollars⊗−2︸ ︷︷ ︸ (1st multiplication by −2)
⊗−2︸ ︷︷ ︸ (2nd multiplication by −2)

⊗−2︸ ︷︷ ︸ (3rd multiplication by −2)

⊗−2︸ ︷︷ ︸ (4th multiplication by −2)

⊗−2︸ ︷︷ ︸ (5th multiplication by −2)

⊗−2︸ ︷︷ ︸ (6th multiplication by −2)

(Result of the repeated multiplications)
The staggered template specifies what is to be done at each stage and therefore
what the result will be:
+7 Dollars⊗−2︸ ︷︷ ︸ (1st multiplication by −2)
−14 Dollars⊗−2︸ ︷︷ ︸ (2nd multiplication by −2)

+28 Dollars⊗−2︸ ︷︷ ︸ (3rd multiplication by −2)

−56 Dollars⊗−2︸ ︷︷ ︸ (4th multiplication by −2)

+112 Dollars⊗−2︸ ︷︷ ︸ (5th multiplication by −2)

−224 Dollars⊗−2︸ ︷︷ ︸ (6th multiplication by −2)

+448 Dollars (Result of the repeated multiplications)

EXAMPLE 13.7.
When we want the number-phrase +112 Dollars divided by 4 copies of −2, we
say that
• the coefficient is +112,
• the base from which we make the copies is −2,
• the plain exponent is 4
and we write the following staggered template:

Divide +112 Dollars by 4 copies of −2
we use the staggered template:
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+112 Dollars − 2︸ ︷︷ ︸ (1st division by −2)

− 2︸ ︷︷ ︸ (2nd division by −2)

− 2︸ ︷︷ ︸ (3rd division by −2)

− 2︸ ︷︷ ︸ (4th division by −2)

(Result of the repeated divisions)
The staggered template specifies what is to be done at each stage and therefore
what the result will be:

+112 Dollars − 2︸ ︷︷ ︸ (1st division by −2)

−56 Dollars − 2︸ ︷︷ ︸ (2nd division by −2)

+28 Dollars − 2︸ ︷︷ ︸ (3rd division by −2)

−14 Dollars − 2︸ ︷︷ ︸ (4th division by −2)

+7 Dollars (Result of the repeated divisions)

2. As usual, instead of writing the denominator on each line, we can
declare the denominator up front and then write the staggered template
just for the numerators.

EXAMPLE 13.8.
When we want the number-phrase +7 Dollars multiplied by 6 copies of −2, we
can
i. declare that the template is in Dollars
ii. write the staggered template just for the numerators

+7⊗−2︸ ︷︷ ︸ (1st multiplication by −2)
⊗−2︸ ︷︷ ︸ (2nd multiplication by −2)

⊗−2︸ ︷︷ ︸ (3rd multiplication by −2)

⊗−2︸ ︷︷ ︸ (4th multiplication by −2)

⊗−2︸ ︷︷ ︸ (5th multiplication by −2)

⊗−2︸ ︷︷ ︸ (6th multiplication by −2)

(Result of the repeated multiplications)
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in-line template
The staggered template specifies what the numerator of the result will be and
the declaration specifies that the denominator is Dollars.

EXAMPLE 13.9.
When we want the number-phrase +112 Dollars divided by 4 copies of −2, we
say that
• the coefficient is +112,
• the base from which we make the copies is −2,
• the plain exponent is 4
and we write the following staggered template in Dollars:

+112 − 2︸ ︷︷ ︸ (1st division by −2)

− 2︸ ︷︷ ︸ (2nd division by −2)

− 2︸ ︷︷ ︸ (3rd division by −2)

− 2︸ ︷︷ ︸ (4th division by −2)

(Result of the repeated divisions)
The staggered template specifies what is to be done at each stage and therefore
what the numerator of the result in Dollars will be.

3. Quite often, though, we will not want to get the actual result but
just be able to discuss the repeated operations and, in that case, the use of
staggered templates is cumbersome. So, what we will do is to let the boxes
“go without saying” which will allow us to write an in-line template, that
is:
i. For the numerators, we write on a single line:

i. The coefficient,
ii. The operation symbol followed by the 1st copy of the base
iii. The operation symbol followed by the 2nd copy of the base
iv. The operation symbol followed by the 3rd copy of the base
v. Etc until all copies specified by the plain exponent have been written.

ii. For the denominator , we have a choice:
– We can declare the denominator up front and then write the in-line
template for the numerators,
– We can write the in-line template for the numerators within square
brackets and then write the denominator .
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EXAMPLE 13.10.
Instead of writing the staggered template in Dollars

+7⊗−2︸ ︷︷ ︸ (1st multiplication by −2)
⊗−2︸ ︷︷ ︸ (2nd multiplication by −2)

⊗−2︸ ︷︷ ︸ (3rd multiplication by −2)

⊗−2︸ ︷︷ ︸ (4th multiplication by −2)

⊗−2︸ ︷︷ ︸ (5th multiplication by −2)

⊗−2︸ ︷︷ ︸ (6th multiplication by −2)

(Result of the repeated multiplications)
we can:
• Declare up front that the in-line template is in Dollars and then write:

+17⊗−2 ⊗−2 ⊗−2 ⊗−2 ⊗−2 ⊗−2

or
• Write the in-line template for the numerators within square brackets and

then write the denominator Dollars[
+17⊗−2 ⊗−2 ⊗−2 ⊗−2 ⊗−2 ⊗−2

]
Dollars

EXAMPLE 13.11.
Instead of writing the staggered template in Dollars

−208 − 2︸ ︷︷ ︸ (1st division by −2)

− 2︸ ︷︷ ︸ (2nd division by −2)

− 2︸ ︷︷ ︸ (3rd division by −2)

− 2︸ ︷︷ ︸ (4th division by −2)

(Result of the repeated divisions)
we can
• Declare up front that the in-line template is in Dollars and then write:

−208 − 2 − 2 − 2 − 2
• Write the in-line template for the numerators within square brackets and
then write the denominator Dollars
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[
−208 − 2 − 2 − 2 − 2

]
Dollars

3 The Order of Operations

The use of in-line templates for repeated operations, though, poses a prob-
lem: how do we know for sure in what order the recipient of an in-line
template is going to do the operations?

The reason this can be a problem is that this order can make all the
difference between the recipient arriving at the intended result and the re-
cipient arriving at something completely irrelevant.

1. When the operation being repeated is multiplication, it turns out that
the order in which the operations are done does not matter

EXAMPLE 13.12.
Given the in-line template in Dollars

17× 2× 2× 2× 2× 2× 2
the recipient might choose to compute it as

17× 2︸ ︷︷ ︸
34 × 2︸ ︷︷ ︸

68 × 2︸ ︷︷ ︸
136 × 2︸ ︷︷ ︸

272 × 2︸ ︷︷ ︸
544 × 2︸ ︷︷ ︸

1088

or the recipient might choose to compute it as
2× 2︸ ︷︷ ︸

2 × 4︸ ︷︷ ︸
2 × 8︸ ︷︷ ︸

2 × 16︸ ︷︷ ︸
2 × 32︸ ︷︷ ︸

17 × 64︸ ︷︷ ︸
1088

or as
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2× 2︸ ︷︷ ︸
4 × 2︸ ︷︷ ︸

8 × 2︸ ︷︷ ︸
2 × 16︸ ︷︷ ︸

2 × 32︸ ︷︷ ︸
17 × 64︸ ︷︷ ︸

1088
etc but, it does not matter as the result will always be 1088.

However, proving in general that the order in which the multiplications are
done does not matter takes some work because, as the number of copies gets
large, the number of ways in which the multiplications could be done gets
even larger and yet, to be able to make a general statement, we would have
to make sure that all of these ways have been accounted for. So, for the sake
of time, in the case of repeated multiplications, we will take the following
for granted:

THEOREM 13.1
The order in which multiplications are done does not matter.

2. In the case of repeated division, though, the order usually makes a
huge difference.

EXAMPLE 13.13.
Given the in-line template in Dollars

448÷ 2÷ 2÷ 2÷ 2÷ 2÷ 2
and while the recipient might indeed choose to compute is as

448÷ 2︸ ︷︷ ︸
224 ÷ 2︸ ︷︷ ︸

112 ÷ 2︸ ︷︷ ︸
56 ÷ 2︸ ︷︷ ︸

28 ÷ 2︸ ︷︷ ︸
14 ÷ 2︸ ︷︷ ︸

7
the recipient might also choose to compute it as
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2÷ 2︸ ︷︷ ︸
2 ÷ 1︸ ︷︷ ︸

2 ÷ 2︸ ︷︷ ︸
2 ÷ 1︸ ︷︷ ︸

2 ÷ 2︸ ︷︷ ︸
448 ÷ 1︸ ︷︷ ︸

448
or as

2÷ 2︸ ︷︷ ︸
1 ÷ 2︸ ︷︷ ︸

0.5 ÷ 2︸ ︷︷ ︸
2 ÷ 0.25︸ ︷︷ ︸

2 ÷ 8︸ ︷︷ ︸
448 ÷ 0.25︸ ︷︷ ︸

1796
etc

Thus, in the case of repeated divisions it is crucial to agree on the order in
which to do them and so, in the absence of any instructions to that effect,
we will use

NOTE 13.2 T he order in which divisions are to be done is from left to
right.

4 The Way to Powers

Eventually, we will devise a very powerful language to deal both with re-
peated multiplications and repeated divisions but, before we can do that,
we need to clear the way.

1. While, as we have seen, 1 does tend to “go without saying”, what we
can do when the coefficient in a repeated operation is 1 depends on whether
the operation being repeated is multiplication or division.

a. When it is multiplication that is being repeated, we can let the
coefficient 1 go without saying. However, the number of multiplications is
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then one less than the number of copies2.

EXAMPLE 13.14.
Given the in-line template in Dollars

1× 3× 3× 3× 3× 3
we can write instead

3× 3× 3× 3× 3
because we get 243 either way.
However, while we still have five copies of 3, we now have only four multipli-
cations.

b. When it is division that is being repeated, we must write the coef-
ficient 1 as, if we did not, we would be getting a different result.

EXAMPLE 13.15.
Given the in-line template in Dollars

1÷ 2÷ 2÷ 2÷ 2÷ 2
the 1 cannot go without saying because, while the given in-line template com-
putes to 1

32 , if we don’t write the coefficient 1, we get an in-line template with
coefficient 2 to be divided by four copies of 2:

2÷ 2÷ 2÷ 2÷ 2
which computes to 1

8 .

2. Repeated divisions are related to repeated multiplications. Indeed,
• instead of dividing a coefficient by a number of copies of the base,
• we can3:

i. multiply 1 repeatedly by the number of copies of the base,
ii. divide the coefficient by the result of the repeated multiplication.

EXAMPLE 13.16.
Given the in-line template in Dollars

448÷ 2÷ 2÷ 2÷ 2÷ 2÷ 2
instead of computing it as follows:

448÷ 2︸ ︷︷ ︸
2Educologists will correctly point out that while 1× can “go without saying”, this is

really where multiplication as a binary operation comes in.
3Educologist will point out that, essentially, this is just the fact that, instead of divid-

ing by a numerator, we can multiply by its reciprocal.
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224 ÷ 2︸ ︷︷ ︸
112 ÷ 2︸ ︷︷ ︸

56 ÷ 2︸ ︷︷ ︸
28 ÷ 2︸ ︷︷ ︸

14 ÷ 2︸ ︷︷ ︸
7

we can proceed as follows:
i. We multiply 1 by the 6 copies of 2

1× 2︸ ︷︷ ︸
2 × 2︸ ︷︷ ︸

4 × 2︸ ︷︷ ︸
8 × 2︸ ︷︷ ︸

16 × 2︸ ︷︷ ︸
32 × 2︸ ︷︷ ︸

64

ii. We divide the coefficient 448 by the result of this repeated multiplications:
448÷ 64 = 7

which indeed gives us the same result as the repeated division.

The advantage of this second way of computing in-line templates involv-
ing repeated divisions is that while we now have one more operation than
we had divisions, the first multiplication, multiplying the coefficient 1 by
the first copy of the base, is no work and, as we saw above, need in fact not
even be written so that the number of operations requiring work is the same
in both cases. But now all operations except one are multiplications which
are a lot less work than divisions.

However, here again, proving in general that the results are always the
same takes some work so that, for the sake of saving time, we will take for
granted that:

THEOREM 13.2
A repeated division is the same as a single division of the coefficient
by the result of 1 multiplied repeatedly by the same number of copies
of the base.
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bracket in-line template
fraction-like template
fraction barCoefficient copies = Coefficient

[
1 ⊗ copies

]
3. In order to specify the second way of computing, we can write either:
• A bracket in-line template where we write:

i. The coefficient followed by a division symbol,
ii. A pair of square brackets within which we write
iii. 1 repeatedly multiplied by the same number of copies of the base.

EXAMPLE 13.17.
Instead of writing the in-line template in Dollars as

+448 − 2 − 2 − 2 − 2 − 2 − 2
we can write the bracket in-line template in Dollars as

+448÷
[
+1 ⊗− 2⊗−2⊗−2⊗−2⊗−2⊗−2

]
or as

+448÷
[
−2⊗−2⊗−2⊗−2⊗−2⊗−2

]

or
• A fraction-like template where we write:

i. The coefficient and, underneath,
ii. A fraction bar and, underneath
iii. 1 repeatedly multiplied by the same number of copies of the base

with the 1 able to “go without saying”.
underneath and the repeated multiplication underneath the bar ,

EXAMPLE 13.18.
Instead of writing the in-line template in Dollars

+448÷−2÷−2÷−2÷−2÷−2÷−2
we can write the in-line template in Dollars as

+448
+1 ⊗− 2⊗−2⊗−2⊗−2⊗−2⊗−2

or as

+448
−2⊗−2⊗−2⊗−2⊗−2⊗−2
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monomial
specifying-phrase NOTE 13.3

Whether we use a bracket in-line template or a fraction-like template,
we need not write the 1 as, either way, there is something to remind us
that the multiplications have to be done first:
• The square brackets
or
• The fraction bar
In general, though, we will prefer to use fraction-like templates with the
1 “going without saying”.

In other words, instead of:
Coefficient copies = Coefficient

[
1 ⊗ copies

]
we prefer to write

Coefficient copies = Coefficient
copies

but, even though both sides are read as
“Coefficient divided by copies”

• the division symbol on the left side of =

Coefficient copies =

says that the coefficient is to be divided repeatedly by the copies of the
base
• the fraction bar on the right side of =

= Coefficient
copies

says that the coefficient is to be divided by the result of the multiplication
of 1 by the copies of the base.

5 Power Language
We are now ready to introduce a way of writing specifying-phrases that will
work both for repeated multiplications and for repeated divisions.

1. The idea is to write just the coefficient, the base, the number of copies
and whether the coefficient should be multiplied or divided by the copies.
More precisely, in order to write a new kind of specifying-phrase which we
will call a monomial specifying-phrase,
i. We write its numerator , that is we write:
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separator
signed exponent
superscript
signed power

i. The coefficient,
ii. The multiplication symbol × or ⊗ (depending on whether the numer-

ators are plain or signed) as separator followed by the base,
iii. A signed exponent, that is a signed numerator

• whose sign is
+ when the coefficient is to be multiplied by the copies
− when the coefficient is to be divided by the copies
• whose size is the number of copies

In order to be separated from the base, the signed exponent must be written
as a superscript, that is small and raised a bit above the base line.
ii. We write its denominator if it has not been declared up front.
The base together with the signed-exponent is called a signed power.

We then read monomial specifying-phrases as
“Coefficient multiplied/divided by number of copies of the base”

EXAMPLE 13.19.
Given the in-line template in Dollars

17× 2× 2× 2× 2× 2× 2
• In order to write the monomial specifying-phrase,

i. We write the coefficient 17:
17

ii. We write the multiplication symbol × as separator followed by the base
2:

17 × 2
iii. We write the signed exponent as a superscript with + to indicate that
the coefficient is to be multiplied by the 6 copies of the base 2:

17× 2+6

• We read the monomial specifying-phrase

17× 2+6

as
17 multiplied by 6 copies of 2

EXAMPLE 13.20.
Given the in-line template

448÷
[
2× 2× 2× 2× 2× 2

]
• In order to write the monomial specifying-phrase,

i. We write the coefficient 448:
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448
ii. We write the multiplication symbol × as separator followed by the base
2:

448 × 2
iii. We write the signed exponent with − to indicate that the coefficient is
to be divided by 6 copies of the base 2:

448× 2−6

• We read the monomial specifying-phrase

448× 2−6

as
448 divided by 6 copies of 2

NOTE 13.4
In other words, here, × is really only a separator and has nothing to do
with the kind of repeated operation we are specifying. While this way of
writing things might seem rather strange, we will see in the next section
how it turns out to make excellent sense.

2. As it happens, though, there is no procedure for identifying mono-
mial specifying-phrases other than the procedures corresponding to staggered
templates.

EXAMPLE 13.21.
Given the following monomial specifying-phrase in Dollars

17× 2+6

there is no way to identify it other than doing
17× 2︸ ︷︷ ︸

34× 2︸ ︷︷ ︸
68× 2︸ ︷︷ ︸

136× 2︸ ︷︷ ︸
272× 2︸ ︷︷ ︸

544× 2︸ ︷︷ ︸
1088

This is in sharp contrast with the case of repeated additions for which there is
a much shorter procedure for getting the result of repeated additions that is
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Laurent monomial
specifying-phrase

plain monomial
specifying-phrase

based on multiplication and with the case of repeated subtractions for which
there is a much shorter procedure for getting the result based on division.

3. It is customary to distinguish monomial specifying-phrases in which
the exponent has to be positive or 0 from monomial specifying-phrases in
which the exponent can have any sign.
We will use the following names:
• A Laurent monomial specifying-phrase is a monomial specifying-
phrases in which the exponent is a numerator that can have any sign.
• A plain monomial specifying-phrase is a monomial specifying-phrases
in which the exponent is a numerator that can be only positive or 0 or,
in other words, that can only be a plain numerator.
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common base

Chapter 14

Laurent Monomials

Multiplying Monomial Specifying-Phrases, 203 • Dividing Monomial
Specifying-Phrases, 207 • Terms, 211 • Monomials, 214.

Because of the lack of a short procedure for identifying monomial specifying-
phrases, when working with monomial specifying-phrases, we tend to delay
identifying them as much as possible and, instead, to compute with the
monomial specifying-phrases themselves as long as possible, that is until
there is nothing else to do but to identify the resulting monomial specifying-
phrase.

NOTE 14.1
The format that we will use to write these computations is called split
equality: We will write on the left the (compound) specifying-phrase
that we want to identify and we will write on the right the successive
stages of the computation on separate lines.

1 Multiplying Monomial Specifying-Phrases
When we multiply two monomial specifying-phrases with a common base,
that is when we multiply a first monomial specifying-phrase by a second
monomial specifying-phrase with the same base, the result turns out to be
a monomial specifying-phrase with the common base1.

1. We can get this result either one of two ways:
1Educologists will have recognized multiplication as a binary operation.

203



204 Chapter 14. Laurent Monomials

• We can go back to the in-line templates:
i. We replace each monomial specifying-phrase by the corresponding

in-line template,
ii. We change the order of the multiplications,
iii. We write the resulting monomial specifying phrase.

EXAMPLE 14.1. In order to identify[
17× 2+5]× [11× 2+4]

we replace each monomial specifying-phrase by the corresponding in-line
template, we change the order of the multiplications and we write the
resulting monomial specifying-phrase:[
17× 2+5]× [11× 2+4] =

[
17× 2× 2× 2× 2× 2

]
×
[
11× 2× 2× 2× 2

]
= 17× 2× 2× 2× 2× 2 × 11× 2× 2× 2× 2
= 17× 11× 2× 2× 2× 2× 2× 2× 2× 2× 2
=
[
17× 11

]
× 2+(5+4)

= 187× 2+12

• We can build the resulting monomial specifying-phrase right from the
given monomial specifying-phrases using the following procedure:

i. We get the coefficient of the resulting monomial specifying-phrase
by multiplying the coefficients of the given monomial specifying-phrases,

ii. We get the base of the resulting monomial specifying-phrase by
taking the base common to the given monomial specifying-phrases,

iii. We get the signed exponent of the resulting monomial specifying-
phrase by “oplussing” the signed exponents of the given monomial specifying-
phrases.

EXAMPLE 14.2. In order to identify[
17× 2+5]× [11× 2+4]

we multiply the coefficients and we “oplus” the signed exponents:[
17× 2+5]× [11× 2+4] =

[
17× 11

]
× 2+5⊕+4

= 187× 2+12

2. In order to see why both ways give the same result, we now look at three
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more examples in which we will get the result both ways2.

EXAMPLE 14.3.

EXAMPLE 14.4. We identify[
17× 2+5]× [11× 2−2]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line
template, change the order of the multiplications and write the resulting
monomial specifying-phrase:[

17× 2+5]× [11× 2−2] =
[
17× 2× 2× 2× 2× 2

]
×
[ 11

2× 2

]
= 17× 2× 2× 2× 2× 2× 11

2× 2

= 17× 11× 2× 2× 2× 2× 2
2× 2

= 17× 11× �2× �2× 2× 2× 2
�2× �2

= 17× 11× 2× 2× 2
= 17× 11

]
× 2+(5−2)

= 187× 2+3

• We multiply the coefficients and we “oplus” the signed exponents:[
17× 2+5]× [11× 2−2] =

[
17× 11

]
× 2+5⊕−2

= 187× 2+3

EXAMPLE 14.5. We identify[
17× 2−6]× [11× 2+2]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line
template, change the order of the multiplications and write the resulting

2Educologists will of course approve of letting the students “experience” the amount
of work being saved by having them do it both ways for a while.
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monomial specifying-phrase:[
17× 2−6]× [11× 2+2] =

[ 17
2× 2× 2× 2× 2× 2

]
×
[
11× 2× 2

]
= 17× 11× 2× 2

2× 2× 2× 2× 2× 2

= 17× 11× �2× �2
�2× �2× 2× 2× 2× 2

= 17× 11
2× 2× 2× 2

=
[
17× 11

]
× 2−(6−2)

= 187× 2−4

• We multiply the coefficients and we “oplus” the signed exponents:[
17× 2−6]× [11× 2+2] =

[
17× 11

]
× 2−6⊕+2

= 187× 2−4

EXAMPLE 14.6. We identify[
17× 2−4]× [11× 2−3]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line

template, change the order of the multiplications and write the resulting
monomial specifying-phrase:[

17× 2−4]× [11× 2−3] =
[ 17

2× 2× 2× 2

]
×
[ 11

2× 2× 2

]
= 17× 11

2× 2× 2× 2× 2× 2× 2
=
[
17× 11

]
× 2−(4+3)

= 187× 2−7

• We multiply the coefficients and we “oplus” the signed exponents:[
17× 2−4]× [11× 2−3] =

[
17× 11

]
× 2−4⊕−3

= 187× 2−7
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common base3. Thus, from the above examples, we see that the “power language” is
indeed powerful as it allows for a single procedure since the “oplus” automat-
ically takes care of the different cases whereas, when we use in-line templates,
we need different procedures depending on whether the coefficients are to
be repeatedly multiplied or divided by the copies of the base and also on the
relative number of copies when one coefficient is to be repeatedly multiplied
while the other coefficient is to be repeatedly divided.

2 Dividing Monomial Specifying-Phrases

When we divide two monomial specifying-phrases with a common base,
that is when we divide a first monomial specifying-phrase by a second mono-
mial specifying-phrase with the same base, the result turns out to be a
monomial specifying-phrase with the same base.

1. We can get the result either one of two ways:
• We can go back to the in-line templates:

i. We replace each monomial specifying-phrase by the corresponding
in-line template, using fraction bars,

ii. We “invert and multiply”, change the order of the multiplications,
cancel, etc

iii. We write the resulting monomial specifying phrase.

EXAMPLE 14.7. In order to identify[
17× 2+7]÷ [11× 2+3]

We replace each monomial specifying-phrase by the corresponding in-line
template using fraction bars, “invert and multiply”, change the order of the
multiplications, cancel and write the resulting monomial specifying-phrase:[
17× 2+7]÷ [11× 2+3] = 17× 2× 2× 2× 2× 2× 2× 2

1 ÷ 11× 2× 2× 2
1

= 17× 2× 2× 2× 2× 2× 2× 2
1 × 1

11× 2× 2× 2

= 17× 2× 2× 2× 2× 2× 2× 2
11× 2× 2× 2

= 17
11 ×

2× 2× 2× 2× 2× 2× 2
2× 2× 2

= 17
11 ×

�2× �2× �2× 2× 2× 2× 2
�2× �2× �2

= 17
11 ×

2× 2× 2× 2
1
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= 17
11 × 2× 2× 2× 2

= 17
11 × 2+(7−3)

= 17
11 × 2+4

• We can build the resulting monomial specifying-phrase right from the
given monomial specifying-phrases:

i. We get the coefficient of the resulting monomial specifying-phrase
by dividing the coefficients of the given monomial specifying-phrases,

ii. We get the base of the resulting monomial specifying-phrase by
taking the base common to the given monomial specifying-phrases,

iii. We get the signed exponent of the resulting monomial specifying-
phrase by “ominussing” the signed exponent of the second given mono-
mial specifying-phrase from the signed exponent of the first given mono-
mial specifying-phrase, that is by “oplussing” the opposite of the signed
exponent of the second given monomial specifying-phrase to the signed
exponent of the first given monomial specifying-phrase.

EXAMPLE 14.8. In order to identify[
17× 2+7]÷ [11× 2+3]

We divide the coefficients and we “ominus” the signed exponents:[
17× 2+7]÷ [11× 2+3] =

[
17÷ 11

]
× 2+7	+3

= 17
11 × 2+7⊕−3

= 17
11 × 2+4

2. In order to see why both ways give the same result, we now look at
three more examples the result of each of which we will get both ways.

EXAMPLE 14.9. We identify[
17× 2+7]÷ [11× 2+3]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line
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template using fraction bars, “invert and multiply”, change the order of the
multiplications, cancel and write the resulting monomial specifying-phrase:[
17× 2+7]÷ [11× 2+3] = 17× 2× 2× 2× 2× 2× 2× 2

1 ÷ 11× 2× 2× 2
1

= 17× 2× 2× 2× 2× 2× 2× 2
1 × 1

11× 2× 2× 2

= 17× 2× 2× 2× 2× 2× 2× 2
11× 2× 2× 2

= 17
11 ×

2× 2× 2× 2× 2× 2× 2
2× 2× 2

= 17
11 ×

�2× �2× �2× 2× 2× 2× 2
�2× �2× �2

= 17
11 ×

2× 2× 2× 2
1

= 17
11 × 2× 2× 2× 2

= 17
11 × 2+(7−3)

= 17
11 × 2+4

• We divide the coefficients and we “ominus” the signed exponents:[
17× 2+7]÷ [11× 2+3] =

[
17÷ 11

]
× 2+7	+3

= 17
11 × 2+7⊕−3

= 17
11 × 2+4

EXAMPLE 14.10. We identify[
17× 2+3]÷ [11× 2+7]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line
template using a fraction bar, change the order of the multiplications, cancel
and write the resulting monomial specifying-phrase:[
17× 2+7]÷ [11× 2+3] = 17× 2× 2× 2

1 ÷ 11× 2× 2× 2× 2× 2× 2× 2
1
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= 17× 2× 2× 2
1 ÷ 1

11× 2× 2× 2× 2× 2× 2× 2

= 17× 2× 2× 2
11× 2× 2× 2× 2× 2× 2× 2

= 17
11 ×

2× 2× 2
2× 2× 2× 2× 2× 2× 2

= 17
11 ×

�2× �2× �2
�2× �2× �2× 2× 2× 2× 2

= 17
11 ×

1
2× 2× 2× 2

= 17
11 × 2−(7−3)

= 17
11 × 2−4

• We divide the coefficients and we “ominus” the signed exponents:[
17× 2+3]÷ [11× 2+7] =

[
17÷ 11

]
× 2+3	+7

= 17
11 × 2+3⊕−7

= 17
11 × 2−4

EXAMPLE 14.11. We identify[
17× 2−5]÷ [11× 2+3]

both ways:
• We replace each monomial specifying-phrase by the corresponding in-line

template using a fraction bar, change the order of the multiplications, cancel
and write the resulting monomial specifying-phrase:[

17× 2−5]÷ [11× 2+3] = 17
2× 2× 2× 2× 2 ÷

11× 2× 2× 2
1

= 17
2× 2× 2× 2× 2 ×

1
11× 2× 2× 2

= 17× 1
11× 2× 2× 2× 2× 2× 2× 2× 2

= 17
11 ×

1
2× 2× 2× 2× 2× 2× 2× 2
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= 17
11 × 2−(5+3)

= 17
11 × 2−8

• We divide the coefficients and we “ominus” the signed exponents:[
17× 2−5]÷ [11× 2+3] =

[
17÷ 11

]
× 2−5	+3

= 17
11 × 2−5⊕−3

= 17
11 × 2−8

3. Thus, from the above examples, we see that the “power language”
is even more spectacular in the case of division as the “ominus” still takes
automatically care of the different cases while, whereas, we use in-line tem-
plates, we need different procedures depending on whether the coefficients
are to be repeatedly multiplied or divided by the copies of the base and also
on the relative number of copies when one coefficient is to be repeatedly
multiplied while the other coefficient is to be repeatedly divided.

4. The reason we are using Laurent monomial specifying-phrases rather
than just plain monomial specifying-phrases is that we cannot always di-
vide a first plain monomial specifying-phrase by a second plain monomial
specifying-phrase and get as a result a plain monomial specifying-phrase.
On the other hand, we can always multiply or divide a first Laurent mono-
mial specifying-phrase by a second Laurent monomial specifying-phrase and
get as a result a Laurent monomial specifying-phrase.

3 Terms

We now take a major step in the development of the “power language” by
allowing unspecified numerators when writing monomials.

1. We begin by going back to the distinction between a formula and a
sentence. Recall that by itself a formula, for instance an inequation or an
equation, is neither true nor false and that only a sentence can represent
a relationship among collections in the real-world.



212 Chapter 14. Laurent Monomials

term
EXAMPLE 14.12. The inequation in Apples

x < 5
is neither true nor false because it does not represent a relationship among
collections in the real world. (2 Apples represent a collection in the real world
but x Apples does not represent a collection in the real world.)

Given a formula, it is only when we replace the unspecified numerator by
a specific numerator that we get a sentence which is then either true or
false depending on whether it fits the real world or not.

EXAMPLE 14.13. Given the formula in Apples
x < 5

when we replace the unspecified numerator x by the specific numerator 8 we
get the sentence in Apples

x<5|x:=8
that is the sentence

8 Apples < 5 Apples
which is false but if, instead, we replace the unspecified numerator x by the
specific numerator 3 we get the sentence in Apples

x<5|x:=3
that is the sentence

3 Apples < 5 Apples
which is true

2. Similarly, just as a formula can be viewed as an “incomplete” sen-
tence, a term will be an “incomplete” specifying-phrase.

EXAMPLE 14.14. Given the term in Apples
x + 5

when we replace the unspecified numerator x by the specific numerator 8 we
get the specifying-phrase in Apples

x + 5|x:=8
that is the specifying-phrase

8 Apples + 5 Apples
which we may or may not chose to identify .

Of course, an unspecified numerator is the simplest possible kind of term.
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EXAMPLE 14.15. Given the term in Apples
x

when we replace the unspecified numerator x by the specific numerator 8
x + 5|x:=8

we get
8 Apples

3. When replacing in a monomial specifying-phrase a specific numerator
by an unspecified numerator to get a term, we will use
• The letters a, b, c, d . . . for unspecified signed coefficients,
• The letters x, y, x . . . for unspecified signed bases,
• The letters m, n, p . . . for unspecified plain exponents.

EXAMPLE 14.16.
a× x+n

c× y−m

The reason we will use the letters m, n, p . . . to stand only for plain expo-
nents (rather than for signed exponents) is that the sign of a exponent is
most important since it distinguishes between multiplication and division
and we will almost always have to specify it as in the above example.

In the rare cases when the sign of the exponent will not matter, we will
write the symbol ±, read “plus or minus” in front of the letter as in the
following example.

EXAMPLE 14.17.
c× x±n

is intended to cover both the case
c× x+n

and the case
c× x−n

It is also customary to let the separator × go without saying. However,
this tends to cause mistakes unless we make sure we read the monomial
specifying-phrase according to whether the signed exponent is positive or
negative, as
• “Coefficient multiplied by number of copies of the base” when the expo-

nent is positive,



214 Chapter 14. Laurent Monomials

monomial term
monomial
Laurent monomial
plain monomial
coefficient
power

• “Coefficient divided by number of copies of the base” when the exponent
is negative.

EXAMPLE 14.18.
• We read cx+n as “c multiplied by n copies of x” because the exponent is
positive,

• We read ay−p as “a divided by p copies of y” because the exponent is
negative.

4 Monomials

In the rest of this text, coefficients and exponents will always be specified
and only the base will remain unspecified. Out of habit, we shall mostly use
the letter x for the base.

1. Monomial specifying-phrases in which the base is unspecified are
called monomial terms or monomials for short.

EXAMPLE 14.19. The following
−3x+5

+5.23x−3

−1600x−4

+4x+2

are monomials but
+4x+2.5

is not a monomial because 2.5 copies doesn’t make sense.

a. Just as, earlier on, we distinguished Laurent monomial specifying-
phrases (those whose exponent can have any sign) from plain monomial
specifying phrases (those whose exponent can be only positive or 0), we
could distinguish in the same manner Laurent monomials from plain
monomials. However, since we will be using mostly Laurent monomials,
we will just use monomial to mean Laurent monomial.

b. In a monomial we will distinguish:
• the coefficient, which is the number to be multiplied or divided by the

copies of the base
• the power, which is the base together with the exponent.

In other words, the separator ×, whether it is actually written or goes with-
out saying, separates the coefficient from the power .
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EXAMPLE 14.20. In the monomial −3x+4, −3 is the coefficient and x+4

is the power .

c. Thus, monomials, as well as monomial specifying-phrases, look
very much like ordinary number-phrases (as opposed to specifying number-
phrases):
• The coefficient in a monomial—or monomial specifying-phrase—is like
the numerator in an ordinary number-phrase,
• The power in a monomial—or monomial specifying-phrase—is like the
denominator in an ordinary number-phrase.

EXAMPLE 14.21. Monomial specifying-phrases like
17.52× 2+3 (with × as separator)

and monomials like
17.52 x+3 (without separator)

look, and to a large extent will behave, very much like:
• Ordinary number-phrases like

17.52 Meters
in which there is no need for a separator between the numerator and the
denominator ,

• Metric number-phrases like
17.52 KILOMeters

in which there is no need for a separator between the numerator and the
denominator ,

• Base TEN number-phrases like
17.52 x TEN+3 Meters

where × is a separator between the numerator and the denominator ,
• Exponential number-phrases like

17.52 x 10+3 Meters
where × is a separator between the numerator and the denominator .

We will investigate how far the similarity goes in the following chapters.

2. When we multiply or divide a first monomial by a second monomial,
we proceed just as we did with monomial specifying-phrases, that is we can
proceed either:
• The long way which is to go back to in-line templates and then proceed

according to whether we are dealing with multiplication or division
• The short way which is to use the following
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THEOREM 14.1 [EXPONENT THEOREM]
In order to:
i. Multiply two monomials ax±m and bx±n, we multiply the coef-
ficients and oplus the exponents:

ax±m × bx±n = abx±m⊕±n

ii. Divide two monomials ax±m and bx±n, we divide the coeffi-
cients and ominus the exponents:

ax±m ÷ bx±n = a
b x±m	±n

We now look at a few examples.

EXAMPLE 14.22. Given[
−17.89× x+547

]
×
[
−11.06× x+312

]
instead of replacing each monomial by the corresponding in-line template,
change the order of the multiplications and write the resulting monomial:[
−17.89× x+547

]
×
[
−11.06× x+312

]
=

−17.89× x× x× · · · × x︸ ︷︷ ︸
547 copies of x

×
−11.06× x× x× · · · × x︸ ︷︷ ︸

312 copies of x


= −17.89×−11.06× x× x× · · · × x︸ ︷︷ ︸

547+312 copies of x

=
[
−17.89×−11.06

]
× x+(547+312)

= +
[
17.89× 11.06

]
× x+859

we can use the EXPONENT THEOREM:[
−17.89× x+547

]
×
[
−11.06× x+312

]
=
[
−17.89×−11.06

]
× x+547 ⊕ +312

= +
[
17.89× 11.06

]
× x+859

EXAMPLE 14.23. Given[
+17.89× x+547]× [−11.06× x−312]

instead of replacing each monomial by the corresponding in-line template,
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change the order of the multiplications and write the resulting monomial:

[
+17.89 × x+547

]
×
[
−11.06× x−312

]
=

+17.89× x× x× · · · × x︸ ︷︷ ︸
547 copies of x

×
 −11.06

x× x× · · · × x︸ ︷︷ ︸
312 copies of x



=
[
+17.89×−11.06

]
×


x× x× · · · × x︸ ︷︷ ︸

547 copies of x

x× x× · · · × x︸ ︷︷ ︸
312 copies of x



= −
[
17.89× 11.06

]
×

���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x

× x× x× · · · × x︸ ︷︷ ︸
547−312 copies of x

���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x


= −

[
17.89× 11.06

]
× x+(547−312)

= −
[
17.89× 11.06

]
× x+235

we can use the EXPONENT THEOREM:[
+17.89× x+547

]
×
[
−11.06× x−312

]
=
[
+17.89×−11.06

]
× x+547 ⊕ −312

= −
[
17.89× 11.06

]
× x+(547−312)

= −
[
17.89× 11.06

]
× x+235

EXAMPLE 14.24. Given[
−17.89× x−547

]
×
[
+11.06× x+312

]
instead of replacing each monomial by the corresponding in-line template,
change the order of the multiplications and write the resulting monomial:

[
−17.89× x−547

]
×
[
+11.06× x+312

]
=

 −17.89
x× x× · · · × x︸ ︷︷ ︸

547 copies of x

×
+11.06× x× x× · · · × x︸ ︷︷ ︸

312 copies of x
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=
[
−17.89×+11.06

]
×


x× x× · · · × x︸ ︷︷ ︸

312 copies of x

x× x× · · · × x︸ ︷︷ ︸
547 copies of x



= −
[
17.89× 11.06

]
×

 ���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x

���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x

× x× x× · · · × x︸ ︷︷ ︸
547−312 copies of x


= −

[
17.89× 11.06

]
× x−(547−312)

= −
[
17.89× 11.06

]
× x−235

we can use the EXPONENT THEOREM:[
−17.89× x−547

]
×
[
11.06× x+312

]
=
[
−17.89×+11.06

]
× x−547 ⊕ +312

= −
[
17.89× 11.06

]
× x−(547−312)

= −
[
17.89× 11.06

]
× x−235

EXAMPLE 14.25. Given[
+17.89× x+547

]
÷
[
+11.06× x+312

]
instead of replacing each monomial by the corresponding in-line template,
change the order of the multiplications, rewrite as fraction, multiply by the
reciprocal instead of divide, and write the resulting monomial:

[
+17.89× x+547

]
÷
[
+11.06× x+312

]
=

+17.89× x× x× · · · × x︸ ︷︷ ︸
547 copies of x

 ÷


+11.06× x× x× · · · × x︸ ︷︷ ︸
312 copies of x

1



=

+17.89× x× x× · · · × x︸ ︷︷ ︸
547 copies of x

 ×
 1

+11.06× x× x× · · · × x︸ ︷︷ ︸
312 copies of x





4. Monomials 219

=
[+17.89

+11.06

]
×


x× x× · · · × x︸ ︷︷ ︸

547 copies of x

x× x× · · · × x︸ ︷︷ ︸
312 copies of x



= +
[

17.89
11.06

]
×

���
��

���x× x× · · · × x︸ ︷︷ ︸
312 copies of x

× x× x× · · · × x︸ ︷︷ ︸
547−312 copies of x

���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x


= +

[17.89
11.06

]
× x+(547−312)

= +
[17.89

11.06

]
× x+235

it is easier to use the EXPONENT THEOREM:[
+17.89× x+547

]
÷
[
+11.06× x+312

]
=
[+17.89

+11.06

]
× x+547 	 +312

= +
[17.89

11.06

]
× x+547 ⊕ −312

= +
[17.89

11.06

]
× x+(547−312)

= +
[17.89

11.06

]
× x+235

EXAMPLE 14.26. Given[
17.89× x−547

]
÷
[
11.06× x−312

]
instead of replacing each monomial by the corresponding in-line template,
change the order of the multiplications, rewrite as fraction, multiply by the
reciprocal instead of divide, and write the resulting monomial:

[
17.89× x−547

]
÷
[
11.06× x−312

]
=

 17.89
x× x× · · · × x︸ ︷︷ ︸

547 copies of x

 ÷
 11.06

x× x× · · · × x︸ ︷︷ ︸
312 copies of x
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=

 17.89
x× x× · · · × x︸ ︷︷ ︸

547 copies of x

 ×


x× x× · · · × x︸ ︷︷ ︸
312 copies of x

11.06



=
[17.89

11.06

]
×


x× x× · · · × x︸ ︷︷ ︸

312 copies of x

x× x× · · · × x︸ ︷︷ ︸
547 copies of x



=
[

17.89
11.06

]
×

 ���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x

���
���

��x× x× · · · × x︸ ︷︷ ︸
312 copies of x

× x× x× · · · × x︸ ︷︷ ︸
547−312 copies of x


=
[17.89

11.06

]
× x−(547−312)

=
[17.89

11.06

]
× x−235

it is easier to use the EXPONENT THEOREM:[
17.89× x−547

]
÷
[
11.06× x−312

]
=
[17.89

11.06

]
× x−547 	 −312

=
[17.89

11.06

]
× x−547 ⊕ +312

=
[17.89

11.06

]
× x−(547−312)

=
[17.89

11.06

]
× x−235



Chapter 15

Polynomials 1: Addition,
Subtraction

Monomials and Addition, 221 • Laurent Polynomials, 223 • Plain
Polynomials, 228 • Addition, 229 • Subtraction, 231.

While, as we saw in the preceding chapter, monomials behave very well
with respect to multiplication and division in the sense that we can always
multiply or divide a first monomial by a second monomial and get a mono-
mial as a result, we will see that monomials behave very badly with respect
to addition and subtraction. This, though, gives raise to a new type of term
which will in fact play a fundamental role—to be described in the Epilogue
at the end of this text—in the investigation of extscFunctions.

In the rest of this text, we will introduce and discuss the way this new
type of terms behaves with respect to the four operations. These are the
basics of what is called extscPolynomial Algebra.

1 Monomials and Addition
We begin by looking at the way monomials behave with regard to addition.
The short of it is that, most of the time, monomials cannot be added.

1. One way to look at why monomials usually cannot be added is to
observe that powers are to monomials much the same as denominators are
to number-phrases.
• Just like ordinary number-phrases need to involve the same denominator
in order to be added, monomials need to involve the same power to be
added.

221



222 Chapter 15. Polynomials 1: Addition, Subtraction

EXAMPLE 15.1. Just like
17.52 Meters + 4.84 Meters = 22.36 Meters

we have that
17.52x+6 + 4.84x+6 = 22.36x+6

• Just like ordinary number-phrases that involve different denominators
cannot be added and just make up a combination, monomials that in-
volve different powers cannot be added and just make up a combination.

EXAMPLE 15.2. Just like
17.52 Feet + 4.84 Inches is a combination

we have that
17.52x+6 + 4.84x+4 is a combination

2. A more technical way to look at why monomials cannot be added
when the powers are different is to try various ways of “adding” monomials
and then to see what the results would be when we replace the unspecified
numerator x by specific numerators.

EXAMPLE 15.3. Suppose we think that the rule for adding the monomials
should be “add the coefficients and add the exponents”.
Then, given for instance the monomials

+7x−2 and − 3x+3

the rule “add the coefficients and add the exponents” would give us the follow-
ing monomial as a result:

(+7⊕−3)x−2⊕+3

that is
+4x+1

Now while, on the one hand, there is no obvious reason why this should not
be an acceptable result, on the other hand, monomials are waiting for x to be
replaced by some specific numerator.
So, say we replace x by +4. The given monomials would then give:

+7x−2
∣∣∣
x:=+4

= +7
(+4) • (+4)

= +7
+16

= 0.4375
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Laurent polynomial
and

−3x+3
∣∣∣
x:=+4

= −3 • (+4) • (+4) • (+4)

= −192

which, when we add them up, gives us
−191.5625

But, when we replace x by +4 in the supposed result, we get
+4x+1

∣∣∣
x:=+4

= +4 • (+4)

= +16

So, in the end, the rule “add the coefficients and add the exponents” would
not produce an acceptable result.

Even though, as it happens, no rule for adding monomials will survive
replacement of x by a specific numerator, the reader is encouraged to try so
as to convince her/him self that this is really the case.

2 Laurent Polynomials

A Laurent polynomial is a combination of powers involving:
• exponents that can be any signed counting numerator (including 0).
• coefficients that can be any signed decimal numerator

EXAMPLE 15.4. All of the following are Laurent polynomials:

+22.71x+3 + 0.3x0 − 47.03x+2 + 57.89x−3

+21.09x−4 − 33.99x+2 + 45.02x−1 + 52.74x+1 − 34.82x+7

−30.18x+6 − 41.02x+5 + 5.6x+4

+20.13x+3 + 0.03x+5 + 50.01x0 − 0.04x+1

−0.02x−7 + 18.03x+6

1. While there is nothing difficult about what Laurent polynomials are,
we need to agree on a few rules to make them easier to work with since,
otherwise, it is not always easy even just to see if two Laurent polynomials
are the same or not.
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reduced
ascending order of
exponents

descending order of
exponents

EXAMPLE 15.5. The following two Laurent polynomials are the same
+0.3x0 − 47.03x+2 + 22.71x+3 + 57.89x−3

+57.89x−3 + 22.71x+3 + 0.3x0 − 47.03x+2

but the following two Laurent polynomials are not the same
+0.3x0 − 47.03x+2 − 22.71x+3 + 57.89x−3

+57.89x−3 + 22.71x+3 + 0.3x0 − 47.03x+2

EXAMPLE 15.6. The following two Laurent polynomials are in fact the
same

+2x+3 + 6x−4

−6x+3 + 4x−4 + 8x+3 + 2x−4

a. The first thing we have to agree on is that Laurent polynomials
must always be reduced, that is that monomials in a given Laurent poly-
nomial that can be added (because they involve the same power) must in
fact be added.

EXAMPLE 15.7. Given the following Laurent polynomial
−6x+3 + 4x−4 + 8x+3 + 2x−4

it must be reduced to
+2x+3 + 6x−4

before we do anything else.

b. The second thing we have to do is to agree on some order in which
to write the monomials in a Laurent polynomial.
i. We will agree that:
The monomials in a Laurent polynomial will and can only be written in
either one of two orders:
• ascending order of exponents, that is, as we read or write a Laurent
polynomial from left to right, the exponents must get larger and larger
regardless of the coefficients.
• descending order of exponents, that is, as we read or write a Lau-
rent polynomial from left to right, the exponents must get smaller and
smaller regardless of the coefficients.

EXAMPLE 15.8. The following Laurent polynomial
−47.03x+2 + 57.89x−3 + 22.71x+4 + 0.3x0

can only be written either in ascending order of exponents
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+57.89−3 + 0.3 0 − 47.03x +2 + 22.71x +4

or in descending order of exponents
+22.71x +4 − 47.03x +2 + 0.3x 0 + 57.89x−3

regardless of the coefficients.

ii. Which of the two orders is to be used depends on the size of the numer-
ators with which x can be replaced:
• The ascending order must be used when x can be replaced only by
small numerators,
• The descending order must be used when when x can be replaced only

by for large numerators.
We will see the reason in a short while.

NOTE 15.1
When the size of what x stands for is unknown, it is customary, even if
for no special reason, to use the descending order of exponents.

c. The third thing we have to do is to introduce customary practices
even though these practices will not be followed here.
i. It is usual to write just plain exponents instead of positive exponents.

EXAMPLE 15.9. Instead of writing
+57.89x−3 + 0.3x0 − 47.03x +2 + 22.71x +4

it is usual to write
+57.89x−3 + 0.3x0 − 47.03x 2 + 22.71x 4

ii. It is usual not to write the exponent +1 at all.

EXAMPLE 15.10. Instead of writing
+57.89x+3 + 0.3x+2 − 47.03x +1 + 29.77x+4

it is usual to write
+57.89x+3 + 0.3x+2 − 47.03x + 29.77x+4

iii. It is usual not to write the power x0 at all.

EXAMPLE 15.11. Instead of
+57.89x−3 + 0.3x 0 − 47.03x+2 + 22.71x+4

it is usual to write
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consecutive
missing power
evaluate

+57.89x−3 + 0.3 − 47.03x+2 + 22.71x+4

iv. Most of the time, the exponents of the powers will be consecutive but
occasionally there can be missing powers.

EXAMPLE 15.12. The following Laurent polynomials in which the powers
are consecutive are fairly typical of those that we will usually encounter.

−47.03x+3 + 57.89x+2 + 22.71x+1 + 0.3x0

−47.03x+1 + 57.89x0 + 22.71x−1

−47.03x−1 + 57.89x0 + 22.71x+1 + 0.3x+2

EXAMPLE 15.13. The following Laurent polynomials in which at least one
power is missing are fairly typical of those that we will occasionally encounter.

−47.03x+3 + 0.3x0

−47.03x+2 + 57.89x0 + 22.71x−1

−47.03x−1 + 57.89x0 + 22.71x+1 + 0.3x+3

When working with a Laurent polynomial in which powers are missing, it
is much safer to insert in their place powers with coefficient 0.

EXAMPLE 15.14. Instead of working with
−47.03x+3 + 13.3x0

it is much safer to work with
−47.03x+3 +0x+2 + 0x+1 + 13.3x0

2. Laurent polynomials are specifying-phrases and we evaluate Lau-
rent polynomials in the usual manner, that is we replace x by the required
numerator and we then compute the result.

EXAMPLE 15.15. Given the Laurent polynomial
a. −47.03x+2 ⊕+13.3x−3

when x := −5
−47.03x+2 ⊕+13.3x−3

∣∣∣
x:=−5

= −47.03(−5)+2 ⊕+13.3(−5)−3

= [−47.03⊗ (−5)(−5)]⊕
[ +13.3

(−5)(−5)(−5)

]
= [−47.03⊗+25]⊕

[+13.3
−125

]
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diminishing
= −1175.75⊕+0.1064
= −1175.6436

b. When the coefficients are all single-digit counting numerators and
we replace x by ten, the result shows an interesting connection between
Laurent polynomials and decimal numbers.

EXAMPLE 15.16. Given the Laurent polynomial
4 x+3 + 7 x+2 + 9 x+1 + 8 x0 + 2 x−1 + 5 x−2 + 6 x−3

when x := 10 we get:4x+3 + 7x+2 + 9x+1 + 4x0 + 2x−1 + 7x−2 + 7x−3
∣∣∣
x=10

=

= 4× 10+3 + 7× 10+2 + 9× 10x+1 + 8× 100 + 2× 10−1 + 5× 10−2 + 6× 10−3

= 4× 1000. + 7× 100. + 9× 10. + 8× 1. + 2× 0.1 + 5× 0.01 + 6× 0.001
= 4000. + 700. + 90. + 8. + 0.2 + 0.05 + 0.006
= 4 7 9 8. 2 5 6

which is the decimal number whose digits are the coefficients of the Laurent polynomial.

3. We are now in a position at least to state the reason for allowing only
the ascending order of exponents and the descending order of exponents:

When we replace x by a specific numerator and go about evaluating the
Laurent polynomial, we evaluate, one by one, each one of the monomials in
the Laurent polynomial. But what happens is that
• When x is replaced by a numerator that is large in size, the more copies
there are in a monomial, the larger in size the result will be.
• When x is replaced by a numerator that is small in size, the more copies
there are in a monomial, the smaller in size the result will be.

But what we want, no matter what, is that the size of the successive results
go diminishing. So,
• When x is to be replaced by a numerator that is going to be large in
size, we will want the Laurent polynomial to be written in descending
order of exponents.
• When x is to be replaced by a numerator that is going to be small in
size, we will want the Laurent polynomial to be written in ascending
order of exponents.



228 Chapter 15. Polynomials 1: Addition, Subtraction

plain polynomial For lack of time, we cannot go here into any more detail but the interested
reader will find this discussed at some length in the Epilogue.

3 Plain Polynomials

A plain polynomial is a combination of powers involving:
• exponents that can be any positive counting numerator as well as 0.
• coefficients that can be any signed decimal numerator

In other words, a plain polynomial is a combination of powers that do
not involve any negative exponent—but can involve the exponent 0.

EXAMPLE 15.17. The following are plain polynomials:

−47.03x+3 + 57.89x+2 + 22.71x+1 + 0.3x0

0.3x0 − 47.03x+1 + 57.89x+2 + 22.71x+3

The following are not plain polynomials:

−47.03x+3 + 57.89x+2 + 22.71x+1 + 0.3x0 − 22.43x−1

−22.43x−1 + 0.3x0 − 47.03x+1 + 57.89x+2 + 22.71x+3

1. When we replace x by ten in a plain polynomial whose coefficients
are all single-digit counting numerators, the result is a counting number.

EXAMPLE 15.18. Given the plain polynomial
4 x+3 + 7 x+2 + 9 x+1 + 8 x0

when x := 10 we get:
4x+3 + 7x+2 + 9x+1 + 4x0

∣∣∣
x:=10

= 4× 10+3 + 7× 10+2 + 9× 10x+1 + 8× 100

= 4× 1000 + 7× 100 + 9× 10 + 8× 1
= 4000 + 700 + 90 + 8
= 4 7 9 8

which is the counting number whose digits are the coefficients of the plain polynomial.

2. Just like decimal numerators are not really more difficult to use than
just counting numerators—they just require understanding that the decimal
point indicates which of the digits in the decimal numerator corresponds to
the denominator1, Laurent polynomials are just as easy to use as just plain

1But then of course, since Educologists have a deep aversion to denominators, they
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polynomial
add
like monomials
�
addition of polynomials

polynomials. This is particularly the case since, in the case of polynomials,
we do not have to worry about the “place” of a monomial in a polynomial
since the place is always given by the exponent

3. Just like decimal numbers are vastly more useful than just counting
numbers, Laurent polynomials will be vastly more useful than plain polyno-
mials for our purposes as the discussion in the EPILOGUE will show.

4. Since, from the point of view of handling them, there is not going to
be any difference between Laurent polynomials and plain polynomials, we
will just the word polynomial.

4 Addition
Just like combinations can always be added to give another combination,
polynomials can always be added to give another polynomial.

EXAMPLE 15.19. Just like the combinations

17 Apples & 4 Bananas and 7 Bananas & 8 Carrots

can be added to give another combination:

17 Apples & 4 Bananas
7 Bananas & 8 Carrots

————————————————
17 Apples & 11 Bananas & 8 Carrots

the polynomials

−17x+6 + 4x−3 and +7x−3 + 8x+2

can be added to give another polynomial:

−17x+6 + 4x−3

+7x−3 + 8x+2

———————————-
−17x+6 + 11x−3 + 8x+2

1. To add two polynomials with signed coefficients, we oplus the coeffi-
cients of like monomials that is of monomials with the same exponent.
We will use the symbol � to write the specifying-phrase that corresponds
to the addition of polynomials.

are sure to disagree.
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EXAMPLE 15.20. Given the polynomials
−17x+6 + 4x−3 and +7x−3 + 8x+2

the specifying-phrase for addition will be
−17x+6 + 4x−3 �+7x−3 + 8x+2

and to identify it, we will write
−17x+6 + 4x−3 �+7x−3 + 8x+2 = −17x+6 + [+4⊕+7]x−3 + 8x+2

= −17x+6 + 11x−3 + 8x+2

2. The only difficulties when adding polynomials occur when one is not
careful to write them:
• in order—whether ascending or descending
• with missing monomials written-in with 0 coefficient

EXAMPLE 15.21. Given the polynomials
−17x+3 − 14x+2 − 8x0 + 4x−1 and +7x+4 + 8x+3 − 11x+1 − 4x−2

consider the difference between the following two ways to write the addition of
two polynomials:
• When we do not write the polynomials in order and do not write-in missing

monomials with a 0 coefficient, we get:

−17x+3 − 14x+2 − 8x0 + 4x−1

+7x+4 + 8x+3 − 11x+1 − 4x−2

———————————————-
and it is not easy to do the addition and get the result:

+7x+4 − 9x+3 − 14x+2 − 11x+1 − 8x0 + 4x−1 − 4x−2

• When we do write the polynomials in order and we do write-in the missing
monomials with a 0 coefficient, we get:

0x+4 − 17x+3 − 14x+2 + 0x+1 − 8x0 + 4x−1 + 0x−2

+7x+4 + 8x+3 + 0x+2 − 11x+1 + 0x0 + 0x−1 − 4x−2

——————————————————————————
+7x+4 − 9x+3 − 14x+2 − 11x+1 − 8x0 + 4x−1 − 4x−2

where the result is much easier to get.

3. One way in which polynomials are easier than numerators to deal
with is that when we add them there is no so-called “carry-over”.
The reason we have “carry-over” in extscarithmetic is that when dealing
with combinations of powers of ten, the coefficients can only be digits. So,
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when we add, say, the hundreds, if the result is still a single digit, we can
can write it down but if the result is more than nine, we have no single
digit to write the result down and we must change ten of the hundreds for
a thousand which is what the “carry-over” is.
But in extscalgebra, with combinations of powers of x, there is no such
restriction on the coefficients which can be any numerator and so, when we
add, we can write down the result whatever it is.

EXAMPLE 15.22.
• When we add the numerators 756.92 and 485.57 we get:

1 1 1
7 5 6. 9 2

+ 4 8 5. 5 7
—————-
1 2 4 2. 4 9

in which there are three “carry-overs” because there are three places where
we couldn’t write the result with a single digit.

• When we add the corresponding single-digit coefficient polynomials, we get:

+7x+2 + 5x+1 + 6x0 + 9x−1 + 2x−2

� +4x+2 + 8x+1 + 5x0 + 5x−1 + 7x−2

———————————————————-
+11x+2 + 13x+1 + 11x0 + 14x−1 + 9x−2

in which there is no“ carry-over” since we can write two-digit coefficients.

5 Subtraction

Subtraction “works” essentially the same way as addition except of course
that while, in the case of addition, we oplus the monomials of the second
polynomial, in the case of subtraction, we ominus the monomials of the
second polynomial, that is we oplus the opposite of the monomials of the
second polynomial.
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EXAMPLE 15.23. In order to subtract the second polynomial from the
first:

+2x+2 + 4x+1 + 6x0 − 6x−1 − 5x−2

� −9 x+2 −3 x+1 +3 x0 −5 x−1 +7 x−2

———————————————————-

we add the opposite of the second polynomial to the first polynomial, that
is we oplus the opposite of each monomial in the second polynomial to the
corresponding monomial in the first polynomial:

+2x+2 + 4x+1 + 6x0 − 6x−1 − 5x−2

� +9 x+2 +3 x+1 −3 x0 +5 x−1 −7 x−2

———————————————————-
+11x+2 + 7x+1 + 3x0 − 1x−1 − 12x−2

Here again, things are easier with polynomials than with numerals since
there is no “borrowing”.
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The reader may have been curious as to what Part II - Inequations
and Equations and Part III - Laurent Polynomials could have in
common or why, of all the topics in algebra, these two were chosen here.

Moreover, in the last two chapters, a new idea made its first appearance,
namely that there are at least two cases when we approximate the result of
a procedure:
• One case is when we compute the powers of a binomial, we can conceiv-

ably do the whole computation but the point was that a lot of the work
involved to get the exact result would really be wasted and that it would
turn out that we would be perfectly happy with only an approximation
of the result.
• The other case is when we divide and there it is not a case where we could
do the whole computation because the division needs not terminate by
itself. Fortunately, since the remainder keeps get smaller and smaller, a
point has to come, sooner or later, where the precision in the quotient
would become unnecessary and so we can terminate and stay with an
approximation of the quotient.

But, while we illustrated the idea of approximation in the case of arith-
metic, we didn’t show where and how the idea of approximation would
come in algebra.

1. Functions

As usual, we need to build things up a bit before we can get to the actual
point.

In the real world, things are always changing, if sometimes very slowly,
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input
output
function
input numerator
output numerator
input-output table
input-output rule
unspecified input

and we will begin with is to see how we represent this idea on paper.
1. To perceive that something is changing, it is necessary to look at it

against something else that either does not change at all or that changes
differently. For instance, the amount of income tax changes in terms of
income, the amount of property tax changes in terms of assets, the amount
of sales tax changes in terms of expenses.
More precisely, in order to observe something changing, we must pair each
of the stages that it goes through in terms of the stages that some reference
thing goes through, if only a clock or a calendar!

EXAMPLE 15.24. We might say that, in 2003, someone’s income tax was
$6,753. Just to have said that the income tax was $6,753 would not say much
since $6,753 was a lot less money in, say, 2007 than it was in 1913 when income
tax was first created.

The reference stages will be called inputS and the stages of what we are
investigating will be called outputS.
We will call function the pairing of input numerator with output nu-
merators that results from any process, device, procedure, agency, con-
verter, exchanger, translator, etc that satisfies the condition that an input
cannot result in more than one output. This, by the way, does not mean
that two inputs cannot result in the same output: they can.

EXAMPLE 15.25. A parking meter is a function because, given an input,
say 1 Quarter, the parking meter returns a definite amount of parking time, say
30 Minutes. We would then say that (1 Quarter, 30 Minutes) is an input-output
pair.

EXAMPLE 15.26. A slot machine is not a function because, given an
input, say 1 Quarter, a slot machine could return any number of Quarters.

2. While in some sciences, such as psychology and sociology, func-
tions are usually specified by input-output tables, in other sciences, such
as physics and electronics, functions are usually specified by input-
output rule as follows:
i. We use a letter, usually x, as unspecified input. In other words, we
will be able to replace x by any specific input we want.
ii. We must either have or give a name to the function. In the absence of
any given name, we shall usually use the letter f .
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rational functioniii. Then, f(x) will stand for the output returned for the input x by the
function f .

EXAMPLE 15.27. If a function called, say, FUN doubles the input and
adds 5 to give the output, then the input-output rule of FUN is:

x
F UN−−−−−−−−→ FUN(x) = 2x + 5

Then, the output for a specific input, say 7, is
2x + 5|x:=7

So, in order to compute the output for the given input 7, we replace all the
occurrences of x in the input-output rule by 7

7 F UN−−−−−−−−→ FUN(7) = 2 · 7 + 5
and then we compute

x := 7 F UN−−−−−−−−→ FUN(x)|x:=7 = 2x + 5|x:=7
= 2 · 7 + 5
= 14 + 5
= 19

We can then write
7 F UN−−−−−−−−→ FUN(7) = 19

3. A particular type of function, called rational function, is when the
output is in the form of a fraction where both the top and the bottom are
polynomials.

EXAMPLE 15.28. The function RAT whose input-output rule is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8
is a rational function.
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When the input is, say, 3, we compute the output as follows:

x := 3 RAT−−−−−−−−→ RAT (x)|x:=3 = 3x2 + 5x− 4
x3 − 8

∣∣∣∣∣
x:=3

= 3 · (3)2 + 5 · (3)− 4
(3)3 − 8

= 27 + 15− 4
27− 8

= 38
19

= 2

4. We shall now look at two kinds of problems that we encounter in the
investigation of functions:
• Local investigations in which the main tools are those of Part III -

Laurent Polynomials
• Global investigations in which the main tools are those of Part II -

Inequations and Equations
and, in fact, if perhaps surprisingly, local and global problems have almost
nothing in common in the sense that usually no amount of local investigation
will help in a global problem and, vice versa, no global investigation will shed
much light on a local problem.

2. Local Problems

While it is usually relatively easy to compute the output of a given function
for a given input, this is usually not what we are after because knowing
what the output is for a given input may say nothing about the output for
a second input even when the second input is very close to the first input.

1. Most of the time, indeed, two inputs that are close will give outputs
that are also close.

EXAMPLE 15.29. Given the function RAT whose input-output rule is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8
we saw in EXAMPLE 5 that the input 3 gives the output 2 and we would like
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now to get the output when the input is near 3, say when it is 3.1.

x := 3 + 0.1 RAT−−−−−−−−→ RAT (x)|x:=3+0.1 = 3x2 + 5x− 4
x3 − 8

∣∣∣∣∣
x:=3+0.1

= 3 · (3 + 0.1)2 + 5 · (3 + 0.1)− 4
(3 + 0.1)3 − 8

= 3 · [32 + (...)] + 5 · [3 + (...)]− 4
[33 + (...)]− 8

= 27 + (...) + 15 + (...)− 4 + (...)
27 + (...)− 8

= 38 + (...)
19 + (...)

= 2 + (...)
So, we have that

3.1 RAT−−−−−−−−→ RAT (3.1) = 2 + (...)
In other words, the input 3.1 which is close to the input 3 gives an output that
is close to the output of 3.

2. Quite often, though, it can happen that two inputs that are close will
give outputs that are far apart.

EXAMPLE 15.30. Given again the function RAT whose input-output rule
is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8
we will now show that, while the inputs 1.9 and 2.1 are close, their outputs are
far apart.
In order to save time and energy, we will compute the output for 2 + h and
only at the end we will replace h by −0.1 on the one hand and by +0.1 on the
other hand.
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x := 2 + h
RAT−−−−−−−−→ RAT (x)|x:=2+h = 3x2 + 5x− 4

x3 − 8

∣∣∣∣∣
x:=2+h

= 3 · (2 + h)2 + 5 · (2 + h)− 4
(2 + h)3 − 8

= 3 · [22 + 2 · 2 · h + (...)] + 5 · [2 + h]− 4
[23 + 3 · 22 · h + (...)]− 8

= 12 + 12h + (...) + 10 + 5h− 4
8 + 12h + (...)− 8

= 18 + 17h + (...)
12h + (...)

and the division in ascending exponents gives

= 18
12h−1 + (...)

Now:
• when we replace h by −0.1, we get that

x := 2− 0.1 RAT−−−−−−−−→ RAT (x)|x:=2−0.1 = 18
12 · (−0.1)−1 + (...)

= 18
12 · (−10) + (...)

= −180
12 + (...)

= −15 + (...)
• while when we replace h by +0.1, we get that

x := 2 + 0.1 RAT−−−−−−−−→ RAT (x)|x:=2+0.1 = 18
12 · (+0.1)−1 + (...)

= 18
12 · (+10) + (...)

= +180
12 + (...)

= +15 + (...)
so that, even though the inputs were only 0.2 apart, their outputs are 30+(...)
apart.

3. While we may tend to expect functions to give large outputs only
for large inputs, this is far from being necessarily the case. In fact, most
rational functions do not behave that way at all and

• large inputs can give non-large outputs,
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zero
poleEXAMPLE 15.31. Given the function TIT whose input-output rule is

x
T IT−−−−−−−→ TIT (x) = 3x + 2

x3 + 5
we compute its output when the input is 1, 000:

x := 1, 000 T IT−−−−−−−→ TIT (x)|x:=1,000 = 3x + 2
x3 + 5

∣∣∣∣
x:=1,000

= 3 · 1, 000 + (...)
1, 0003 + (...)

= 3, 000 + (...)
1, 000, 000, 000 + (...)

= 3
1, 000, 000 + (...)

= 0.000003 + (...)
which is certainly non-large.

• non-large inputs can give large outputs.

EXAMPLE 15.32. Given the function TAT whose input-output rule is

x
T AT−−−−−−−−→ TAT (x) = x2 + 3

x− 7
we compute its output when the input is 7.01. In fact, we compute the
output when the input is 7 + h and we let h := 0.01 only at the end:

x := 7 + h
T AT−−−−−−−−→ TAT (x)|x:=7+h = x2 + 3

x− 7

∣∣∣∣∣
x:=7+h

= (7 + h)2 + 3
(7 + h)− 7

= [72 + (...)] + 3
h

= 72 + 3 + (...)
h

= 52
h

+ (...)
and when we replace h by 0.01, we get that the output is 5, 200 which is
certainly large.

An input near which the outputs are small is called a zero because the
output for a zero is 0. By symmetry, an input near which the outputs
are large is called a pole and we will say that the output for a pole is
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∞.
4. More generally, given inputs that are either:
• near and on either side of a non-large input x0

or
• near and on either side of ∞, that is that are large in size

local investigations can be about finding:
• the sign of the slope, that is whether the graph of the function is going

up or going down,
• the sign of the bending, that is whether the graph of the function is
bending up or bending down,
• whether the output is the largest or the smallest as compared to the
outputs for neighboring inputs.

3. Global Problems Global problems are those where we are looking

for input(s), if any, whose output has a required feature.
1. Just as with what was already the case in Part II - Inequations

and Equations, the zeros, that is the inputs whose output is 0 play an
important role in the investigation of functions. But, in the case of rational
functions, the pole(s), that is the inputs whose output is ∞, also play an
important role.

EXAMPLE 15.33. Given the rational function HOM whose input-output
rule is:

x
HOM−−−−−−−−→ HOM(x) = 3x− 15

7x + 14
find the input(s), if any, whose output is positive.
In other words, we need to solve the rational problem in which the data set
consists of all signed decimal numerators

3x− 15
7x + 14 > 0

which we do essentially in the same manner as in Part II - Inequations
and Equations, that is we use the PASCH PROCEDURE:

I. We determine the boundary of the solution subset. These are
• the solution(s), if any, of the associated equation 3x− 15

7x + 14 = 0, that is the
zero(s), if any, of the function HOM , that is the solution(s), if any, of the
equation

3x− 15 = 0
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• the solution(s), if any, of the associated equation 3x− 15
7x + 14 = ∞, that is

the pole(s), if any, of the function HOM , that is the solution(s), if any, of
the equation

7x + 14 = 0
In other words, the boundary is the solution subset of the associated double
problem

or
{

3x− 15 = 0
7x + 14 = 0

Proceeding as in Chapter 12, we get that the graph of the boundary is:

–2–∞ +∞

Boundary

+5

II. We determine the interior of the solution subset by testing each one of
the three sections separated by the boundary points and then using the PASCH
THEOREM. We get that the graph of the interior is

–2–∞ +∞

Interior

+5

III. Altogether, the inputs whose output by the function HOM is positive
are represented by:
• The graph of the solution subset is (we use DEFAULT RULE #4)

–2–∞ +∞+5

• The name of the solution subset is(
−∞,−2

)
∪
(

+ 5, +∞
)

2. More generally, global investigations can be about finding:
• all those input(s), if any, for which the slope of the local graph is equal
to 0,
• all those input(s), if any, for which the local graph goes up (or goes

down),
• all those input(s), if any, for which the bending of the local graph is equal
to 0,
• all those input(s), if any, for which the local graph bends up (or bends

down),



242 Epilogue

• all those input(s), if any, whose output is larger (or smaller) than
the output of all neighboring inputs.

4. Conclusion

While its purpose was to show both how Part II - Inequations and
Equations and Part III - Laurent Polynomials were fundamental
tools in the investigation of functions and how unavoidable, but also how
powerful a tool, was the idea of approximation, this Epilogue couldn’t really
do justice to a very rich subject called the differential calculus and,
beyond that, to its extension called initial value problems.

We are however unable to resist ending this book with an example of an
initial value problem.

EXAMPLE 15.34. Imagine a pond with an inexhaustible amount of weeds
in which there are two populations of fish:
• Herbivorous fish, that is fish that feed on the weeds,
• Carnivorous fish, that is fish that feed on the herbivorous fish.
We would like to follow these two populations as time goes by.
Suppose we know what the two populations are at the beginning of time, for
instance that there are many more herbivorous fish than carnivorous fish. Then
the population of carnivorous fish is going to go up. But, as the population
of carnivorous fish goes up, they eat more and more of the herbivorous fish
whose population is going to go down. But then, so will the population of
carnivorous fish. Etc.
What seems to be critical here are the relative rates at which the two popula-
tions of fish reproduce and grow and, from that knowledge, one should be able
to figure out what the the two populations are going to be at any time.
On paper, one represents each one of the two populations by a function whose
input is time and whose output is the number of fish. One then tries to write
equations that represent the real-world situation just described and, in fact,
this representation of the real-world situation is called the Lotka-Volterra’s
double differential equation problem after the two people who first wrote and
investigated, independently of each other, these equations.

Hopefully, then, this Epilogue will turn out to be only a Prologue to a
thorough investigation of functions, a concept central not only to math-
ematics but to many other scientific subjects as well.
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Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
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not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains

a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
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a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorse-
ments", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to
this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
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you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
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F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
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Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise combine
any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
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is called an "aggregate" if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and anyWarranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
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version" applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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+, 36, 55
+∞, 58
−, 44, 55
−∞, 58
<, 31
< (signed), 59
=, 37
>, 31
> (signed), 59
�, 229
∪, 162
ΓE30F , 171
= (signed), 59
5 (signed), 59
6=, 31
	, 68
⊕, 63
+−−−−−−→, 36
x, 91
x0, 98

Laurent monomial specifying-phrase,
201

action, 33, 52
add, 229
add the opposite, 68
addend number-phrase, 36
adding, 63
adding to, 38
addition of polynomials, 229
adjustment, 48

algebra-compare, 59
algebra-less-than, 60
algebra-more-than, 60
algebraic viewpoint, 59
arrow, 36
arrowhead, 45
ascending order of exponents, 224
associated, 99
associated equation, 95
associated strict inequation, 95
attach, 34

bar, 45
base, 187
basic formulas, 96
basic problem, 99
benchmark, 52
between, 149
beyond, 160
blank, 85
BOTH, 147
boundary, 111
boundary (of an exterval), 161
boundary (of an interval), 150
boundary point, 112
boundary points (of an exterval), 161
boundary points (of an interval), 150
bracket in-line template, 197

cancel, 52
cancel out, 48
change, 70
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co-denominator, 76
co-multiplication, 77
co-number-phrase, 77
code, 93
coefficient, 187, 214
common base, 203, 207
common denominator, 97
compare, 25
condition, 147
connected, 147
connector, 147
consecutive, 226
context, 55
copy, 187
count, 23
count from ... to ..., 23
count-down, 24
count-up, 24
curly brackets, 87

data set, 87
declare, 96
degree, 52
denominator, 20
descending order of exponents, 224
detach, 40, 43
diminishing, 227
direction, 23
direction (of an action), 53
dot, hollow, 101
dot, solid, 101
double basic problem, 147
double ray, 162

EITHERONE BUT NOT BOTH, 147
EITHER ONE OR BOTH, 147
empty, 90, 102
end collection, 34
end state, 33
end-digit, 23

enter, 85
equation, 92
equation, affine, 141
equation, basic, 98
equation, dilation, 135
equation, original, 123
equation, reduced, 123
equation, translation, 126
equivalent, 123
evaluate, 77, 226
except, 171
extend, 78
extent (of an action), 53
exterval, 161

factor out, 97
final state, 70
fixed collection, 33
follow up, 62
form, 85
formula, 91
formula, affine, 141
formula, associated, 94
formula, dilation, 135
formula, translation, 126
fraction bar, 197
fraction-like template, 197
full, 90, 104
function, 234

gain, 70
gauge collection, 88
gauge numerator, 96
gauge-numerators, 149
graph, 101
graph (to), 13

half-line, 113
hold (to), 26

identification-sentence, 37, 45
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identify, 37, 45
in-line template, 190
incorrect, 48
inequation, 92
inequation, affine, 141
inequation, basic lenient, 99
inequation, basic simple, 98
inequation, basic strict, 98
inequation, dilation, 135
inequation, translation, 126
infinite, 105
infinity, 114
initial state, 70
input, 234
input number-phrase, 35
input numerator, 234
input-output rule, 234
input-output table, 234
instruction, 86, 92
interior, 111
interior (of an exterval), 162
interior (of an interval), 150
interval, 150
invoke, 123
involution, 185
is less-than-or-equal-to, 31
is more-than-or-equal-to, 31
is-different-in-size-from, 27
is-equal-to, 31
is-farther-away-from-the-center, 62
is-larger-in-size-than, 28, 61
is-left-of, 60
is-less-than, 31
is-more-than, 31
is-no-larger-than, 29
is-no-smaller, 30
is-not-equal-to, 31
is-right-of, 60
is-smaller-in-size-than, 28, 61
is-the-same-in-size-as, 26

kind (of half-line), 115

Laurent monomial, 214
Laurent polynomial, 223
leftover, 26
length (of a count), 25
like monomials, 229
loss, 70

match one-to-one, 26
meet, 85
merge, 34, 63
minus, 44
minus infinity, 58
missing power, 226
monomial, 214
monomial specifying-phrase, 198
monomial term, 214
mutually exclusive, 29

name, 101
nature (of a collection), 7
nature (of a state), 53
nature (of an action), 53
negative, 55
negative numerators, 55
non-solution, 87
nonsense, 86
noun, 85
number-phrase, decimal, 20
numerator, decimal, 20

operation symbol, 36
opposite direction, 54
opposite side, 54
OR, 148, 161
outcast, 48
output, 234
output number-phrase, 36
output numerator, 234
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percentage, 78
plain exponent, 187
plain monomial, 214
plain monomial specifying-phrase, 201
plain number-phrases, 51
plain polynomial, 228
plus infinity, 58
pole, 239
polynomial, 229
positive, 55
positive numerators, 55
power, 214
precession, 24
problem, 87
problem (of type BEYOND, 161
problem, affine, 141
problem, dilation, 134
problem, double basic equation, 148
problem, of type BETWEEN, 149
problem, translation, 125
procedure, 3

rational function, 235
ray, hollow, 113
ray, solid, 113
record, 54
reduce, 123
reduced, 224
relationship, 26
repeat, 185
replace, 92
require, 88
requirement, 85
resulting collection, 43
round parenthesis, 114

section, 112
segment, 150
select, 85, 88
select subset, 88

sentence, 86
separator, 199
set of selectable collections, 88
side (of a state), 53
sign, 55
sign, of the numerator, 56
signed co-multiplication, 80
signed co-number-phrase, 79
signed exponent, 199
signed number-phrase, 54
signed power, 199
signed ruler, 58
signed-numerator, 55
simple, 26
size, 56
size (of a collection), 7
size (of a state), 53
size viewpoint, 61
sliding, 41
solution, 87
solution subset, 88
specifying-formula, 91
specifying-phrase, 36
split equality, 203
square bracket, 114
staggered template, 187
standard direction, 54
standard side, 54
start collection, 34
start state, 33
start-digit, 23
state, 52
step, 52
strict, 28
strike out, 48
subtract, 69
subtraction, 46
superscript, 199

term, 212
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term, constant, 141
two-way collections, 52

undo, 40
union, 162
unit-value, 75
unit-worth, 75
unspecified input, 234
unspecified numerator, 91, 96, 97

value, 75
vertical bar, 93

worth, 75

zero, 239
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