Math 016 REVIEW II Discussions

Copyright © 2009 by A. Schremmer under a GNU Free Documentation License.
[Run: $07 / 24 / 2020$ at 18:3 Seed: 6541. Order of Checkable Items: Random.]

Rv II-1. On Tuesday your balance was six hundred three dollars and twenty-eight cents in the red and on Friday your balance was fifty-six dollars and three cents in the black. What is the signed number-phrase that represents the change in your balance from Tuesday to Friday?
Discussion: The change is the single action on the initial state that results in the final state.
We can look at the question from two points of view:

- In a corresponding real-world situation,
- on Tuesday your balance was six hundred three dollars and twentyeight cents in the red
- on Friday your balance was fifty-six dollars and three cents in the black
Since your balance has gone from the red to the black, from six hundred three dollars and twenty-eight cents in the red to fifty-six dollars and three cents in the black, this means that the action must have been a gain of six hundred three dollars and twenty-eight cents plus fty-six dollars and three cents, that is a gain of six hundred fifty-nine dollars and thirty one cents.
- In the paper representation, THEOREM 2 says that the change from an initial state to a final state is equal to the final state ominus the initial state. So we write the specifying-phrase

$$
\text { +56.03 Dollars } \ominus-603.28 \text { Dollars }
$$

that is

$$
+56.03 \text { Dollars } \oplus+603.28 \text { Dollars }
$$

Either way, we end up writing

> +659.31 Dollars
$R v$ II-2. Your balance was seventy-six dollars and thirty-eight cents in the red and you made an eight hundred seventy-six dollars and eleven cents deposit. What is the signed number-phrase that represents your new balance?
Discussion: The final state is the result of the action on the initial state.

We can look at the question from two points of view:

- In a corresponding real-world situation,
- The initial state of your account was seventy-six dollars and thirty-eight cents in the red
- The action on this initial state was an eight hundred and seventysix dollars and eleven cents deposit.
Since your are depositing money from an account that was already in the red, the eight hundred and seventy-six dollars and eleven cents first go to the seventy-six dollars and thirty-eight cents in the red to give a final balance of seven hundred ninety-nine dollars and seventythree cents in the black
- In the paper representation, we write the signed specifying-phrase

$$
-76.38 \text { Dollars } \oplus+876.11 \text { Dollars }
$$

and we identify it.
Either way, we end up writing
+799.73 Dollars
$R v$ II-3. Execute the specifying-phrase $+837.44 \ominus+869.04$
Discussion: REVIEWdiscussion
${ }_{R v}$ II- 4 . Execute the specifying-phrase $[-5$ Carrots $] \times\left[+7 \frac{\text { Cents }}{\text { Carrot }}\right]$
Discussion: We can look at the question from two points of view:

- In a corresponding real-world situation,
- We have five carrots disappearing from the warehouse
- These carrots were bad carrots and would have cost seven cents per carrot to get rid of.
Altogether then, this is going to be a gain of thirty-five cents for the business.
- In the paper representation, we co-multiply:
i. we multiply the denominators (with cancellation):

$$
\text { Carrots } \times \frac{\text { Cents }}{\text { Cartot }}=\text { Cents }
$$

ii. we multiply the sizes of the numerators

$$
5 \times 7=35
$$

iii. we multiply the signs of the numerators

$$
(-) \otimes(-) \text { gives }(+)
$$

Either way, we have identified the specifying-phrase $[-5$ Carrots $] \times\left[-7 \frac{\text { Cents }}{\text { Carrot }}\right]$ as
$R v$ II-5. Execute $-53-(-21)$
Discussion: REVIEWdiscussion
$R v$ II-6. Execute $56+13-(-7)+31$
Discussion: REVIEWdiscussion
$R v$ II-7. Execute the specifying-phrase $+792.037 \oplus-834.28$
Discussion: REVIEWdiscussion
$R v$ II-8. Execute $0 \div-45$
Discussion: REVIEWdiscussion
$R v$ II-9. Execute $2-1+4-1-3+5-3-2+1+6-1+5+2$
Discussion:
i. The symbol \oplus goes without saying,
ii. The symbols + and - are the signs of the signed numerators,
iii. If the first numerator has no sign, the sign + goes without saying.
$2-1+4-1-3+5-3-2+1+6-1+5+2$
$\underbrace{+2 \oplus-1}$
$\underbrace{+1 \oplus+4}$
$\underbrace{-3 \oplus-1}$
$\underbrace{-4 \oplus-3}$
$\underbrace{-7 \oplus+5}$
$\underbrace{-2 \oplus-3}_{-5}$
$\underbrace{-5 \oplus-2}$
$\underbrace{\underbrace{-6 \oplus+6}}_{\underbrace{0 \oplus-1}}$
$\underbrace{-1 \oplus+5}$
$\underbrace{+4 \oplus+2}_{+6}$
$R v$ II-10. Your balance was seventy-six dollars and thirty-eight cents in the red and you made an eight hundred seventy-six dollars and eleven cents withdrawal. What is the signed number-phrase that represents your new balance?

Discussion: The final state is the result of the action on the initial state.

We can look at the question from two points of view:

- In a corresponding real-world situation,
- The initial state of your account was seventy-six dollars and thirty-eight cents in the red
- The action on this initial state was an eight hundred and seventysix dollars and eleven cents withdrawal.
Since your are withdrawing money from an account that was already in the red, the eight hundred and seventy-six dollars and eleven cents add to the seventy-six dollars and thirty-eight cents to give a final balance of nine hundred fifty-two dollars and forty-nine cents in the black.
- In the paper representation, we write the signed specifying-phrase

$$
-76.38 \text { Dollars } \oplus-876.11 \text { Dollars }
$$

and we identify it.
Either way, we end up writing
+952.49 Dollars
R_{v} II-11. Execute the specifying-phrase $[+4$ Apples $] \times\left[-2 \frac{\text { Dimes }}{\text { Apple }}\right]$
Discussion: We can look at the question from two points of view:

- In a corresponding real-world situation,
- We have four apples appearing into the warehouse
- Each of these apples are bad apples and will cost two dimes per apple to get rid of.
Altogether then, this is going to cost eight dimes to the business.
- In the paper representation, we co-multiply:
i. we multiply the denominators (with cancellation):

$$
\text { Apples } \times \frac{\text { Dimes }}{\text { Appte }}=\text { Dimes }
$$

ii. we multiply the sizes of the numerators

$$
4 \times 2=8
$$

iii. we multiply the signs of the numerators

$$
(+) \otimes(-) \text { gives }(-)
$$

Either way, we have identified the specifying-phrase $[+4$ Apples $] \times\left[-2 \frac{\text { Dimes }}{\text { Apple }}\right]$ as
-8 Dimes
$R v$ II-12. Execute the specifying-phrase $-234.938 \ominus-402.772$
Discussion: REVIEWdiscussion
$R v$ II-13. Execute $+2-1+4-1-3+5-3-2+1+6-1+5+2$

Discussion:

i. The symbol \oplus goes without saying,
ii. The symbols + and - are the signs of the signed numerators,
iii. If the first numerator has no sign, the sign + goes without saying.

$$
\begin{aligned}
& +2-1+4-1-3+5-3-2+1+6-1+5+2 \\
& \underbrace{+2 \oplus-1} \\
& \underbrace{+1 \oplus+4} \\
& \underbrace{-3 \oplus-1} \\
& \underbrace{-4 \oplus-3} \\
& \underbrace{-7 \oplus+5} \\
& \underbrace{-2 \oplus-3} \\
& \underbrace{-5 \oplus-2} \\
& \underbrace{-7 \oplus+1} \\
& \underbrace{-6 \oplus+6} \\
& \underbrace{0 \oplus-1} \\
& \underbrace{-1 \oplus+5} \\
& \underbrace{+4 \oplus+2}_{+6}
\end{aligned}
$$

$R v$ II-14. Given the problem in Dollars

$$
x<-371.45
$$

what is the graph of its solution subset?
Discussion: This inequation lets IN all the numbers that are smaller than -371.45.
The inequation is strict so that it leaves OUT the boundary point -371.45.
The graph of the solution subset is therefore:

$R v$ II-15. Given the following "events"

$$
\text { Jack's "event" }=[-4 \text { Apples }] \times\left[+6 \frac{\text { Dimes }}{\text { Apple }}\right]
$$

and
Jill's "event" $=[-5$ Bananas $] \times\left[-3 \frac{\text { Dimes }}{\text { Banana }}\right]$,
identify the specifying-phrase Jack's "event" \oplus Jill's "event'.
Discussion: REVIEWdiscussion
$R v$ II-16. Your balance was seventy-six dollars and thirty-eight cents in the black and you made an eight hundred seventy-six dollars and eleven cents withdrawal. What is the signed number-phrase that represents your new balance?
Discussion: The final state is the result of the action on the initial state.
We can look at the question from two points of view:

- In a corresponding real-world situation,
- The initial state of your account was seventy-six dollars and thirty-eight cents in the black
- The action on this initial state was an eight hundred and seventysix dollars and eleven cents withdrawal.
Since your are withdrawing more money than was in the account, the eight hundred and seventy-six dollars and eleven cents break down to the seventy-six dollars and thirty-eight cents that were in the account and the remainder that gives a final balance of seven hundred ninetynine dollars and seventy-three cents in the red.
- In the paper representation, we write the signed specifying-phrase +76.38 Dollars $\oplus-876.11$ Dollars
and we identify it.

Either way, we end up writing

> -799.73 Dollars
$R v$ II-17. Given the problem in Dollars

$$
x \geqq-152.78
$$

what is the graph of its solution subset?
Discussion: This inequation lets IN all the numbers that are larger than -152.78.

The inequation is lenient so that it lets IN the boundary point -152.78 .
The graph of the solution subset is therefore:

$R v$ II-18. Execute $31 \div 0$
Discussion: REVIEWdiscussion
$R v$ II-19. Execute the specifying-phrase $-62.394 \oplus+39.977$
Discussion: REVIEWdiscussion
$R v$ II-20. You thought your balance was one hundred seventy-two dollars and fiftyseven cents in the black but you just found out that a twelve dollars and fifty-six cents check you had deposited bounced. What is the signed number-phrase that represents your new balance?
Discussion: Removing a deposit or removing a withdrawal is a realworld action that is represented on paper by a subtraction.
We can look at the question from two points of view:

- In a corresponding real-world situation,
- You thought the balance was one hundred seventy-two dollars and fifty-seven cents in the black
- but this balance included a twelve dollars and fifty-six cents check Since the check bounced, the balance is actually twelve dollars and fifty-six cents less than you thought, that is one hundred sixty dollars and one cent in the black.
- In the paper representation, we write the specifying-phrase

$$
+172.57 \text { Dollars } \ominus+12.56 \text { Dollars }
$$

which we identify by adding the opposite of the second number-phrase to the first number-phrase

$$
\text { +172.57 Dollars } \oplus-12.56 \text { Dollars }
$$

Either way, we end up writing the signed number-phrase
+160.01 Dollars
$R v$ II-21. You thought your balance was one hundred seventy-two dollars and fiftyseven cents in the red but you just found out that an unjustified twelve dollars and fifty-six cents charge has been removed. What is the signed number-phrase that represents your new balance?
Discussion: Removing a deposit or removing a withdrawal is a realworld action that is represented on paper by a subtraction.
We can look at the question from two points of view:

- In a corresponding real-world situation,
- You thought the balance was one hundred seventy-two dollars and fifty-seven cents in the red
- but this balance included a twelve dollars and fifty-six cents charge Since the charge was removed, the balance is actually twelve dollars and fifty-six cents more than you thought, that is one hundred sixty dollars and one cent in the red.
- In the paper representation, we write the specifying-phrase

$$
-172.57 \text { Dollars } \ominus-12.56 \text { Dollars }
$$

which we identify by adding the opposite of the second number-phrase to the first number-phrase

$$
-172.57 \text { Dollars } \oplus+12.56 \text { Dollars }
$$

Either way, we end up writing the signed number-phrase
-160.01 Dollars
${ }_{R v}$ II-22. Your balance was seventy-six dollars and thirty-eight cents in the black and you made an eight hundred seventy-six dollars and eleven cents deposit. What is the signed number-phrase that represents your new balance?
Discussion: The final state is the result of the action on the initial state.
We can look at the question from two points of view:

- In a corresponding real-world situation,
- The initial state of your account was seventy-six dollars and thirty-eight cents in the black
- The action on this initial state was an eight hundred and seventysix dollars and eleven cents deposit.
Since your are depositing money on an account that was already in the black, the eight hundred and seventy-six dollars and eleven cents add to the seventy-six dollars and thirty-eight cents to give a final balance of nine hundred fifty-two dollars and forty-nine cents in the black.
- In the paper representation, we write the signed specifying-phrase +76.38 Dollars $\oplus+876.11$ Dollars
and we identify it.
Either way, we end up writing
+952.49 Dollars
$R v$ II-23. On Monday your balance was three hundred thirty-two dollars and seventy one cents in the red and on Thursday your balance was seventy-four dollars and forty-six cents in the red. What is the signed number-phrase that represents the change in your balance from Monday to Thursday?

Discussion: The change is the single action on the initial state that results in the final state.

We can look at the question from two points of view:

- In a corresponding real-world situation,
- on Monday your balance was three hundred thirty-two dollars and seventy one cents in the red
- on Thursday your balance was seventy-four dollars and forty-six dollars in the red
Since, while still in the red, the balance has gone down in size, from three hundred thirty-two dollars and seventy-one cents to seventyfour dollars and forty-six dollars, this means that the action must have been a gain of two hundred fifty-eight dollars and twenty-five cents.
- In the paper representation, THEOREM 2 says that the change from an initial state to a final state is equal to the final state ominus the initial state. So we write the specifying-phrase

$$
\text { -74.46 Dollars } \ominus-332.71 \text { Dollars }
$$

that is

$$
-74.46 \text { Dollars } \oplus+332.71 \text { Dollars }
$$

Either way, we end up writing

-258.25 Dollars

Rv II-24. Execute for plain numbers: 8-13
Discussion: REVIEWdiscussion
$R v$ II-25. Given the data set
-3.2 Dollars, -2.6 Dollars, -1.3 Dollars, +0.7 Dollars, +1.4 Dollars, +2.6 Dollars, +3.1 Dollars
and the formula in Dollars

$$
x<+3.2
$$

What are the solutions in Dollars?
Discussion: REVIEWdiscussion

