
Calculus According to the Real World

Alain Schremmer

Calculus According to
the Real World

For People Who Think Text-
books Ought To Make Sense.

Volume 1 Polynomial And Rational Functions

FreeMathTexts.org

Version 1.0 — Tuesday 25th August, 2020

iv

Copyright c©2020 A. Schremmer. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Section, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

To Françoise. A mathematician according
to mathematicians.

Contents

Preface xv
1. Language. xv
2. Rigor. xv
3. Exercises. xv
4. Proof/Belief. xv

Chapter 1 Numbers 1
1. Numbers for what? . 1
2. Plain Whole Numbers . 2
3. Plain Decimal Numbers . 3
4. Signed Numbers . 6
5. Computing With Given Numbers 10
6. Picturing Given Numbers . 13
7. Nearby Numbers . 14
8. Comparing Given Numbers 17
9. Qualitative Sizes . 21
10. Real World Numbers . 26
11. Picturing small numbers . 28
12. Picturing large numbers . 28
13. Infinity . 28
14. Picturing Small Numbers . 30
15. Picturing Large Numbers . 34
16. Computing With Qualitative Sizes 37
17. Real Numbers . 40
18. Decimal Approximations . 42

Chapter 2 Functions 49
1. Relations . 49
2. Functions . 51

vii

viii Contents

3. Picturing Input-Output Pairs 55
4. Functions Specified By A Global Graph 59
5. Functions Specified By A Global I-O Rule 62
6. Declaring Inputs . 64
7. Returned Outputs . 66
8. Onscreen Graph . 69
9. Functioning With Infinity . 69
10. Computing Input-Output Pairs 69
11. Fundamental Problem . 71
12. Joining Plot Points . 72

Chapter 3 Features Near x0 77
1. Local Place . 77
2. Local graph . 80
3. Local code . 81
4. Local Height . 82
5. Local extreme . 84
6. Zeros And Poles . 87
7. Conclusive information . 89
8. Local Slope . 92
9. Local Concavity . 94
10. Pointwise Continuity . 96
11. Local Smoothness . 100

Chapter 4 Features Near ∞ 103
1. Compactification . 103
2. Local graph place near ∞ . 106
3. Local graph near ∞ . 108
4. Offscreen graph . 111
5. Local code near ∞ . 115
6. Height near ∞ . 117
7. Continuity at ∞ . 125
8. Smoothness near ∞ . 131

Chapter 5 Global Analysis 133
1. Interpolation . 134
2. Feature Sign-Change Inputs 140
3. Essential Feature Sign-Changes Inputs 142
4. Essential Extreme-Height Inputs 145

Contents ix

5. Non-essential Features . 146
6. Essential Onscreen Graph . 148

Chapter 6 Regular Monomial Functions - Local Analysis 153
1. Output At x0 . 154
2. Plot Point . 157
3. Normalization . 158
4. Thickening The Plot . 160
5. Output Near ∞ . 161
6. Output Near 0 . 165
7. Graph Place Near ∞ and Near 0 169
8. Local Graph Near ∞ and Near 0 174
9. Local Features Near ∞ and Near 0 175

Chapter 7 Regular Monomial Functions - Global Analysis 177
1. Types of Global Input-Output Rules 177
2. Output Sign . 178
3. Output Qualitative Size . 184
4. Reciprocity . 187
5. Global Graphing . 193
6. Types of Global Graphs . 198

Chapter 8 Exceptional Monomial Functions 201
1. Outputs Of Constant Functions 202
2. Graphs Of Constant Functions 203
3. Features Of Constant Functions 205
4. Output Of Linear Functions at x0 207
5. Outputs Of Linear Functions near ∞ and 0 208
6. Graphs Of Linear Functions 209
7. Features Of Linear Functions 212

Chapter 9 Prelude To Polynomial Functions 215
1. Adding Functions . 215
2. Binomial Functions . 217
3. Graphs of Binomial Functions 219
4. Trinomial Functions . 222
5. Comparing Monomial Functions 223

x Contents

Chapter 10 Affine Functions: Local Analysis 225
1. Output at x0 . 226
2. Output near ∞ . 228
3. Output near x0 . 230
4. Local graphs . 234
5. Local Feature-signs . 237

Chapter 11 Affine Functions: Global Analysis 241
1. Smoothness . 241
2. The Essential Question . 242
3. Slope-sign . 244
4. Extremum . 245
5. Height-sign . 245
6. Bounded Graph . 246
7. 0-Slope Location . 248
8. Locating Inputs Whose Output = y0 248
9. Locating Inputs Whose Output > y0 Or < y0 248
10. Initial Value Problem . 249
11. Boundary Value Problem . 251

Chapter 12 Quadratic Functions: Local Analysis 253
1. Output at x0 . 255
2. Output near ∞ . 256
3. Output near x0 . 258
4. Local graphs . 261
5. Local Feature-signs . 266

Chapter 13 Quadratic Functions: Global Analysis 271
1. The Essential Question . 272
2. Concavity-sign . 274
3. Slope-sign . 275
4. Extremum . 276
5. 0-Concavity Location . 277
6. 0-Slope Location . 277
7. Extremum Location . 278
8. 0-Height Location . 279

Chapter 14 Cubic Functions: Local Analysis 287
1. Output at x0 . 289

Contents xi

2. Output near ∞ . 290
3. Output near x0 . 292
4. Local graphs . 296
5. Local Feature-signs . 300
6. Local Graph Near ∞ . 304

Chapter 15 Cubic Functions: Global Analysis 307
1. Global Graph . 307
2. Concavity-sign . 308
3. Slope-sign . 310
4. Extremum . 311
5. Height-sign . 312
6. 0-Concavity Location . 314
7. 0-Slope Location . 315
8. Extremum Location . 317
9. 0-Height Location . 319

Chapter 16 Rational Degree & Algebra Reviews 321
1. Rational Degree . 321
2. Graphic Difficulties . 323

Chapter 17 Rational Functions: Local Analysis Near ∞ 327
1. Local I-O Rule Near ∞ . 327
2. Height-sign Near ∞ . 330
3. Slope-sign Near ∞ . 332
4. Concavity-sign Near ∞ . 335
5. Local Graph Near ∞ . 339

Chapter 18 Rational Functions: Local Analysis Near x0 343
1. Local I-O Rule Near x0 . 344
2. Height-sign Near x0 . 346
3. Slope-sign Near x0 . 349
4. Concavity-sign Near x0 . 350
5. Local Graph Near x0 . 351

Chapter 19 Rational Functions: Global Analysis 353
1. The Essential Question . 353
2. Locating ∞-Height Inputs . 354
3. Offscreen Graph . 359

xii Contents

4. Feature-sign Change Inputs 361
5. Global Graph . 362
6. Locating 0-Height Inputs . 363

Epilogue 369
1. Looking Back . 369
2. Looking Ahead . 371
3. Reciprocity Between 0 and ∞ 372
4. The Family of Power Functions 385
5. The bigger the size of the exponent the boxier the graph . . . 387
6. Local Quantitative Comparisons 389
7. Global Quantitative Comparisons 392

Appendix A Localization 399

Appendix B Reverse Problems 401

Appendix C Addition Formulas 403
1. Dimension n = 2: (x0 + h)2 (Squares) 403

Appendix D Polynomial Divisions 405
1. Division in Descending Exponents 405

Appendix E List of Definitions 407

Appendix F List of Theorems 409

Appendix G List of Notes 411

Appendix H List of Agreements 413

GNU Free Documentation License 415
1. Applicability And Definitions 416
2. Verbatim Copying . 417
3. Copying In Quantity . 417
4. Modificatons . 418
5. Combining Documents . 420
6. Collections Of Documents . 420
7. Aggregation With Independent Works 420

Contents xiii

8. Translation . 421
9. Termination . 421
10. Future Revisions Of This License 421
ADDENDUM: How to use this License for your documents 422

Index 423

xiv Contents

The pure mathematician’s view
is, It’s not what you know, it’s
what you can prove. The
difficulty with this view is that
it is very hard to prove
something before you know what
you need to prove.

Jacob Rubinstein1

rigorous

Preface

Language., xv • Rigor., xv • Exercises., xv • Proof/Belief., xv .

This is for the prospective reader because, before anything else, they
should be made aware of what it is that they may be about to get into.
Indeed, in many deep ways, this text is truly very different from the usual
calculus textbooks.

The usual preface is for
convincing teachers that the
book is what they want for
that class they are going to
teach next semester.

1 Language.

2 Rigor.

3 Exercises.

4 Proof/Belief.

The first thing is that this is not a rigorous text. One reason is that the
calculus is extraordinarily difficult to present rigorously (https://en.
wikipedia.org/wiki/Calculus#Foundations). For instance, it was only
in 1950 that “Delta functions” (https://en.wikipedia.org/wiki/Dirac_
delta_function) were made rigorous by Laurent Schwartz—for which he
was awarded the Fields Medal2

In fact, rigorous presentations go under the name of Advanced Calcu-
lus or Real Analysis and, for what it’s worth, most calculus textbooks
just skip the many long, hard parts of Advanced Calculus.

1Bulletin of the American Mathematical Society, Volume 55, Number 1, January 2018,
Pages 123-129 (http://dx.doi.org/10.1090/bull/1581)

2One of the very highest honors for a mathematician. (https://en.wikipedia.org/
wiki/Fields_Medal)

xv

https://en.wikipedia.org/wiki/Calculus#Foundations
https://en.wikipedia.org/wiki/Calculus#Foundations
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Dirac_delta_function
http://dx.doi.org/10.1090/bull/1581
https://en.wikipedia.org/wiki/Fields_Medal
https://en.wikipedia.org/wiki/Fields_Medal

xvi Preface

free
different
informal

that downloading the pdf is free and that they can print it freely.
=========OK SO FAR=========

Never mind that those who
have to pay for the book have
no say in choosing the book.

This text is for “just plain folks” who want to learn calculus and it’s
free.

—So, what’s this “Not a Preface” all about?
—Mostly a bit of advice on how to use this text.
—Ok, let’s have it.
—One way this book is different is because it was designed to be read

onscreen rather than on paper.
—What’s the point?
—When we read a scientific text, to really make sense of what we read

we need to remember the exact meaning of each and every word. Which is
impossible. Which is why all scientific texts have an index to let you find
where each word, in bold black, was explained. But in this text, onscreen,
just clicking on any word in red-black will also get you there.

—I guess. So what’s the advice?
—Start at the beginning. Don’t skip. Don’t go ahead until things make

sense. Don’t even try to remember what a word means, just click.
—You said “one way this text is different”, what about the other ways?
—
—Because, in contrast with most textbooks which present the calculus

from the mathematician’s point of view, this text aims at the informal cal-
culus that physicists, chemists, biologists (https://en.wikipedia.org/
wiki/Hard_and_soft_science), and engineers have been using for a very
long time—and are still using.

In particular, but most importantly, “infinitesimals” were routinely used
informally from 1684 on by physicists—as well as by mathematicians—even
though it was realized almost from the start that “infinitesimals” were not
rigorous (https://en.wikipedia.org/wiki/Non-standard_analysis). And
when, some two centuries later, “limits” were finally made rigorous and
most mathematicians stopped using “infinitesimals” in favor of “limits”,
physicists, and for a long time even differential geometers, kept using “in-
finitesimals” because they are being closer to the real world (https://en.
wikipedia.org/wiki/Calculus#Limits_and_infinitesimals).

In any case, in 1961, Abraham Robinson, three years over the age limit
for the Fields Medal, made “infinitesimals” rigorous (https://en.wikipedia.
org/wiki/Abraham_Robinson). In spite of which, most textbooks still avoidSurprise, surprise! “infinitesimals” like the plague!

Yet, as Vladimir Arnold (https://en.wikipedia.org/wiki/Vladimir_
Arnold) wrote in 1990: “Nowadays, when teaching analysis, it is not very

https://en.wikipedia.org/wiki/Hard_and_soft_science
https://en.wikipedia.org/wiki/Hard_and_soft_science
https://en.wikipedia.org/wiki/Non-standard_analysis
https://en.wikipedia.org/wiki/Calculus#Limits_and_infinitesimals
https://en.wikipedia.org/wiki/Calculus#Limits_and_infinitesimals
https://en.wikipedia.org/wiki/Abraham_Robinson
https://en.wikipedia.org/wiki/Abraham_Robinson
https://en.wikipedia.org/wiki/Vladimir_Arnold
https://en.wikipedia.org/wiki/Vladimir_Arnold

4. Proof/Belief. xvii

popular to talk about infinitesimal quantities. Consequently present-day stu-
dents are not fully in command of this language. Nevertheless, it is still
necessary to have command of it.” (https://en.wikipedia.org/wiki/
Infinitesimal)

All this to say that, if this text doesn’t follow current fashions, it is
nevertheless rooted in rigorous mathematics.

—Whew! All this to say just that! That was dense. Any other reason
why I should buy your book?

—Remember, you can download this text for free and print it if you
want. So, just keep on reading and make up your mind yourself

—That it?
—No. Another way this text is free is that it is open source. So, after

you got something you first had trouble with, after you got it your way, you
can put that way on http://freemathtexts.org/ to help others. Another
way it’s different.

https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Infinitesimal
http://freemathtexts.org/

xviii Preface

What is important is the real
world, that is physics, but it
can be explained only in
mathematical terms.

Dennis Serre1 real world
number
set
given
information
describe
specifyChapter 1

Numbers

Numbers for what?, 1 • Plain Whole Numbers, 2 • Plain Decimal
Numbers, 3 • Signed Numbers, 6 • Computing With Given Numbers,
10 • Picturing Given Numbers, 13 • Nearby Numbers , 14
• Comparing Given Numbers, 17 • Qualitative Sizes, 21 • Real
World Numbers, 26 • Picturing small numbers, 28 • Picturing large
numbers, 28 • Infinity, 28 • Picturing Small Numbers, 30 • Picturing
Large Numbers, 34 • Computing With Qualitative Sizes, 37 • Real
Numbers, 40 • Decimal Approximations, 42 .

The point of this first chapter is to discuss aspects of numbers usually
not given much attention in Arithmetic textbooks but which are at the
heart of their relationship to the real world and therefore most relevant to
the Calculus According to the Real World.

In other words, nowhere near
the obligatory “Review of
things you oughtn’t to have
forgotten” in standard text-
books.

1 Numbers for what?

There are many different sets of numbers, each used for many different
purposes, but “the rest of us” give numbers as information to describe
what we have or to specify what we want. More precisely, in the real world,
depending on:

0Bulletin of the AMS, Vol 47 Number 1 Pages 139-144

1

2 Chapter 1. Numbers

way
magnitude
count
plain whole number
counting number
natural number
positive integer

A. What kind of real world object we want to describe or specify
namely:

I A collection of items that we can deal with one at a time,
or
I An amount of stuff that we can deal with only in bulk,

and
B. What kind of information we want to give about the object namely:

I The magnitude of the object,
or
I The magnitude of the object together with the way (as in “two-

way street”) the object goes.
we only use numbers from the following four sets of numbers:

Collections of items Amounts of stuff
Magnitude Plain whole numbers Plain decimal numbers

Magnitude and Way Signed whole numbers Signed decimal numbers

LANGUAGE 1.1 Amount is what physicists call “physical quantity”.
Scientists other than physi-
cists just say “quantity”.

LANGUAGE 1.2 Way is not a very good word but neither is “direction”
unless we are willing to say “one of two opposite directions”.

2 Plain Whole Numbers

Because we can deal with items one at a time, both describing and specifying
how many items there are in a collection are easy: we just count the items.
Then, how many items are in the collection will be given by a plain whole
number.

.

EXAMPLE 1.1. Apples are items. (We can eat apples one at a time.) To
say how many are in the collection we count them that is we point
successively at each while singsonging “one, two, three”.

LANGUAGE 1.3 Plain whole numbers are also called counting
numbers and natural numbers (https://en.wikipedia.org/wiki/
Natural_number).

At least, “counting” reminds
us of how we get them but
“natural”?

https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number

3. Plain Decimal Numbers 3

unit
plain decimal numberLANGUAGE 1.4 Plain whole numbers are also called positive integers

(https://en.wikipedia.org/wiki/Integer) “Positive integer” makes
sense but only to . . .teachers
since only they already know
what integers are.The calculus, though, is not concerned with collections of items and

only with amounts of stuff and so we will use whole numbers only occasion-
ally, mostly as a backdrop for decimal numbers.

3 Plain Decimal Numbers

Because we can only deal with stuff in bulk, both describing and specifying
how much stuff there is in an amount are quite a bit more complicated than
for collections of items. There are two complications.

1. Units. The first complication is that before we can describe or
specify an amount of stuff we must decide on a unit amount of that stuff.
Indeed, “The Weights and Measures Division promotes uniformity in U.S.
weights and measures laws, regulations, and standards to achieve equity
between buyers and sellers in the marketplace.” (https://www.usa.gov/
federal-agencies/weights-and-measures-division)

Then, how much stuff is in an amount will be given by a plain decimal
number of units of that stuff.

EXAMPLE 1.2. Milk is stuff that we drink and before we can describe or
specify how much milk we must decide on a unit of milk, for instance liters of
milk. Then, for instance, how much milk could be 6.4 liters of milk.

To help remind ourselves that we are talking about plain decimal num-
bers rather than plain whole numbers,

AGREEMENT 1.1 The decimal point will never go without saying in
this text.

EXAMPLE 1.3. We will always distinguish the plain decimal number 27.
which we would give to describe of specify an amount of stuff from the plain
whole number 27 which we would give to describe or specify a collection of
items.

https://en.wikipedia.org/wiki/Integer
https://www.usa.gov/federal-agencies/weights-and-measures-division
https://www.usa.gov/federal-agencies/weights-and-measures-division

4 Chapter 1. Numbers

measure
uncertainty

2. To err is human. The second complication is a lot harder to
deal with because for an amount of stuff, specifying how much we want and
describing how much we have involve different issues.

a. To describe an amount of stuff, the complication is that we have to
measure this amount of stuff so that there will always be some uncertainty
about the measured plain decimal number because of things such as the
quality of the equipment used to measure the amount, the ability of the
person doing the measurement, etc.

EXAMPLE 1.4. We cannot really say “we have 2.3 quarts of milk” because
what we really have depends on the care with which the milk was measured.
The uncertainty may of course be too small to matter . . . but then may not.

As Timothy Gowers, Fields Medal 1998, put it (6th paragraph of https:
//www.dpmms.cam.ac.uk/~wtg10/continuity.html.), “a measurement of
a physical quantity will not be an exactly accurate infinite decimal. Rather,
it will usually be given in the form of a finite decimal together with some
error estimate: x = 3.14±0.02 or something like that.”2 [Where 3.14±0.02
is to be read as 3.14± some error smaller than 0.02]

b. To specify an amount of stuff, the complication then is that while, in
the case of a collection of items

I the plain whole number given to specify how many
items we want,

will never differ from
I the plain whole number counted to describe how many
items we get

in the case of an amount of stuff,
I the plain decimal number given to specify how much
stuff we want.

will always differ by some plain error from
I the plain decimal number measured to describe how
much stuff we get

In other words:

NOTE 1.1 A plain decimal number by itself can never specify an
amount of stuff.

2At this time most of Gowers’ paper will be much too hard to read but even a cursory
glance will show that our concern with the real world is quite the same as his.

https://www.dpmms.cam.ac.uk/~wtg10/continuity.html
https://www.dpmms.cam.ac.uk/~wtg10/continuity.html

3. Plain Decimal Numbers 5

significant
small relative
tolerance
specification

EXAMPLE 1.5. We cannot say “6.4 quarts of milk” without also saying
how big a plain error we are willing to put up with. A spoonful? A quart?

c. However, not all differences are significant, that is carry information
that is relevant to the real world situation.

EXAMPLE 1.6. The difference between $3. and $8. is the same as the
difference between $1 000 000 003. and $1 000 000 008., namely $5.. However,
while the difference between $3. and $8. is significant because $5. is in the same
range as $3. and $8., the difference between $1 000 000 003. and $1 000 000 008.
is ... insignificant because $5. is much smaller than both $1 000 000 003. and
$1 000 000 008..

Now, while we cannot avoid errors, we sure want to avoid significant errors,
that is we want the error to remain small relative to the plain decimal
number that specifies what we want. So. along with the plain decimal
number that specifies what we want, we must also specify a tolerance, that
is the largest plain error we can put up with (https://en.wikipedia.org/
wiki/Engineering_tolerance).
And, in the spirit of Gowers’ “measurement of a physical quantity”, we set

DEFINITION 1.1 A specification for an amount of stuff consists
of two plain decimal numbers:
I a plain decimal number to specify the amount we want,
I a plain decimal number to specify the errors we can tolerate.
which we will write

given plain decimal number ± given tolerance
but which, as with Gower’s “error estimate”, we will read

given plain decimal number ± plain decimal number smaller
than given tolerance

EXAMPLE 1.7. While we cannot specify an amount of 6.4 quarts of milk
(Example 1.5, page 5.), we can specify an amount of 6.4± 0.02 quarts of milk
where ±0.02 quarts of milk is the tolerance: what can be poured will then be
6.4 ± a plain decimal number smaller than 0.02 quarts of milk.

We can then restate ?? in a more constructive manner:

https://en.wikipedia.org/wiki/Engineering_tolerance
https://en.wikipedia.org/wiki/Engineering_tolerance

6 Chapter 1. Numbers

0
signed-number NOTE 16.1 (Restated) A plain decimal number without a tolerance

can never specify an amount of stuff.

3. What about zero? As we will see again and again, 0 is a very
special number and indeed already “the ancient Greeks seemed unsure about
the status of zero as a number.” (https://en.wikipedia.org/wiki/0)

With plain decimal number other than 0, even though we cannot have
the exact amount of stuff specified by the given plain decimal number of
unit of stuff that we want, that exact amount of stuff does exist.

But 0 is special because when we specify 0 unit of some stuff, there is
no such thing as 0 unit of that stuff in the real world and all we get is the
error!

EXAMPLE 1.8. There is no such thing as a perfect vacuum. (https:
//en.wikipedia.org/wiki/Vacuum).
There is no such thing as an absolute zero temperature. (https://en.
wikipedia.org/wiki/Absolute_zero)

So,

NOTE 1.2 0 is special because:
i. 0 specifies nothing.

4 Signed Numbers

Most of the time, we need not only to describe or specify how many items
there are in a collection or how much stuff there is in an amount, but also
the way the collection of items or the amount of stuff is going.

EXAMPLE 1.9. How many people are going into a building as opposed to how
many are coming out of the building usually depends on the time of the day.
How much money is coming into or going out of our bank account usually
depends on the day of the month.

LANGUAGE 1.5 Signed whole numbers are usually called integers.

https://en.wikipedia.org/wiki/0
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Absolute_zero

4. Signed Numbers 7

signed whole number
signed decimal number
size
quantitative
| |
absolute value
sign
qualitative
+
−
positive
negative

1. Size and sign. So, both signed whole numbers and signed
decimal numbers carry two kinds of information:
• The size of a signed-number (whole or decimal) is the quantitative
information which is given by the plain-number that describes or specifies
how many items in the collection or how much stuff in the amount.
The standard symbol for size is | |

EXAMPLE 1.10. Instead of “size −3 = 3” we can write “|−3| = 3”.

LANGUAGE 1.6 Absolute value is often used in textbooks instead
of size but we will stick with size because that’s what’s used in the
real world. Instead of the word “size”, textbooks mostly use “absolute
value” but, sometimes, “numerical value” or “modulus” or “norm”.
None of these words will be used in this text.

• The sign of a signed-number (whole or decimal) is the qualitative in-
formation which is given by + or −, the symbols that describe or specify
which way the collection or the amount is going.

Positive numbers (whole or decimal) are the signed-numbers whose
sign is +,
Negative numbers (whole or decimal) are the signed-numbers whose
sign is −.

EXAMPLE 1.11. +17.43 Dollars specifies a real world money transac-
tion in which:
I The size of +17.43 is 17.43 which specifies how much money was

transacted,
I The sign of +17.43 is + which specifies which way the money went.

AGREEMENT 1.2 The sign + will never go without saying In this text.

EXAMPLE 1.12. We will always distinguish, for instance,
I +51.7 which is a signed number from 51.7 which is the plain number that

is the size of +51.7 . (As well as the size of −51.7
I +643 which is a signed number from 643 which is the plain number that is

the size of +643 . (As well as the size of −643)

8 Chapter 1. Numbers

opposite
signed error

A positive number and a negative number with the same size are said to
be opposite.

EXAMPLE 1.13. Opposite+32.048 = −32.048

2. Zero has no sign. 0 is neither positive nor negative. So,

NOTE ?? (Restated) ?? because:
i. 0 specifies nothing.
ii. 0 has no sign

Nevertheless, we will want to consider 0 as a signed decimal number
because, in spite of not having a sign, 0 does come up in many computations
with signed decimal numbers.

EXAMPLE 1.14. A number and its opposite add up to 0. Conversely, if
two numbers add up to 0 then they are opposite.

3. Signed error. While scientists can never know what the plain
error in a measurement is, scientists often know if the measured plain dec-
imal number is larger or smaller than the given plain decimal number. So
scientists use signed errors whose size is the plain error and whose sign is:

+ when the measured plain decimal number is larger than the given
plain decimal number
− when the measured plain decimal number is smaller than the given

plain decimal number
However, even with signed errors,

NOTE 1.3 The tolerance is a plain decimal number because the
tolerance is the largest size of signed error we can put up with.

=======Begin MISPLACED=======

EXAMPLE 1.15. It makes no sense to specify −6.4 ± a plain error smaller
than 0.02. What we can specify is −6.4⊕ a signed error whose size is smaller
than 0.02 where 0.02 is the given tolerance (plain number).

=======End MISPLACED ========

4. Signed Numbers 9

number
given number
actual number
plain number
error
general
generic
x0
x1
x2
x3

4. Numbers to go. As already mentioned in ??. we will mostly
use signed decimal numbers—except of course when dealing with the size of
signed decimal numbers. So, to make our life a little easier, we will use:

AGREEMENT 1.3 Number is short for signed decimal number including
0. In particular:
I Given number is short for given signed decimal number including 0.
I Measured number is short for measured signed decimal number

including 0,
I Error is short for signed error.
And, in order to discuss the size of numbers,
I Plain number is short for plain decimal number including 0.

5. Generic given numbers. In order to make general statements,
we will use generic symbols.

EXAMPLE 1.16. In Arithmetic, we may check that 2 + 3 = 3 + 2 and
then that 4 + 7 = 7 + 4. Then, maybe after further experimentation or maybe
just as a wild guess, we may want to make the general statement that the order
in which we add two plain whole numbers does not change the result. To make
that statement, we would use two generic symbols for plain whole numbers,
say, a and b, and then we would state that a+ b = b+ a

In other words, a generic symbol stands for something whose identity
is to remain undisclosed for the time being. In particular, a generic given
number is a given number whose “identity” remains undisclosed so that any
given number can later be substituted for the generic given number.

EXAMPLE 1.17. In Example 1.20, after we have stated that a+ b = b+a,
we can state without further ado that, say, 152 695 + 4 082 = 4 082 + 152 695
just by replacing a by 152 695 and b by 4 082

We will use the following:

DEFINITION 1.2 x0 , x1, x2, x3, etc are symbols for generic given
numbers including 0.

=========OK SO FAR=========

10 Chapter 1. Numbers

⊕
	

=======Begin WORK ZONE=======
=======End WORK ZONE========

5 Computing With Given Numbers

We assume the reader knows how to perform the four operations with given
numbers but there are nevertheless a few issues worth discussing, if only for
the sake of clarity.

1. Addition and subtraction. The symbols + and − are vastly
overused because not only are we using the symbols + and − for both

i. addition and subtraction of plain whole numbers
and

ii. addition and subtraction of plain decimal numbers
which already are two very different sets of numbers with very different
procedures for addition and subtraction, but we are also using the symbols
+ and − to

iii. distinguish positive numbers from negative numbers
which has little to do with addition or subtraction.

So, it would really be asking for trouble for us to use, on top of all that,
the symbols + and − for addition and subtraction of signed decimal numbers
and this is where we draw the line:

DEFINITION 1.3 ⊕ and 	, pronounced “oplus” and “ominus”,
will be the symbols for addition and subtraction of signed decimal
numbers.

In other words, the © around the operation symbol will remind us to take
care of the signs but, as an added benefit, ⊕ and 	 will also let us avoid
using lots of parentheses.3

EXAMPLE 1.18. Instead of:
−23.87 + (−3.03), −44, 29− (+22.78), +12.04− (−41.38)

we will write:
−23.87⊕−3.03, −44, 29	+22.78, +12.04	−41.38

3Which is presumably why, say +13.73 and −78.02 used to be written as +13.73 and
−78.02 since +13.73 −− 78.02 has the same advantage as +13.73 	 −78.02 .

5. Computing With Given Numbers 11

�
—
reciprocal

2. Multiplication and division.

i. We will use

I The operation symbol � (instead of ⊗) for multiplication of signed dec-
imal numbers,

I The operation symbol −−− (fraction bar instead of) for division of
signed decimal numbers.

ii. For future reference, we recall

THEOREM 1.1 Multiplication and Division of Signs
+ −

+ + −
− − +

EXAMPLE 1.19.
+2�+5 = +10, +2�−5 = −10, −2�+5 = −10, −2�−5 = +10
+12
+3 = +4, +12

−3 = −4, , −12
+3 = −4, −12

−3 = +4,

3. Reciprocal. The reciprocal of a number is +1. divided by that
number. (https://www.mathsisfun.com/reciprocal.html)

So:

i. Reciprocal +1. = +1. and Reciprocal −1. = −1.

ii. The reciprocal of 1 followed or preceded by 0s is easy to get: read
the number you want the reciprocal of and insert/remove “th” accordingly,

iii. The reciprocal of most other numbers needs to be computed and we
may as well use a calculator.

https://www.mathsisfun.com/reciprocal.html

12 Chapter 1. Numbers

EXAMPLE 1.20.
Reciprocal +1 000. = +1 thousand th = +0.001

Reciprocal −0.000 001 = −1 million��th = −1 000 000.

Reciprocal +4.00 = +1.00
+4.00

= +0.25 (Hopefully by hand.)

Reciprocal −0.89 = +1.00
−0.89

= −1.13 (Use a calculator.)

Reciprocal −2.374 = +1.00
−2.374

= −0.421 (Use a calculator.)

EXAMPLE 1.21. In algebra, to prove that:
I When we oplus a number and its opposite, the result is 0, we compute
x0 ⊕ Opposite x0 to show that the result is 0.

I When we oplus two numbers, the order does not matter, we compute x1⊕x2
and x2 ⊕ x1 to show that the results are the same.

I When we oplus three numbers, the grouping does not matter, we compute
[x1 ⊕ x2]⊕ x3 and x1 ⊕ [x2 ⊕ x3] to show that the results are the same.

x0 ⊗ oppx0 is negative

4. Computing with Zero? As far as ⊕ and 	 are concerned, 0 is
not at all special since oplussing 0 and ominussing 0 do not do anything and
so, do not cause any difficulty.

On the other hand, inasmuch as
I Multiplying any number by 0 always gives 0 as a result,
I Dividing any number by 0 is impossible. (https://en.wikipedia.org/

wiki/Division_by_zero)
this is yet another way

NOTE ?? (Restated) ?? :
i. 0 specifies nothing.
ii. 0 has no sign
iii. Multiplying any number by 0 always gives 0 as a result,
iv. Dividing any number by 0 is impossible.

https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Division_by_zero

6. Picturing Given Numbers 13

picture
ruler
tickmark
origin
number line
symmetrical
side

6 Picturing Given Numbers

1. Quantitative rulers. To picture given numbers, we will use
quantitative rulers which are essentially just what goes by the name of
“ruler” in the real world.

AGREEMENT 1.4 Origin The tickmarks on a quantitative ruler must
include an origin, that is a tickmark labeled 0.

EXAMPLE 1.22. The following :

–3000.

–4000.

–2000.
–1000.

 +0.000
+1000.

–7000.

–8000.

–6000.
–5000.

is a quantitative ruler.

LANGUAGE 1.7 Number line is the name often used instead of quan-
titative ruler but in this text we will stick to quantitative ruler.

2. Graphic meanings. From the graphic viewpoint:
• The size of a given number specifies how far from 0 the given number is

on a quantitative ruler. So opposite numbers are symmetrical relative
to the origin.

EXAMPLE 1.23. The numbers −5.0 and +5.0 have the same size,
namely 5.0, so they are equally far from 0:

Liters

 5 away from 0 5 away from 0

0.–5. –4. –3. –2. –1. +1.–6. +2. +3. +4. +6.–7.–8. +5.

• The sign of a given number specifies which side of the origin the given
number is—as seen when facing 0:

AGREEMENT 1.5 Sides of the origin
I Positive numbers (+ sign) will be to the right of the origin 0,

14 Chapter 1. Numbers

x0 ⊕ h
I Negative numbers (− sign) will be to the left of the origin 0.

EXAMPLE 1.24. On a quantitative ruler,
Since Sign −5 = − , the number −5 is left of 0.
Since Sign +3 = + , the number +3 is right of 0.

0.–5. +5.–4. –3. –2. –1. +1.–6. +2. +3. +4. +6.–7.–8.
Meters

LEFT RIGHT

 Left of 0 Right of 0

=========THIS IS WHERE THINGS GET HARD =========

7 Nearby Numbers

We already saw several instances where by itself a number does not provide
much information if at all. and neighborhood of given number

1. However, see ??, a plain decimal number unaccompanied by a tol-
erance can never specify an amount of stuff.

So now we can say that a measured signed decimal number is the given
signed decimal number ⊕ a signed error whose size is smaller than the given
tolerance .

To code a generic nearby number for the real world number x0, we will
use

DEFINITION 1.4 x0⊕ h
Given x0, x0⊕h is code for a generic nearby number.

but a frequent mistake is to forget that (??, ??)

2. Neighborhood

3. Real World Numbers (Section 10, page 26) was easy because we
knew exactly where were the numbers we wanted to picture. But in the case

7. Nearby Numbers 15

thicken
center
neighborhood
nearby
radius
data
qualitative ruler
arrowhead
Parentheses

of measured numbers, all we know is that the numbers we want to picture
are somewhere within the given tolerance of the real world number.

But here again qualitative rulers are not up to the task because of its
scale and, here again, we must aim a magnifier at x0 to see a neighborhood
of x0.

single points usually do not carry enough information for the purposes
of the calculus. So, what we will do is to thicken the point we want to
look at, that is we will look at the point as center of a neighborhood, that
is we will look at the point together with nearby numbers that is numbers
within a given radius of the center. (http://mathworld.wolfram.com/
Neighborhood.html.)

As useful as quantitative rulers are, and they are used a lot in engi-
neering and the sciences to help picture data, that is lots of real world
numbers, they do not lend themselves to picturing neighborhoods and to
picture neighborhoods we will use qualitative ruler, that include just:
• A tickmark for the origin 0
• An arrowhead to indicate the way up. In this text, according to Agree-
ment 1.4 (Page 13), the arrowhead will always point to our right.
• Parentheses to mark the cutoffs of a generic positive range and a generic

negative range

)
0

)))

Negative upper cutoff

Negative lower cutoff
Pos

itiv
e u

pper
 cu
tof
f

Pos
itiv

e l
ow

er
 cu
tof
f

negative range positive range

4. Since∞ and 0 are diametrically opposed on a Magellan circle, it is
of course tempting to think of ∞ and 0 as being reciprocal. Unfortunately
we can’t divide by 0 and ∞ is not even a number so that’s that. Yet there
has to be something to it and we will get to it later.

5. Picturing x0 +h. For the real world number x0, the nearby num-
bers are in a neighborhood of x0 with the radius of the neighborhood being
the tolerance . (See https://en.wikipedia.org/wiki/Neighbourhood_
(mathematics).)

So, in order to picture x0 + h we aim a magnifier at x0 to see a neigh-
borhood of x0.

http://mathworld.wolfram.com/Neighborhood.html
http://mathworld.wolfram.com/Neighborhood.html
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)

16 Chapter 1. Numbers

x+
0

)
0

)

Positive
lower
cutoff

Negative
lower
cutoff

Positive
upper
cutoff

Negative
upper
cutoff

))
Neighborhood of x0

0x

The tolerance is the radius of the neighborhood but, of course, since in
this text the tolerance will remain undisclosed, we will just:
• Draw a tickmark for the real world number,
• Draw a small stretch below the qualitative ruler around the tickmark.

))
0

neighborhood of x

0

 x

))

Lower
negative
cutoff

Upper
positive

cutoff

Upper
negative

cutoff

Lower
positive
cutoff

))
0

EXAMPLE 1.25. Given the number −5.7, to picture the actual number
−5.7 + h, we draw a neighborhood of −5.7

Lower
negative
border 0

Upper
positive
border

 –5.7

 –5.7+h

))))))

Upper
negative
border

Lower
positive
border

In other words, given a number x0, the actual number x0 + h will be a
nearby number.

6. Sides of a neighborhood of x0. In order to deal separately with
each side of a neighborhood of x0, we will use
I x+

0 (namely x0 with a little + up and to the right) which is stan-
dard code for nearby numbers right of x0, that is for nearby numbers
larger than x0. (They are indeed to our right when we are facing x0,
the center of the neighborhood.)
Another way to code nearby numbers right of x0 is: x0 + h with h > 0

8. Comparing Given Numbers 17

x−0
compare
sign-size compare
smaller

EXAMPLE 1.26. −13.74 + refers to nearby numbers right of −13.74
(such as for instance −13.88): ()

LEFT RIGHT

–13.74
–13.88

I x−0 (namely x0 with a little − up and to the right) which is standard code
for nearby numbers left of x0, that is for nearby numbers smaller than
x0. (They are indeed to our right when we are facing x0, the center of
the neighborhood.)
Another way to code nearby numbers left of x0 is: x0 + h with h < 0

EXAMPLE 1.27. −13.74 − refers to nearby numbers left of −13.74
such as −13.88: ()

LEFT RIGHT

–13.74
–13.88

8 Comparing Given Numbers

We assume that the reader knows how to compare plain-numbers but it is
probably worthwhile reminding the reader that

NOTE 1.4 Comparing numbers without units makes no sense at all.
.

In the case of signed-number, though, things are more complicated be-
cause there are two very different ways to compare signed-number depending
on whether or not we take the signs into account or only the sizes.

1. Sign-size comparison. To sign-size compare signed-numbers,
that is to take both signs and sizes into account, the easiest way is to picture
the two numbers on a quantitative ruler and then, because of Agreement 1.4
(Page 13), the number to our left will be smaller than the number to our

18 Chapter 1. Numbers

larger right and the number to our right will be larger than the number to our
left.

NOTE 1.5 sign-size goes without saying when we say larger and/or
smaller.

EXAMPLE 1.28. Given the numbers −7.2 and −0.9. we have

RightLeft

LargerSmaller

0.–5. +5.–4. –3. –2. –1. +1.–6. +2. +3. +4. +6.–7.–8.

LEFT RIGHT

–7.2 –0.9

so −7.2 is smaller than −0.9 and −0.9 is larger than −7.2

The standard symbols for sign-size-comparisons of all four kinds of num-
bers are:

Sign-size-comparisons Symbols

equal to =
not equal to 6=
smaller than <
smaller than or equal to 5
larger than >
larger than or equal to =

EXAMPLE 1.29. In symbols, Example 1.28 becomes

RightLeft

LargerSmaller

0.–5. +5.–4. –3. –2. –1. +1.–6. +2. +3. +4. +6.–7.–8.

LEFT RIGHT

–7.2 –0.9

so −7.2 < −0.9 as well as −0.9 > −7.2

8. Comparing Given Numbers 19

size-compare2. Size-comparison . To size-compare signed-number is to com-
pare them only in terms of their sizes and to ignore their signs.

EXAMPLE 1.30. On a ticket for speeding on a two-way road, only the size
of the speed is mentioned, not which way we were going.

In fact,

NOTE 1.6 In common English, “higher” and “lower” do not correspond
to the mathematical larger and smaller but to larger-in-size and smaller-
in-size.

EXAMPLE 1.31. In common English, we say that a $700 expense is higher
than a $300 expense even though −700 is smaller than −300 This is because
−700 is larger-in-size than −300.

The trouble is that “size-comparing” is almost always confused with “com-
paring sizes”. But the difference is what we are comparing in each case and
that is important.

EXAMPLE 1.32. Suppose that:
i. Jack is 41 year old
ii. Jack’s daughter is 15 year old
iii. Jill is 39 years old
iv. Jill’son is 17 years old
Now:
a. If we compare Jack and Jill in terms of their own age, we get that

Jack is-older than Jill,
.

But since Jack’s child is-younger than Jill’s child
b. If we compare Jack and Jill in terms of their child’s age, we get from b.
that

Jack has-a-younger -child than Jill
Similarly:
+2.7 is larger than −17.4
but since Size +2.7 is smaller that Size −17.4
+2.7 is smaller-in-size than −17.4

20 Chapter 1. Numbers

closer to PROCEDURE 1.1 To size-compare two signed decimal num-
bers

i. Get the plain decimal numbers that are the size of each of the two
signed decimal numbers,
ii. Compare the plain decimal numbers that are the sizes of the signed
decimal numbers,
iii. And then
I If the size of the first signed decimal number is smaller than the

size of the second signed decimal number, then the first signed
decimal number is itself smaller-in-size than the second signed
decimal number

I If the size of the first signed decimal number is larger than the
size of the second signed decimal number, then the first signed
decimal number is itself larger-in-size than the second signed
decimal number

TEMO 1.1 To size-compare the numbers −7.5 and +3.2

i. We compare their sizes: since the size of −7.5 is the plain-number 7.5 and
the size of +3.2 is the plain-number 3.2 and since

7.5 > 3.2
we can conclude that

size −7.5 is-larger-than size +3.2
or, in symbols, that

| − 7.5| > |+ 3.2|
ii. On the basis of which we conclude that

−7.5 is-larger-in-size-than +3.2

And the trouble in most textbooks is that the first step is the only one
that is explicited while the second step is supposed to “go without saying”,
perhaps because, unfortunately,

NOTE 1.7 There are no symbols for size-comparisons of signed-
numbers.

so that we will have to say it in so many words.
Graphically:

I The signed-number that is smaller-in-size than the other signed-number
is closer to 0 than the other signed-number

I The signed-number that is larger-in-size than the other signed-number is

9. Qualitative Sizes 21

farther fromfarther from 0 than the other signed-number.

EXAMPLE 1.33. Given the numbers −7.5 and +3.2 , we saw in ?? that
I −7.5 is larger-in-size-than +3.2 ,
and therefore that
I +3.2 is smaller-in-size-than −7.5 ,
After picturing −7.5 and +3.2

Larger-in-size Smaller-in-size

0.–5. +5.–4. –3. –2. –1. +1.–6. +2. +3. +4. +6.–7.–8.

Closer from 0Farther from 0
–7.5 +3.2

we see that
I −7.5 is farther from 0 than +3.2 ,
I +3.2 is closer to 0 than −7.5 ,

9 Qualitative Sizes

We can of course give any number and any tolerance we want and, indeed,
mathematicians treat all the numbers in a set of numbers in exactly the
same manner, regardless of their size.

EXAMPLE 1.34. +36.42 and −105.71 are added, subtracted, multiplied
and divided by the same rules as −41 008 333 836 092.017 and −0.000001607.

In the real world however numbers come in vastly different sizes.

EXAMPLE 1.35. The numbers that astrophysicists (https://
en.wikipedia.org/wiki/Astrophysics) use are entirely different from
the numbers that nanophysicists (https://en.wikipedia.org/wiki/
nanophysicist) use.

Well worth looking up in this regard are
I The 9 minutes 1977 classic video at the bottom of http://www.eamesoffice.

com/the-work/powers-of-ten/,
I Terence Tao, Fields Medal 2006, http://terrytao.files.wordpress.

com/2010/10/cosmic-distance-ladder.pdf

https://en.wikipedia.org/wiki/Astrophysics
https://en.wikipedia.org/wiki/Astrophysics
https://en.wikipedia.org/wiki/nanophysicist
https://en.wikipedia.org/wiki/nanophysicist
http://www.eamesoffice.com/the-work/powers-of-ten/
http://www.eamesoffice.com/the-work/powers-of-ten/
http://terrytao.files.wordpress.com/2010/10/cosmic-distance-ladder.pdf
http://terrytao.files.wordpress.com/2010/10/cosmic-distance-ladder.pdf

22 Chapter 1. Numbers

1. Out of this world. The first two limitations have to do with
the fact that numbers can be incredibly large-in-size as well as incredibly
small-in-size:
I We all went through a stage as children when we would count, say, “one,

two, three, twelve, seven, fourteen, . . . ” but, not too long after that we
were able to count properly and then, soon after that, we discovered that
there was no end to whole: we could always count one more. But that
was only the tip of the iceberg.

EXAMPLE 1.36. Start with, say,− 73.8 and insert 0s left of the decimal point
−730.8
−7 300.8
−73 000.8

. . .
−73 000 000 000 000 000 000 000.8

This last number is probably already a lot larger-in-size-than any number
you are likely to have ever encountered but, if not, just keep inserting 0s
until you get one!

Also, see https://en.wikipedia.org/wiki/Large_numbers#Large_numbers_
in_the_everyday_world)

I On the other hand, as children knowing only whole numbers, we thought
there was a number smaller than all others, namely 1. With decimal
numbers, though, there is no number smallest-in-size.

EXAMPLE 1.37. Start with + 0.8 and insert 0s right of the decimal point
+0.08
+0.008
+0.000 8
. . .

+0.000 000 000 000 000 000 000 000 000 08

This last number is probably already a lot smaller-in-size-than any number
you are likely to have ever encountered but, if not, just keep inserting 0s
until you get one!

2. Qualitative sizes. In view of the above, we have to face the fact
that, in any real world situation, most numbers will be either too large-in-
size or too small-in-size.

https://en.wikipedia.org/wiki/Large_numbers#Large_numbers_in_the_everyday_world
https://en.wikipedia.org/wiki/Large_numbers#Large_numbers_in_the_everyday_world

9. Qualitative Sizes 23

cutoff
upper cutoff
lower cutoff

EXAMPLE 1.38. In Example 1.50 (Page 27), how likely is a number with a
million 0s left of the decimal point to specify anything in the real world? How
about with a billion 0s ? A trillion 0s?

EXAMPLE 1.39. In Example 1.37 (Page 22), how is a tolerance with a
million 0s right of the decimal point likely to work in the real world? How
about with a billion 0s? A trillion 0s?

More precisely, in any real world situation, there will always be two
cutoff sizes:
I An upper cutoff size above which numbers will be too large-in-size to

be relevant to the situation,
I A lower cutoff size below which numbers will be too small-in-size to be

relevant to the situation.

NOTE 1.8 Upper and lower refer only to the size of the cutoff
numbers.

EXAMPLE 1.40. A mom and pop business could use 99 999.99 and 0.01
as cutoff sizes for their acwhole system as it probably would never have to deal
with numbers such as −1 058 436.39 or +0.00072.

+99
 99

9.9
9–99 999.99

–0.00

incomesexpenses

+0.0
0

Of course, the upper cutoff size and the lower cutoff size will depend on the
situation.

EXAMPLE 1.41. In contrast with the mom and pop business of Exam-
ple 1.44, the acwhole system for a multination corporation would certainly use
much larger cutoff sizes.

At least to an extent, the limitation on size of the specifying number and
the limitation on the size of the tolerance are linked.

EXAMPLE 1.42. We cannot specify a distance in light years with a toler-
ance in inches.

24 Chapter 1. Numbers

qualitative size
real world number
large number
small number
finite
infinite
infinitesimal

As far as we will be concerned, just knowing that, any real world situa-
tion, there always are cutoff sizes will be enough for us to use the following:

DEFINITION 1.5 Qualitative Sizes. Given a real world situation,
I Large numbers will be numbers whose size is above the upper

cutoff size
I Smalll numbers will be numbers whose size is below the lower

cutoff size

po
sit

ive
 lo

wer
cu

tof
f

po
sit

ive
 up

pe
r c

uto
ffnegative upper cutoff

negative lower cutoff

medium

0
medium largelarge smallsmall

EXAMPLE 1.43. In Example 1.33 we would have
–11.6

–19.0

+16.3
+21.4
+34.0
+46.2
+52.8
+63.3
+71.4

–32.5

–46.3

–52.7

–86.7

+7
.3–7.3 +9

0.7

–90.7
largelarge small mediummedium

EXAMPLE 1.44. In Example 1.50 we would have

+0
.01 +1

00
00
00
.0–1000000.0

–0.01

largelarge small mediummedium

LANGUAGE 1.8 Standard Words For Qualitative Sizes.
I The standard’ word for large is infinite. (https://www.

merriam-webster.com/dictionary/infinite.)
I The standard word for small is infinitesimal. (https://en.

wikipedia.org/wiki/Infinitesimal.
We will stick to the words large and small because using the words “infi-
nite” and “infinitesimal” informally, the way scientists do, really annoys
mathematicians—which we can’t afford.

https://www.merriam-webster.com/dictionary/infinite
https://www.merriam-webster.com/dictionary/infinite
https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Infinitesimal

9. Qualitative Sizes 25

3. Zero has no qualitative size since 0 is excluded from small
numbers. (Definition 1.8 Real World Numbers, page 27.)

NOTE 1.3 (Restated) The tolerance is a plain decimal number
because:
i. 0 specifies nothing.
ii. 0 has no sign
iii. Multiplying any number by 0 always gives 0 as a result,
iv. Dividing any number by 0 is impossible. See https://en.
wikipedia.org/wiki/Division_by_zero
v. 0 has no qualitative size .

4. Reciprocals. It is very tempting to think that the reciprocal of
a small number is a large number and, the other way round, that the
reciprocal of a large number is a small number.

But this is not necessarily the case because qualitative sizes depend on
the cutoffs which we set

EXAMPLE 1.45. Given

+0.01

+1000.0

–1000.0

–0.01 largelarge small mediummedium

i. +0.009 is below the positive lower cutoff (+0.009 < +0.010 = 0.01) and is
therefore a small number,
ii. The reciprocal of +0.009 is +111.1 (Use a calculator.)
iii. +111.1 is below the positive upper cutoff and is therefore not a large
number.

But indeed, if we were to let the lower cutoffs and the upper cutoffs be
reciprocals of each other, then it would be the case that the reciprocal of
a small number would necessarily be a large number and the other way
round.

EXAMPLE 1.46. Given:

+0.001

+1000.0

–1000.0

–0.001 largelarge small mediummedium

https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Division_by_zero

26 Chapter 1. Numbers

L
h
digit
figure

where the lower cutoffs and the upper cutoffs are reciprocal of each other,
i. +0.000 9 is below the positive lower cutoff (+0.0009 < +0.0010 = 0.001)
and is therefore a small number,
ii. The reciprocal of +0.0009 is +1 111.1 (Use a calculator.)
iii. +1 111.1 is above the positive upper cutoff and is therefore a large number.

So, why didn’t we also say in Agreement 1.5 that the lower cutoffs and
the upper cutoffs would always have to be reciprocals of each other? Because
that is not always the case in the real world.

EXAMPLE 1.47.
• In business, one penny is probably the size of the smallest amount a business

can earn or lose but the reciprocal of +0.01 is +100.0 and even the tiniest
business will, at least occasionally, earn or lose more than the reciprocal,
$100.0

• In astronomy, a millionth of a mile would be unmanageably small but the
reciprocal, a million miles, would be quite medium.

• In biology, a thousand inches would be unmanageably large but the recip-
rocal, a thousandth of an inch, would be quite medium.

5. Generic names.
i. There is no standard symbol for generic large number and we will use

DEFINITION 1.6 L is a generic large number

ii. There is a standard symbol for generic small number namely:

DEFINITION 1.7 h is a generic small number.

10 Real World Numbers

1. Significant digits. Both whole numbers and decimal numbers are
made up of digits.

EXAMPLE 1.48. Both the whole number 516 026 618 and the decimal
number 516.026 618 are made of the digits 0, 1, 2, 5, 6, 8

10. Real World Numbers 27

LANGUAGE 1.9 Figure is the name often used instead of digit but In
this text we will stick to digit.

a. However, not all the digits in a number are significant.

EXAMPLE 1.49. To say that “the estimated population of the US was
“328 285 992 as of January 12, 2019” (https://en.wikipedia.org/wiki/
Demography_of_the_United_States on 2019/02/06) is not reasonable be-
cause at least the rightmost digit, 2, is certainly not significant: on that day,
some people died and some babies were born so the population could just as
well been given as, say, 328 285 991 or 328 285 994.
Note that further along in the Wikipedia article, the population is given more
reasonably: “from about 76 million in 1900 to 281 million in 2000”.

But as always, what is significant depends on the situation.

EXAMPLE 1.50. The numbers given in https://en.wikipedia.org/
wiki/Iron_and_steel_industry_in_the_United_States are much more
reasonable: ‘In 2014, the United States [. . .] produced‘ 29 million metric tons
of pig iron and 88 million tons of steel.” Similarly, “Employment as of 2014
was 149,000 people employed in iron and steel mills, and 69,000 in foundries.
The value of iron and steel produced in 2014 was 113 billion.”

Identifying significant digits, however, is not quite a simple matter (https:
//en.wikipedia.org/wiki/Significant_figures#Identifying_significant_
figures) and neither is determining in the result of a computation which
digits will be significant (https://en.wikipedia.org/wiki/Significant_
figures#Arithmetic).

b. The third limitation has to do with the fact that, just like small
numbers, any number can have incredibly many decimal digits and of course
only so many of these digits will be significant.

EXAMPLE 1.51. What could $312.374333840 possibly correspond to in
the real world?

DEFINITION 1.8 Real World Numbers. Given a real world sit-
uation, real world numbers will be numbers:
I whose size is between the upper and lower cutoff sizes,

https://en.wikipedia.org/wiki/Demography_of_the_United_States
https://en.wikipedia.org/wiki/Demography_of_the_United_States
https://en.wikipedia.org/wiki/Iron_and_steel_industry_in_the_United_States
https://en.wikipedia.org/wiki/Iron_and_steel_industry_in_the_United_States
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Arithmetic
https://en.wikipedia.org/wiki/Significant_figures#Arithmetic

28 Chapter 1. Numbers

finite
infinite
infinitesimal
Magellan circle

and
I whose digits are all significant

LANGUAGE 1.10 Standard Words For Qualitative Sizes.
I The standard word for real world number is finite. (https://en.

wikipedia.org/wiki/Finite_number.)

=========OK SO FAR=========

11 Picturing small numbers

12 Picturing large numbers

13 Infinity

Rulers are “anthropocentric” inasmuch as we tend to think of ourselves as
being “somewhere on the ruler”. And, indeed, the idea that the earth is flat
goes only so far and, similarly, so does the idea of picturing numbers with
straight rulers.

1. The earth is round. If, starting from the origin, we go straight
ahead on a ruler, in either direction, farther and farther, we have the feeling
that the longer we go, the farther away from the origin we will get and that
there is nothing that can keep us from getting as far away as we want from
the origin.

But this is not the case in the real world: even
though Magellan died in 1521 while trying to go
as far away from Seville as he could, his ships kept
on going west and one of them eventually reached
. . . home, bearing witness that there was no going
around the fact that the earth is round. (https:
//en.wikipedia.org/wiki/Ferdinand_Magellan)

 Magellan going ah
ea

d

 G

oing ahead

Seville

Magellan!
circle

Thus, in the real world, what looks to us like a straight line is in fact just a
piece of a Magellan circle.

https://en.wikipedia.org/wiki/Finite_number
https://en.wikipedia.org/wiki/Finite_number
https://en.wikipedia.org/wiki/Ferdinand_Magellan
https://en.wikipedia.org/wiki/Ferdinand_Magellan

13. Infinity 29

infinity
∞
Magellan view2. Down under. On a Magellan circle,

the point diametrically opposed to the ori-
gin is the point farthest away from the origin.
This point is called infinity and the symbol for
infinity is∞. Origin

Infinity Center of!
the earth

Magellan!
circle

3. Magellan view. When we use a Magellan circle instead of a ruler,
which is what we will call theMagellan view, the view is not “anthropocen-
tric” anymore because now ∞ is in the middle of non-real world numbers
the way 0 is in the middle of the real world numbers:

Origin

Infinity

Magellan!
circle

givabl
e n

um
be

rs

no
n-g

iva
ble

 nu

mber
s

4.∞ is not a number. Indeed, we will have to be careful and keep
in mind that, while we can always compute with x0 and part of the time
with 0,

NOTE 1.9 ∞ is not a number and we can never compute with ∞ the
way we compute with x0 or even 0.

=======Begin WORK ZONE=======
However:

I −∞ < x0
I +∞ > x0
I x0 ⊕+∞ = +∞
I x0 ⊕−∞ = −∞
I

30 Chapter 1. Numbers

point I

I

5. Points. Nevertheless, as we will see, it will be extremely conve-
nient to use the word point to stand for “x0, 0, or ∞”. But we won’t use
a synbol for points because computing with such a symbol would be much
too dangerous as we can always compute with x0 (Definition 1.2, page 9.),
only sometimes with 0 (??, ??.) and never with ∞ (??, ??.).

=======End WORK ZONE========
=======Begin LOOK UP=======

which, in a Magellan view, would look something like

inc
om

es
expenses

∞

–15 000.00

+80 000.00

0.00

which, in a Magellan view, would look like something like

inc
om

es

expenses

∞

–1 000 000

+1 000 000

–15 000.00

+80 000.00

0.00

=======End LOOK UP =======
=======End WORK ZONE========

14 Picturing Small Numbers

14. Picturing Small Numbers 31

magnifier1. Qualitative rulers give the wrong impression by making it look like
there are a lot more large numbers than there are small numbers:

Negative
large numbers

Positive
large numbers

Small numbers

)
0

)
Negative

medium numbers
Positive

medium numbers

Negative upper cutoff

Negative lower cutoff
Pos

itiv
e u

pper
 cu

tof
f

Pos
itiv

e l
ow

er
 cu

tof
f

))

But since where the cutoffs are depends on what the real world numbers
are, and therefore on what the particular situation being dealt with is, it is
not possible to make a general argument as to why indeed this impression
might be wrong.

On the other hand, the two upper cutoffs, and therefore large numbers,
are usually beyond −1.0 and +1.0 so that their reciprocals are between −1.0
and +1.0 and therefore have a good chance of falling between the negative
lower cutoff and the positive lower cutoff and therefore to be small. So,
it is fairly likely that each large number is matched with a small number,
namely its reciprocal.

Which means, though, that small numbers must be packed more tightly
than large numbers.

EXAMPLE 1.52. While +7 000 and +8 000 differ by +1 000, their recip-
rocals, which are +0.000 143 and +0.000 125 differ only by −0.000 018

2. Since small numbers are packed so tightly, to picture small num-
bers we aim a magnifier at 0 to see a neighborhood of 0:

32 Chapter 1. Numbers

scale

)
0

)

Sm
al

l n
um

be
rs

Negative medium numbers Positive medium numbers
))

Neighborhood of 0

Negative upper cutoff

Negative lower cutoff
Pos

itiv
e u

pper
 cu

tof
f

Pos
itiv

e l
ow

er
 cu

tof
f

The radius of the neighborhood is the tolerance but since in this text
the tolerance will remain undisclosed so will the radius of the neighborhood
and we will just:
• Draw a tickmark for 0,
• Draw a small stretch below the qualitative ruler around the tickmark.

Since the scale of the neighborhood is larger than the scale of the ruler
(https://en.wikipedia.org/wiki/Scale_(map)#Large_scale,_medium_
scale,_small_scale), though, drawing the neighborhood on top of the
ruler, as is often done, can be misleading and, for the picture to be perfectly
clear, we will draw the neighborhood of 0 just under the qualitative ruler:

)))
0

)

Sm
al

l n
um

be
rs

Neighborhood of 0

Negative mediumnumbers Positive medium numbers
))

Negative upper cutoff

Negative lower cutoff
Pos

itiv
e u

pper
 cu

tof
f

Pos
itiv

e l
ow

er
 cu

tof
f

EXAMPLE 1.53. With a given radius of 0.4 the neighborhood of 0 would
extend from −0.4 to +0.4:

https://en.wikipedia.org/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale
https://en.wikipedia.org/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale

14. Picturing Small Numbers 33

0+

right of
0+

left of

+0.4–0.4)))
0

)

Sm
al

l n
um

be
rs

Neighborhood of 0

Negative medium numbers Positive medium numbers

Negative upper cutoff

Negative lower cutoff
Pos

itiv
e u

pper
 cu

tof
f

Pos
itiv

e l
ow

er
 cu

tof
f

))

So, a

DEFINITION 1.9 Neighborhood of 0 consists of the small num-
bers.

3. Sides of a neighborhood of 0. In order to deal separately with
each side of a neighborhood of 0, we will use
I 0+ (namely 0 with a little + up and to the right) which is standard

code for nearby numbers right of 0, that is for positive small numbers.
(They are indeed to our right when we are facing 0, the center of the
neighborhood.) .

I 0− (namely 0 with a little − up and to the right) which is standard
code for nearby numbers left of 0, that is for negative small numbers.
(They are indeed to our left when we are facing 0, the center of the
neighborhood.) .

EXAMPLE 1.54. 0 + refers to nearby numbers right of 0 (such as for
instance +0.37) and 0 − refers to nearby numbers left of 0 (such as for
instance −0.88):

()

LEFT RIGHT

0
+0.37–0.88

0+0–

So, never forget that

34 Chapter 1. Numbers

neighborhood of ∞
neighborhood
center
Mercator view

NOTE 1.10 A small + or −, alone and up to the right, is not an
“exponent”.

15 Picturing Large Numbers

1. In the Magellan view, we see that the two stretches beyond the
ranges make up in fact a single stretch of the Magellan circle whose center
is ∞:

0

∞
Magellan!
circle Infinity

Origin
Positive

upper
cutoff

)(

Negative
upper
cutoff

)(

Origin

Infinity

Magellan!
circle ∞

0

So,

DEFINITION 1.10 A neighborhood of ∞ is the part of the Mag-
ellan circle that is beyond the upper cutoffs and whose center is ∞.

In other words, large numbers are near ∞ and to thicken ∞ will mean
to look instead at ∞ together with large numbers.

2. But in the Mercator view (https://en.wikipedia.org/wiki/
Mercator_projection), which is when we look just at the qualitative ruler,
we will say that a neighborhood of∞ is the part of the qualitative ruler that
is left of the negative upper cutoff and right of the positive upper cutoff.

Neighborhood of ∞

Negative
upper
cutoff

Positive
upper
cutoff Neighborhood of ∞

)()(
0

In other words:

DEFINITION 1.9 (Restated) Neighborhood of 0 consists of
the large numbers.

https://en.wikipedia.org/wiki/Mercator_projection
https://en.wikipedia.org/wiki/Mercator_projection

15. Picturing Large Numbers 35

near
side
right of ∞
-large

3. Nearness. Instead of saying that a number is in a neighborhood
of something, it is standard to say that the number is near that something.
We then have a couple more ways to think of large:

DEFINITION 1.7 (Restated) h
I Large numbers are the numbers that are in a neighborhood of ∞.
I Large numbers are the numbers that are near ∞.

4. Sides of a neighborhood of ∞. In order to refer separately to
each side of a neighborhood of ∞, we need to imagine that we are facing
the center of the neighborhood in the Magellan view, that is that we are
“facing ∞”:

LEFTRIGHT

()LEFT
RIGHT

0

∞

Facing ∞

large negative large positive

Facing 0

We will then say that:
• Numbers right of ∞ refers to large negative numbers because if we

could be facing ∞ large negative numbers would then be right of ∞ .
We will use −large as code for numbers right of ∞.

EXAMPLE 1.55. −724 873 336. is right of ∞ :

–large RIGHT

()
LEFT

0

∞

Facing 0

Facing ∞

36 Chapter 1. Numbers

left of ∞
+large
−∞
+∞

• Numbers left of ∞ refers to large positive numbers because if we could
be facing ∞ large positive numbers would then be left of ∞ . We will
use +large as code for numbers left of ∞.

EXAMPLE 1.56. +724 873 336. is left of ∞ :

+large
() 0

∞
Facing ∞

Facing 0

LEFT

RIGHT

5. Sides of∞ in Mercator view. But we will also use the Mercator
view and while it is fairly easy to remember which side is left of∞ and which
side is right of ∞ in the Magellan view, it;s easy to forget in the Mercator
view.

So, we will also use the sign of the large numbers to refer to the sides
of ∞ and we will label the extremities of qualitative rulers with −∞ and
+∞ for which, however, there are no tickmarks because they do not label
numbers but only “the end of the line”.

I Magellan view:

Magellan!
circle

+00∞
Upper
bound

)

(

Lower
bound

+∞

–∞

+large

–large

I Mercator view: +00 +∞–∞
()

Upper
bound

Lower
bound

But keep in mind that the

16. Computing With Qualitative Sizes 37

undetermined
NOTE 1.11 Sign in front of ∞ cannot be “the sign of ∞” because
(??) in the first place. (Again, the sign in front of ∞ designates a side
of ∞.)

16 Computing With Qualitative Sizes

For computational purposes, qualitative sizes make up a rather crude system
because:
I medium carries no information about where the lower cutoffs and the

upper cutoffs are,
I large carries no information about where the upper cutoffs are, that is

“how large” large is
I small carries no information about where the lower cutoffs are, that is

“how small” small is
On the other hand, as we will see, qualitative sizes will carry plenty enough
information for our investigations in this text. 4

1. A good rule of thumb for experimenting with numbers of quali-
tative sizes will be
I medium: try ±1,
I large: try ±10.0 or ±100.0 or ±1000.0 etc
I small: try ±0.1 or ±0.01 or ±0.001 etc
And of course, if a number is:
• large, then all numbers that are larger-in-size will themselves be large,
• small, then all numbers that are smaller-in-size will themselves be small.

We will now see to what extent we can compute with large, small and
medium.

2. Addition and subtraction. large − large is undetermined
because the result could be large, small or medium depending on “how
large” each one of the two large is.

4Moreover, qualitative sizes lead quite naturally to Bachmann-Landau’s o’s and O’s
(See https://en.wikipedia.org/wiki/Big_O_notation) and in turn to asymptotic ex-
pansions (See https://en.wikipedia.org/wiki/Asymptotic_expansion) which is what
physicists, chemists, biologists, and engineers use all the time.

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Asymptotic_expansion

38 Chapter 1. Numbers

EXAMPLE 1.57. Here are two instances of large− large that are differ-
ent in qualitative sizes:
+1 000 000 000 000.7 − +1 000 000 000.4 = +999 000 000 000.3 ,
but
+1 000 000 000 000.5 − +1 000 000 000 000.2 = +0.3 .

3. Reciprocals and we have:

THEOREM 1.2 Reciprocal of qualitative sizes
I The reciprocal of ±large is ±small: +1.0

±large = ±small,
I The reciprocal of ±medium is ±medium: +1.0

±medium = ±medium,
I The reciprocal of ±small is ±large: +1.0

±small = ±large.

Keeping in mind that generic codes always include the sign, we have

THEOREM 1.2 (Restated) Reciprocal of qualitative sizes

Reciprocal of h = +1.0
h

= L

Reciprocal of L = +1.0
L

= h

Reciprocal of x0 = +1.0
x0

= y0

The fact that numbers that are near ∞ are far from 0 and therefore the
change of viewpoint from 0 to ∞ makes it of course tempting to say that
0 and ∞ are reciprocal of each other and the more so that, on a Magellan
circle, 0 and ∞ are diametrically opposed to each other. However,
I Since a neighborhood of ∞ looks a lot bigger than a neighborhood of 0

the situation is not really that symmetrical.
I Since we cannot divide any number by 0 (See ??, ??), we certainly cannot

divide +1.0 by 0 and so 0 has no reciprocal.
I Since∞ is not a number to begin with (See ??, ??)∞ has no reciprocal.
The last two, though, is where thickening with nearby numbers comes to
the rescue:
I We can thicken 0 with small numbers
I We can thicken ∞ with large numbers
and then, using Theorem 1.2 (Page 38.) we get:

16. Computing With Qualitative Sizes 39

THEOREM 1.2 (Restated) Reciprocal of qualitative sizes
• The reciprocal of being near ∞ is being near 0,
• The reciprocal of being near 0 is being near ∞,
• The reciprocal of being near a medium number is being near a
medium number.

4. Multiplication. While multiplying by 0 always gives 0—see ??
(??), and while we cannot multiply by ∞ at all—See ?? (??), we can often
multiply by small and by large:

THEOREM 1.3 Multiplication of qualitative sizes
· large medium small

large large large ?
medium large medium small
small ? small small

i. The non-highlighted entries are pretty much as we would expect.

EXAMPLE 1.58. 10 000 · 1 000 = 10 000 000 and 0.01 · 0.001 = 0.00001

ii. The two highlighted entries, that is large · small and small · large ,
are undetermined because the result could be any of large, small ormedium
depending on how small is small compared to how large large is.

EXAMPLE 1.59. Here are three instances of large · small that are dif-
ferent in qualitative sizes:
1 000 · 0.1 = 100 , 1 000 · 0.001 = 1 , 1 000 · 0.00 001 = 0.01

5. Division. While we cannot divide by 0—see ?? (??), we can often
divide by small and more generally we have::

THEOREM 1.4 Division of qualitative sizes
÷ large medium small

large ? large large
medium small medium large
small small small ?

40 Chapter 1. Numbers

real number i. The non-highlighted entries follow from Theorem 1.3 and the fact that
Reciprocal of large = 1÷ large = small and Reciprocal of small = 1÷ small
= large (Theorem 1.2).

EXAMPLE 1.60. 1 000÷0.01 = 1 000 · Reciprocal 0.01 = 1 000 ·100 = 100 000

ii. The two highlighted entries, namely large ÷ large and small ÷ small ,
are undetermined because the result could be any one of large, small or
medium depending on how large each one of the two large is and how small
each one of the two small are.

EXAMPLE 1.61. Here are three instances of large÷ large that are
different in qualitative size:
1 000÷ 10 = 100 , 1 000÷ 1 000 = 1 , 100÷ 1 000 = 0.1

EXAMPLE 1.62. Here are three instances of small ÷ small that are
different in qualitative size:
0.001÷0.1 = 0.01 , 0.001÷0.001 = 1 , 0.01÷0.001 = 10

17 Real Numbers

As opposed to Numbers, most textbooks use so-called real numbers which
are an entirely different kind of numbers. This text will not really use real
numbers and the purpose of this section is only to give the reader an idea
of what the difficulties with really using real numbers would be and thus
to explain why we will mostly use signed decimal numbers and how we will
occasionally use real numbers.

1. What are real numbers anyway? Even though most college
mathematics textbooks claim to use real numbers the closest they ever come
to explaining what real numbers are is something along the lines of “a real
number is a value of a continuous quantity that can represent a distance
along a line.” (https://en.wikipedia.org/wiki/Real_number.) Which,
one has to admit, isn’t particularly enlightening. 5

But there is a very good reason for that: in contrast with signed decimal
numbers, real numbers are extremely complicated to pin down.

5Moreover, this “definition” keeps changing with time! A sign of unease?

https://en.wikipedia.org/wiki/Real_number

17. Real Numbers 41

fraction
rootEXAMPLE 1.63. “The real number system (R; +; ·;<) can be de-

fined axiomatically [. . .] There are also many ways to construct "the"
real number system, for example, starting from natural numbers, (https:
//en.wikipedia.org/wiki/Natural_number) then defining rational num-
bers algebraically (https://en.wikipedia.org/wiki/Rational_number),
and finally defining real numbers as equivalence classes of their Cauchy se-
quences or as Dedekind cuts, which are certain subsets of rational numbers.”
(https://en.wikipedia.org/wiki/Real_number#Definition)
Which, unless you are a mathematician, is not exactly enlightening either.
Moreover, the above “construction” is, in fact, quite incomplete as one really
should: i. go the Dedekind cuts route and also extend the metric and show that
the quotient is metric-complete, and ii. go the Cauchy sequence route and also
extend the order and show that the quotient is order-complete, and iii. show
that the two quotients are both metric-isomorphic and order-isomorphic.
In any case, a very tall order.

2. Fractions and roots In fact, at best, that is when the given real
number is a fraction or a root, a given real number is only like a Birth
Certificate in that the given real number is just a name that says where the
real number is coming from. But, by itself, certainly gives no indication of
what its size is.

EXAMPLE 1.64.
• The fraction 4168

703
is just a name for the solution of the equation 703 x =

4168 (Assuming there is a solution!)
• The root 3

√
−17.3 is just a name for the solution of the equation x3 = −17.3.

(Assuming there is a solution!)

However, this best case is actually extremely rare and most given real In textbooks it’s of course the
other way around,numbers do not tell us by themselves where they are coming from which

leaves us with no way to get even a rough idea of what the size of that given
real number might be. You just have to find out from somewhere.

EXAMPLE 1.65.
• π is just a name that does not say by itself that π is “the ratio of a circle’s
circumference to its diameter”. (https://en.wikipedia.org/wiki/Pi)

• e is just a name that does not say by itself that e is “a mathematical

https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Real_number#Definition
https://en.wikipedia.org/wiki/Pi

42 Chapter 1. Numbers

approximate
constant which appears in many different settings throughout mathematics”.
(https://en.wikipedia.org/wiki/E_(mathematical_constant))

3. Computing with real numbers can be done directly from the
code only with the same two kinds of real numbers, that is when the real
numbers are fractions or roots:

i. When the real numbers are fractions, there are rules to compare,
add, subtract, multiply and divide directly with the codes. (https://en.
wikipedia.org/wiki/Rational_number#Arithmetic)

EXAMPLE 1.66. To know which is the larger of 4168
703 and 5167

831 we can use
a rule that involves computing the “common denominator”.

ii. When the real numbers are roots , there are rules to multiply and
divide directly with the codes but not to add or subtract. (https://en.
wikipedia.org/wiki/Nth_root#Identities_and_properties)

iii. However, it is usually not possible to compute with both kinds of
real numbers at the same time.

EXAMPLE 1.67. Add e and π or figure out which of the two is larger.
(Hint: you can’t do either from the code.)

And, even when the real numbers are fractions and roots, things can still be
difficult.

EXAMPLE 1.68. Add 3√64 and 876
12 or figure out which of the two is larger.

(Hint: you can do both but not with the only slightly different 3√65 and 875
12 .)

iv. Of course, the examples in textbools use mostly fractions and/or
roots even though it is at the cost of being immensely misleading if only
because most real numbers are neither fractions nor roots. 6

18 Decimal Approximations

The way engineers and physicists, chemists, biologists, compute with real
numbers is by approximating the real numbers with signed decimal num-

6It is also at the expense of a unified view and therefore of forcing memorization of
scattered recipes.

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Rational_number#Arithmetic
https://en.wikipedia.org/wiki/Rational_number#Arithmetic
https://en.wikipedia.org/wiki/Nth_root#Identities_and_properties
https://en.wikipedia.org/wiki/Nth_root#Identities_and_properties

18. Decimal Approximations 43

procedure
[...]
largest permissible error

bers.

1. To begin with, one way or the other, all real numbers, including
fractions and roots, come with a procedure for computing approximations
by signed decimal numbers. Of course, the more “exotic” the real number
is, the more complicated the procedure for approximating is.

EXAMPLE 1.69.
• To approximate 4168

703
, we use the division procedure to divide 703 into

4168 . Few divisions, though, end of themselves. But when a division does
not, the more we push the division, the better the approximation.

• To approximate 3
√

17.3, we essentially proceed by trials and errors:

2.03 = 8.0, 3.03 = 27.0, so, since 17.3 is between 8.0 and 27.0, 3√17.3 must
be somewhere between 2.0 and 3.0. (But how do we know that it must?)
2.73 = 19.683 so, since 17.3 is less than 19.183, 3√17.3 must be less than
2.7, etc. (But how do we know that it must?)
Of course, the actual procedure is systematic but that’s the idea.

• There are many ways to approximate π. Perhaps the simplest one is the
Gregory-Leibniz series whose first few terms are:
4
1 −

4
3 + 4

5 −
4
7 + 4

9 −
4
11 + 4

13 . . .
However, even with “500,000 terms, it produces only five correct deci-
mal digits of π” (https://en.wikipedia.org/wiki/Pi#Approximate_
value)

• One of the very many ways to approximate e is:
1 + 1

1 + 1
1·2 + 1

1·2·3 + 1
1·2·3·4 . . .

(https://en.wikipedia.org/wiki/E_(mathematical_constant)
#Asymptotics)

2. Since a given real number is usually not equal to the signed decimal
number that we will use to approximates it, in order to write equalities we
will have to use:

DEFINITION 1.11 [...] will be code for “some small number, posi-
tive or negative, whose size is too small to matter here”.

In other words, [...] is a signed number about which the only thing we know
is that the size of [...] is less than the largest permissible error whichi is
the equivalent here of a tolerance.

https://en.wikipedia.org/wiki/Pi#Approximate_value
https://en.wikipedia.org/wiki/Pi#Approximate_value
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Asymptotics
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Asymptotics

44 Chapter 1. Numbers

EXAMPLE 1.70.
• 4168

703 = 5.929 + [...] where [...] is less than 0.001 which is the largest permis-
sible error. (Else the procedure would have generated 5.928 or 5.930 instead
of 5.929.)

• 3√17.3 = 2.586 318 666 944 673 + [...] where [...] is less than
0.000 000 000 000 001 which is the largest permissible error. (Else the proce-
dure would have generated 2.586 318 666 944 672 or 2.586 318 666 944 674
instead of 2.586 318 666 944 673.)

• π = 3.141 5 + [...] where [...] is less than 0.000 01 which is the largest
permissible error. (Else the procedure would have generated 3.141 4 or
3.141 6 instead of 3.141 5.)

• e = 2.718 281 82+[...] where [...] is less than 0.000 000 01 which is the largest
permissible error. (Else the procedure would have generated 2.718 281 81 or
2.718 281 83 instead of 2.718 281 82.)

3. So we have come full circle back to signed decimal numbers and
the question then is why should people who want to learn calculus have
to use real numbers that they will then have to approximate with signed
decimal numbers rather than use signed decimal numbers directly from the
start?

Engineers, physicists, chemists, biologists, etc all use signed decimal
numbers. After all, and to quote Gowers again, “physical measurements
are not real numbers. That is, a measurement of a physical quantity will not
be an exactly accurate infinite decimal. Rather, it will usually be given in the
form of a finite decimal together with some error estimate: x = 3.14± 0.02
or something like that.” 7

And, certainly not least, “most calculators do not operate on real num-
bers. Instead, they work with finite-precision approximations.” See “In com-
putation” at https://gowthamweb.wordpress.com/2016/05/01/real-numbers/

The answer to the above question then is: no reason at all. As engineers
are fond of saying, the real real numbers are the decimal numbers.

Except possibly if you want to become a mathematician. And even then,
having worked with signed decimal numbers can help you learn about real
numbers. (See Gowers’ https://www.dpmms.cam.ac.uk/~wtg10/decimals.
html)

So, in this text, like for engineers, scientists, and calculators, number
7https://www.dpmms.cam.ac.uk/~wtg10/continuity.html

https://gowthamweb.wordpress.com/2016/05/01/real-numbers/
https://www.dpmms.cam.ac.uk/~wtg10/decimals.html
https://www.dpmms.cam.ac.uk/~wtg10/decimals.html
https://www.dpmms.cam.ac.uk/~wtg10/continuity.html

18. Decimal Approximations 45

(Agreement 1.3, page 9).
We are now, finally, ready to start on the calculus!

46 Chapter 1. Numbers

=======Begin WORK ZONE=======
In ?? ?? of the Introduction of ?? Numbers on ??
In section 3 Plain Decimal Numbers on page 3
In subsection 3.1 Units on page 3
3
3.1

=======End WORK ZONE========

18. Decimal Approximations 47

Dans x0 + h, |h| < 1 pour que |h| >
∣∣h2∣∣ > ∣∣h3∣∣ . . .

Quand x0 n’est pas trop grand, cela correspond à quelque chose de réel.
Par exemple, si x0 est un nombre que l’on veut réaliser, h est l’erreur que
l’on commettra et x0 + h sera ce qu’on obtiendra.

Mais je ne vois pas à quoi de réel h correspond quand x0 est grand.
.

EXAMPLE 1.71.
Lorsque x0 est, disons 73 un h de 0.1 correspond, par exemple, à une incertitude
de mesure.
Lorsque x0 est, disons 73 000 000, à quoi correspond un h de 0.1?
Bien sûr, avec des unitées, on peut remplacer 73 000 000 mètres par 73
mégamètres et le h devient 0.1 mégamètres. Mais je ne crois pas que ça
réponde vraiment à la question.

48 Chapter 1. Numbers

Functions of various kinds are
"the central objects of
investigation" in most fields of
modern mathematics.

Michael Spivak1

relation

Chapter 2

Functions

Relations, 49 • Functions, 51 • Picturing Input-Output Pairs, 55
• Functions Specified By A Global Graph, 59 • Functions Specified By
A Global I-O Rule, 62 • Declaring Inputs, 64 • Returned Outputs, 66
• Onscreen Graph, 69 • Functioning With Infinity, 69 • Computing
Input-Output Pairs, 69 • Fundamental Problem, 71 • Joining Plot Points,
72 .

As we will see, the calculus is about calculating with “functions” which
are entities that “are widely used in science, and in most fields of mathe-
matics.” (https://en.wikipedia.org/wiki/Function_(mathematics).)

1 Relations

That a “single point usually does not carry enough information” (?? ??,
??.) is in fact an instance of a general principle, namely that there isn’t a
thing in the real world that stands alone, all by itself: every single thing in
the real world is related to many other things.

EXAMPLE 2.1.
• Everything sits on something: people sit on chairs that sit on floors that sit
on joists that sit on walls that sit on . . .

• Human beings can only live in a society.

0Calculus, 4th edition

49

https://en.wikipedia.org/wiki/Function_(mathematics)

50 Chapter 2. Functions

output
input
relation
pair
table

1. In fact, a thing is known only by the things that are related to it.
The thing we want to know about will be the output and the thing that
will give us the information about the output is the input .

EXAMPLE 2.2. The following are variants found in many cultures of the
same thought:
You tell me: (input) then I’ll tell you: (output)

The company you keep what you are (Dutch)
Who’s your friend who you are (Russian)
What you are eager to buy what you are (Mexican)
With whom you go what you do (English)
Who your father is who you are (Philippine)
What you eat what you are (French)
(https://answers.yahoo.com/question/index?qid=
20090403194549AAYzSEr)

2. More precisely, a relation is specified by whatever process, device,
procedure, agency, converter, exchanger, translator, etc, that pairs each
input to the related output(s) . See https://en.wikipedia.org/wiki/
Binary_relation

For instance, in disciplines like psychology, sociology, business, account-
ing, etc but also in the experimental part of physics, chemistry, biology,
engineering, etc relations are often specified by tables.

EXAMPLE 2.3. The table

People: (input) Thing(s) people like to do: (output(s))

Andy walking playingi music
Beth
Cathy reading walking learning calculus

specifies a relation in which Andy is paired (among others) to playing music ,
Beth is paired to nothing, and Cathy is paired (among others) to
learning calculus .

https://answers.yahoo.com/question/index?qid=20090403194549AAYzSEr
https://answers.yahoo.com/question/index?qid=20090403194549AAYzSEr
https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/Binary_relation

2. Functions 51

call for3. Given a relation, there will be

DEFINITION 2.1 Two kinds of problems :
• Direct problems where an input is given and we have to find all

the outputs that the given input is paired to.
• Reverse problems where an output is given and we have to find

all the inputs that are paired to the given output.

EXAMPLE 2.4. Given the relation in Example 2.3 (Page 50)
I A direct problem might be: What are all the things Andy likes doing?

Answer: walking , playing music
I A reverse problem might be: What are all the people who like walking ?

Answer: Andy , Cathy

2 Functions

To see if something is changing qualitatively we must look at it in relation
to something else.

EXAMPLE 2.5. The only way to realize we are moving when we are in
an airplane is to look out the window. Which is why, similarly, it took a long
time for people to realize the earth is moving around the sun. Which is why to
realize the entire galaxy we are in is moving is even harder.

This is even more the case for quantitative information.

EXAMPLE 2.6. We might say that someone’s income tax was $2 270 but,
by itself, that would not really be much information.
For instance, $2 270 was a lot less money in, for instance, Year 2013 than it
was a century earlier, in Year 1913 —the year income tax was first established.
Similarly, $2 270 would not be much money for a billionaire but would be a lot
of money for a working stiff.
So, for saying that someone’s income tax is $2 270 to be real information,
there would have to be some table pairing Years or Incomes with Income Tax.

52 Chapter 2. Functions

function 1. However, the fact that there is nothing to prevent a relation from
pairing one input to many outputs can make seeing changes quite difficult.

EXAMPLE 2.7. That a slot machine can pair a number of coins with just
about any number of coins makes the gambler’s life quite hard.
That a parking meter pairs a number of coins with only one parking time
makes life a lot easier.

2. So we will restrict ourselves to functions, that is relations that
satisfy the

DEFINITION 2.2 Functional requirement

No input can be paired to more than one output .

or, to put it as mathematicians would,

An input can be paired to at most one output .

EXAMPLE 2.8. In Example 2.7 (Page 52)
The slot machine does not satisfy the functional requirement because even
when two persons input the same amount of money the slot machine can
output different amounts of money.
The parking meter does satisfy the functional requirement because whenever
two persons input the same amount of money the parking meter will always
output the same amount of parking time.

EXAMPLE 2.9. The relation specified by the table

People (Input) Things people like to do (Output)

Dave skating
Eddy driving
Fran singing

satisfies the functional requirement

2. Functions 53

return
domainEXAMPLE 2.10. The relation specified by income tax tables is a function.

3. According to definition 2.2, given an input, a function may return
one output but

NOTE 2.1 A function may return no output. 2

EXAMPLE 2.11. The relation specified by the table

People (Input) Things people like to do (Output)

Guy
Hazel skiing
Izzy

satisfies the functional requirement.

EXAMPLE 2.12. The relation specified by income tax tables is a function
even though incomes below the minimum owe no income tax. (On the other
hand, one might argue that the tax they owe is $0.00 so this is perhaps not
really quite a good example.)

4. On the other hand, it is quite possible for a function to pair many
inputs to one same output . In other words, the very same output may be
returned by a function for many inputs.

EXAMPLE 2.13. A business may be looked upon as the function specified
by the input-output table of its profits/losses over the years:

2Actually, functions should not be allowed to return no output because that causes
a theoretical difficulty and one should introduce the notion of domain. But since this
theoretical difficulty is not about to come up any time soon, here we need not complicate
things unnecessarily.

54 Chapter 2. Functions

for
at
direct problem
reverse problem

Fiscal Year Profit/Loss

1998 +5 000
1999 −2 000
2000
2001 +5 000
2002 −2 000
2003 −1 000
2004
2005 +5 000

In 1998 , 2001 , and 2005 the business returned the same profit/loss namely
+5 000

AGREEMENT 2.1 “at” versus “for” We will often say “the output at
the given input” as a shorthand for “the output returned by the function
for the given input”. .

5. In the case of a function, the two kinds of problems (Definition 2.1,
page 51) become

DEFINITION 2.1 (Restated) Two kinds of problems :
• Direct problems where an input is given and we have to find

the single output (if any) that the function returns for the given
input,
• Reverse problems where an output is given and we have to find
all the (possibly several) inputs for which the function will return
the given output.

EXAMPLE 2.14. Given the business in Example 2.13 (Page 53),
I A direct problem might be: What was the profit/loss in 1999 ?

Answer: −2000
I A reverse problem might be: In what year(s) (if any) did the business return

+5 000 ?
Answer: 1998 , 2001 , 2005 .

3. Picturing Input-Output Pairs 55

input-output
pair
input ruler
output ruler
link

We will see that direct problems are usually easy to solve but, as might be
expected, it is solving reverse problems, which is what solving “equations”
is all about, that matters most in the real world.

EXAMPLE 2.15. Solving the direct problem of how much parking time
three quarters will buy you is easy: just put three quarters in the parking
meter and see how much parking time you get!
But in the real world, what we need to solve is the reverse problem of, when
we want, say, two hours parking time , figuring how many quarters we need
to put in the parking meter.

6. Given a function, an input - output pair is an input together
with the (there can be at most one) output that the function returns for
the input . It is standard to write input-output pairs within parentheses
with a comma to separate the input from the output : (input , output).

EXAMPLE 2.16. Given the business in Example 2.13 (Page 53),
I (1998 , +5000) and (2002 , −2000) are input-output pairs,
I (1999, +3000) is not an input-output pair because the table does not pair

1999 with +3 000,
I There is no input-output pair involving 2000
I There is no input-output pair involving +3 000

3 Picturing Input-Output Pairs

Given a function, we will often want to picture input-output pairs.

1. A simple-minded way to picture an input-output pair would be to:
• Tickmark the input on a quantitative input ruler as in section 10,
(Page 26),
• Tickmark the output on a quantitative output ruler as in section 10,
(Page 26),
• Draw an input-output link from the input on the input ruler to the

output on the output ruler.

56 Chapter 2. Functions

plot
Cartesian setup
screen

EXAMPLE 2.17. The input-output pair (Year 20̇03 , $-1 000) in Exam-
ple 2.13 (Page 53) could thus be pictured as follows:

Years1998
1999
2000

2001
2002

2004
2005

Input-output link

2003

–2
 000

(Input Ruler)

(Output Ruler)–1
 000

0

+1
 000

+2
 000

+3
 000

+4
 000

+5
 000

Dollars

Obviously, though, picturing input-output pairs that way is not going to
work very well with more than a very few input-output pairs.

2. So, in order to plot input-output pairs, we will use:

A. A quantitative Cartesian setup, that is:
• A rectangular area which we will call screen.
• A quantitative input ruler placed horizontally below the screen
• A quantitative output ruler placed vertically left of the screen

EXAMPLE 2.18.
Output
ruler

Input
ruler0 +1–1–2–3–4

Screen

+2 +3 +4 +5 +7+6–7 –6 –5

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80
+90

+90

B. The following

3. Picturing Input-Output Pairs 57

axis
histogram
bar graph

PROCEDURE 2.1 To get the plot point for an input-output
pair

i. Tickmark the input on the input ruler,
ii. Draw an input level line, that is a vertical line through the input,
iii. Tickmark the output on the output ruler,
iv. Draw an output level line, that is a horizontal line through the
output,
v. Then use:
I A solid dot to indicates that the intersection of the input level
line and the output level line is a plot point, (The input-output
link then goes from the marked input to the plot point to the
marked output.)

or, as we wll need occasionally,
I A hollow dot to indicates that the intersection of the input
level line and the output level line is not a plot point.

TEMO 2.1 Plot the input-output pair (−3 , +40),

i. We tickmark the input −3 on
the input ruler ,
ii. We draw the input level line
through −3 ,
iii. We tickmark the output
+40 on the output ruler ,
iv. We draw the output level line
through +40 ,
v. We plot the intersection of the
input level line with the output
level line.
(The plot point is the elbow of
the input-output link)

Output
ruler

Input
ruler0 +1–1–2–3–4

Screen

+2 +3 +4 +5 +7+6–7 –6 –5

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80
+90

–90

i. Mark Input

iii
. M

ar
k

O
ut

p
ut

(-3, +40)

ii.
 In

p
ut

 le
ve

l l
in

e

iv. Output level line

Plot point

Link

Input-Output

LANGUAGE 2.1 This setup is not the one used in most textbooks but
in the real world it is standard practice to keep the rulers out of the way:

58 Chapter 2. Functions

Table Histogram Bar graph
What happened is that Descartes, the inventor of analytic geome-
try, did not believe in negative numbers so when he used the 0-level
lines as his rulers they were (almost) out of the way as usual.
But when mathematicians accepted negative numbers, they kept the 0
-level lines as rulers even though these were now in the middle of the
picture which confuses input and output tickmarks with plot points:

0
0

0
0

Descartes plot Modern plot

4. From a plot point, we can get back the input-output pair using:

PROCEDURE 2.2 To get the input-output pair from a plot
point

i. Draw an input level line through the plot point,
ii. The input is where the level line intersects the input ruler,
iii. Draw an output level line through the plot point,
iv. The output is where the level line intersects the output ruler.

TEMO 2.2 Get the input-output pair from the plot-point

4. Functions Specified By A Global Graph 59

curveOutput
ruler

Input
ruler0 +1–1–2–3–4

Screen

+2 +3 +4 +5 +7+6–7 –6 –5

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80
+90

–90

Plot point

i. We draw the input level line
through the plot point,
ii. The input is where the
input level line intersects the
input ruler: −2
iii. We draw the output level
line through the given plot
point,
iv. The output is where the
output level line intersects the
output ruler: +10

ii. Input

(-2, +10)

iv. OutputOutput
ruler

Input
ruler0 +1–1–2–3–4

Screen

+2 +3 +4 +5 +7+6–7 –6 –5

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80
+90

–90

Plot point

iii. Output level line

i. Inp
ut level line

4 Functions Specified By A Global Graph

On the experimental side of engineering and the sciences, relations are also
often specified by a curve drawn across a screen by some instrument.

1. These relation though are not necessarily functions because there
might very well be input level lines with more than one intersection with
the curve.

60 Chapter 2. Functions

graph
EXAMPLE 2.19. Given the curve

Inputs

Outputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

0 +1–1–2–3–4 +2 +3 +4 +5–5
 Curve

the input-level lines for inputs be-
tween −1 and +2 intersect the

curve in more than one point:

Inputs

Outputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

0 +1–1–2–3–4 +2 +3 +4 +5–5

So the curve does not specify a
function

2. But if it so happens that the curve meets the

DEFINITION 2.2 (Restated) Functional requirement

No input level line intersects the curve in more than one point.

then the curve will specify a function and we will say that the curve is the
graph of that function.

EXAMPLE 2.20. Given the curve

Inputs

Outputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

0 +1–1–2–3–4 +2 +3 +4 +5–5
 Curve

no input-level line intersects the

curve in more than one point:

Inputs

Outputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

0 +1–1–2–3–4 +2 +3 +4 +5–5
 Curve

So the curve specifies a function

4. Functions Specified By A Global Graph 61

3. When a function is specified by a graph, we get the plot point at
a given input using:

PROCEDURE 2.3 To get the plot point at x0 for a function
specified by a global graph

i. Tickmark the given input on the input ruler,
ii. Draw the input level line through the given input,
iii. The plot point is the intersection of the input level line with the
graph,

TEMO 2.3 Get the plot point at −3 for the function specified by
Outputs

Inputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

–90
–100

+80
+100

0 +1–1–2–3–4–5–6–7 +2 +3 +4 +5 +6 +7

i. We tickmark the input −3 on the
input ruler ,
ii. We draw the input level line through
−3
iii. The plot point is at the intersection
of the input level line with the graph,

Outputs

Inputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

–90
–100

+80
+100

0 +1–1–2–3–4–5–6–7 +2 +3 +4 +5 +6 +7
i. Mark Input Number

Input

ii.
 In

p
ut

 le
ve

l l
in

e

iii. Graph point

4. When a function is specified by a global graph, then, for a given
input, we get the output using:

62 Chapter 2. Functions

PROCEDURE 2.4 To get the output at x0 for a function spec-
ified by a global graph.

i. Tickmark the giveninput on the input ruler,
ii. Get the plot point with ?? (??)
iii. Draw the output level line through the plot point,
iv. The output is at the intersection of the output level line with the
output ruler.

TEMO 2.4 Get the output at −3 for the function specified by

Outputs

Inputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

–90
–100

+80
+100

0 +1–1–2–3–4–5–6–7 +2 +3 +4 +5 +6 +7

i. We tickmark the input −3 on the
input ruler ,
ii. We use ?? to get the plot point,
iii. We draw the output level line
through the plot point,
iv. The output is at the intersection
of the output level line with the
output ruler : +20

Outputs

Inputs

Screen

–30
–20
–10

0
+10
+20
+30
+40
+50

–80
–70
–60
–50
–40

+60
+70
+80

–90
–100

+80
+100

0 +1–1–2–3–4–5–6–7 +2 +3 +4 +5 +6 +7
i. Mark Input Number

Input

ii.
 In

p
ut

 le
ve

l l
in

e

iii. Graph point

P
ro

ce
d

u
re

 2
.3

Output

5 Functions Specified By A Global I-O Rule

Nevertheless, both in engineering and the sciences, the name of the game is
functions specified “mathematically” rather than by tables or curves.

1. Functional symbols. The following is completely standard:

5. Functions Specified By A Global I-O Rule 63

x
unspecified input
f(x)
unspecified output

f−−−−→
arrow notation
Reverse Polish Notation
explicit function
output-specifying code
global input-output rule

a. We will use f as name of a generic function.
b. We will use:

I x as an unspecified input which is like an empty box waiting for us
to specify the input ,

and therefore
I f(x) , to be read f of x , as the unspecified output which is like

an empty box waiting for the function to return the output .

EXAMPLE 2.21. Say JOE is the name of our favorite parking meter.
Then x represents the slot waiting for us to put the coins and JOE(x)
represents the display where the parking time that JOE will give us in return
for our coins will appear.

c. We will then use f−−−→ to write the so-called arrow notation
x

f−−−→ f(x) 3

EXAMPLE 2.22. In Example 3.11 we can write the arrow notation
x

JOE−−−−−−−−→ JOE(x)

2. The first of the two “mathematical” ways engineers and scientists
use to specify a function is the way used for the functions to be investigated
in this volume, namely:

DEFINITION 2.3 Explicit Functions are functions specified by a
global input-output rule in which f(x) is specified in terms of
x by some output-specifying code:

x︸ ︷︷ ︸
Unspecified input

f−−−−−−→ f(x)︸ ︷︷ ︸
Unspecified output

= Code that specifies f(x) in terms of x︸ ︷︷ ︸
Output-specifying code

3Thus, x f , known as the Reverse Polish Notation for the output, would be

much better code than f(x) because:

i. In the arrow notation, x would be ahead of f in both places: x
f−−→ x f .

ii. Not to mention that x f requires no parentheses.
(https://en.wikipedia.org/wiki/Reverse_Polish_notation) Unfortunately, even
Hewlett Packard was eventually forced to abandon the Reverse Polish Notation.

https://en.wikipedia.org/wiki/Reverse_Polish_notation

64 Chapter 2. Functions

declare (The reason we have to say “global” is that later we will have to distinguish
global input-output rules from “local” input-output rules.)

EXAMPLE 2.23. In the global input-output rule

x
JILL−−−−−−−−→ JILL(x) = −2.71(x+ 54.23)

−5.68x3 + 217.43 ,

the output-specifying code is −2.71(x+54.23)
−5.68x3+217.43

From now on,

AGREEMENT 2.2 Function will be short for explicit function but only
in this volume.

6 Declaring Inputs

Since explicit functions involve output-specifying code, our first step in in-
putting something will always be, as programmers do and no matter what
the something , to declare the something by writing the declaration

x ← something
to the right of anything in the arrow notation involving x .

EXAMPLE 2.24. Say JOE is the parking meter in Example 3.14 so that
the arrow notation is as in Example 4.15:

x
JOE−−−−−−−−→ JOE(x) ,

To declare that we put 3 Quarters in the slot, we write the declaration

x ← 3 Quarters

to the right of anything in the arrow notation that involves x :
x

x ← 3 Quarters

JOE−−−−−−−−→ JOE(x)
x ← 3 Quarters

Then, after the replacement is done, we have
3 Quarters JOE−−−−−−−−→ JOE(3 Quarters)

where JOE(3 Quarters) stands for what shows on the display .

6. Declaring Inputs 65

The something can be a givable number x0 but most of the time, the
something will be a neighborhood of a point.

=========OK SO FAR=========

1. Given a function f , in order to input a givable number x0, we
declare that the unspecified input x is to be replaced by the givable number
x0 which we do by writing the declaration

x ← x0

to the right of anything in the arrow notation that involves x :

x
x ← x0

f−−−−−→ f(x)
x ← x0

Then, after the replacement has been done, we have

x0
f−−−−−→ f(x0)

EXAMPLE 2.25. Given the function FRAN , in order to declare the givable
number −31.76 we write

x
x ← −31.76

F RAN−−−−−−−−−→ FRAN(x)
x ← −31.76

Then, after the replacement has been done, we have
−31.76 F RAN−−−−−−−−−→ FRAN(−31.76)

2. Given a function f , in order to input a neighborhood of a givable
number x0, we will declare the generic nearby number x0 ⊕ h which we do
by writing the declaration

x ← x0⊕h

to the right of anything in the arrow notation that involves the unspecified
input x :

x
x ← x0⊕h

f−−−−−→ f(x)
x ← x0⊕h

so that, after the replacement has been done, we have

x0 ⊕ h
f−−−−−→ f(x0 ⊕ h)

66 Chapter 2. Functions

result
y0 EXAMPLE 2.26. Given the function MIKE, to thicken the given input

−31.76 , we declare the actual input −31.76⊕ h
x

x ← −31.76⊕h

MIKE−−−−−−−−−→ MIKE(x)
x ← −31.76⊕h

Then, after the replacement has been done, we have
−31.76⊕ h MIKE−−−−−−−−−→ MIKE(−31.76⊕ h)

3.

4.

7 Returned Outputs

Given a function f , after we have declared whatever thing we want to
input, the output-specifying code will usually return something . (But not
necessarily, see Note 2.1, page 53.)

1.
qualitative Cartesian setup
Given a function f , after we have declared the given number x0, the

output-specifying code will usually return a resulting number. (But not
necessarily, see Note 2.1, page 53.)

Using y0 as generic code for a resulting number, we can write:
x0

f−−−−−→ f(x0) = y0

or just
x0

f−−−−−→ y0
which, inasmuch as it involves the name of the function, is a more precise
way to write the input-output pair(

x0 , y0
)

one which we will use especially when there is more than one function in-
volved in a situation.

EXAMPLE 2.27. Say JOE is the function in Example 3.14 so that the
arrow notation is as in Example 4.15

x
JOE−−−−−−−−→ JOE(x) ,

7. Returned Outputs 67

and that we put 3 Quarters in the slot as in Example 2.25 so that we have:

3 Quarters JOE−−−−−−−−→ JOE(3 Quarters)

Now say JOE showed 45 Minutes on the display . (The internal mechanism
of the parking meter is the real world equivalent of the output-specifying code.)
Then we would write

3 Quarters JOE−−−−−−−−→ JOE(3 Quarters) = 45 Minutes
or just

3 Quarters JOE−−−−−−−−→ 45 Minutes
which, inasmuch as it involves the name of the parking meter, is a more precise
way to write the input-output pair(

3 Quarters , 45 Minutes
)

one which we would use when, say, comparing different parking meters.

2. Given a function f , after we have thickened the given number x0,
the output can turn out to be quite complicated. In fact, dealing with
f(x0 ⊕ h) is going to be a major part of our investigations. This is because
f(x0 ⊕ h) is going to depend on h and what the output-specifying code is
going to do with h is going to depend very much on the kind of function f
is.

is sometimes used as a short for outputs for nearby inputs but doing so
would risk being extremely misleading because

NOTE 2.2 Nearby outputs are not necessarily near the output for the
given input.

EXAMPLE 2.28. Given the function JILL whose global graph is,

Screen

+∞–∞

+∞

–∞

+14.3

Offscreen

Inputs

Outputs

+12.7

+13.8

+5.38 +5.43

+14.41

+12.68

+5.4

68 Chapter 2. Functions

graph
onscreen graph
offscreen graph

I For nearby inputs left of +5.4 JILL returns outputs near +12.7. For
instance, JILL(+5.38) = +12.68

I For nearby inputs right of +5.4 JILL returns outputs near +14.3. For
instance, JILL(+5.43) = +14.41

and neither +12.68 nor +14.41 are near JILL(+5.4) = +13.8

So:

AGREEMENT 2.3 Nearby output will never be used in this text.

=======Begin WORK ZONE======= graph point will be used with
qualitative Cartesian setup and global graph for qualitative graphs that
include large inputs and small inputs

3. Of course, even though we can only draw on the screen, there are
inputs too large to be drawn on the screen so that the global graph of a
function really consists of two parts:
• The onscreen graph which is the part of the global graph that . . . shows
on the screen,
• An offscreen graph which is the part of the global graph that . . . does
not show on the screen and for which we reserved the offscreen space.

EXAMPLE 2.29.

0 +1–1–2–3

–30
–20
–10

0
+10
+20
+30
+40
+50

Offscreen

Screen

+2

Onscreen Graph

Inputs

Outputs

Offscreen Graph

8. Onscreen Graph 69

8 Onscreen Graph

The onscreen graph involves the medium inputs for which the function re-
turns medium outputs

=======End WORK ZONE========

9 Functioning With Infinity

Obviously, because The tolerance is a plain decimal number (Page 8),

NOTE 2.3 ∞ can neither:
i. be declared as an input in output-specifying code,
nor
ii. result as an output from output-specifying code.

However this is not going to cause us any trouble because we will be able to
thicken ∞ to large with

THEOREM 2.1 large
i. x can be declared to be large
ii. large can result from output-specifying code.

EXAMPLE 2.30. Let REC be the function specified by the global input-
output rule:

x
REC−−−−−−→ REC(x) = Reciprocal of x

Then we get from Theorem 1.2 Reciprocal of qualitative sizes (Page 38):

input output

large small
small large

.

10 Computing Input-Output Pairs

1. We can now show how we get input-output pairs using a global
input-output rule:

70 Chapter 2. Functions

execute
decode
perform
format

PROCEDURE 2.5 To get the output at the given input x0

i. Declare the unspecified input x to be the given number x0

x
x ← x0

f−−→ f(x)
x ← x0

= Code specifying f(x) in terms of x︸ ︷︷ ︸
Output-specifying code

x ← x0

so that, after the replacement is done, we have
x0

f−−→ f(x0) = Code specifying f(x0) in terms of x0︸ ︷︷ ︸
Output-specifying code

ii. Execute the output-specifying code that is:
a. Decode the output-specifying code which means write out the

computations specified by the output-specifying code.
b. Perform the computations specified by the output-specifying

code and thus get the number y0 which f(x0) is.
iii. Format the input-output pair according to the purpose:
• For computational purposes, use the equality

f(x0) = y0

• For graphic purposes, use the pair:
(x0, y0)

• For conceptual purposes, use the arrow notation:
x0

f−−→ y0

TEMO 2.5 Get the output at −3 for the function specified by
x

JACK−−−−−−−−−→ JACK(x) = −4x⊕+7

i. We declare that x is to be replaced by −3 :

x
∣∣∣
x←−3

JACK−−−−−−→ JACK(x)
∣∣∣
x←−3

= −4x+ 7
∣∣∣
x←−3

so that, after the replacement is done, we have

−3 JACK−−−−−−→ JACK(-3) = −4(−3)⊕+7︸ ︷︷ ︸
output-specifying code

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code which says to multiply the number

−4 by a copy of the input −3 and then to ⊕ the number +7

= −4(−3)⊕+7

11. Fundamental Problem 71

b. We perform the computations:
= +12⊕+7
= +19

iii. Format the input-output pair:
• For computational purposes: JACK(−3) = +19
• For graphic purposes: (−3, +19)
• For conceptual purposes: −3 JACK−−−−−−→ +19

2. Graphically, we can then use

PROCEDURE 2.6 To get the plot point at a given input for
an algebraic function

1. Get the output returned for the given input by the function with
?? (??),
2. Get the plot point for the input-output pair with ?? (??)

11 Fundamental Problem

Our overall goal in this text will be, roughly speaking, the investigation of
various, very different, ways that functions can return outputs. But it is
often useful to see on a global graph those inputs for which the function will
return outputs that meet some requirement we are interested in.

EXAMPLE 2.31. Given the function MILT specified by the global graph
Outputs

Inputs
0 +1–1–2–3–4

–30
–20
–10

0
+10
+20
+30
+40
+50

Offscreen

Screen

find the inputs whose output is less than +20. From the onscreen graph,

72 Chapter 2. Functions

join
Outputs

Inputs
0 +1–1–2–3–4

–30
–20
–10

0
+10
+20
+30
+40
+50

Offscreen

Screen

we see that the answer is “All inputs between −2 and +1”

So, in fact, we will devote quite a bit of time and energy to the

DEFINITION 2.4 FUNDAMENTAL PROBLEM To get the global
graph of a function specified by a global input-output rule.

12 Joining Plot Points

Indeed, solving the FUNDAMENTAL PROBLEM is almost never a simple
matter because declaring given inputs can almost never get us a global graph
any more than given numbers can specify an amount of stuff. Yet, chances
are you were once told that to get the global graph of a function specified
by a global input-output rule, you “just” had to:

i. Declare a few inputs and compute the outputs returned by the func-
tion for these inputs.

ii. Plot these input-output pairs,
iii. Join the plot points.

However, this so-called “procedure” is in fact total garbage which we there-
fore have to “dispose of properly”:

1. Narrow mindedness To begin with, this so-called “procedure”
cannot possibly get us the offscreen graph since the only input-output pairs
we can plot are those for medium inputs as medium inputs are the only
inputs we can declare in a global input-output rule. Which is already re-
grettable since just because something is offscreen doesn’t mean it is not
interesting.

12. Joining Plot Points 73

EXAMPLE 2.32. “Many ancient civilizations collected astronomical in-
formation in a systematic manner through observation.” See https://en.
wikipedia.org/wiki/History_of_science

But what is most regrettable is that much of what happens onscreen is
caused by what happens offscreen.

EXAMPLE 2.33. Even though what happens on earth is what we are
immediately concerned with, much of what happens on earth depends on what
happens very far away : tides are due to the pull of the moon and all the energy
we use originates, one way or the other, from the sun and life on earth would
cease instantly if the sun were to black out.

So:
Question i. How do we know what’s onscreen is all there is to see?4

This is in fact a complicated question which we will address in Chapter 4
Features Near ∞.

2. Incomprehensibility But this so-called “procedure” is not likely
to get us the onscreen graph either because of three additional questions5:

Question ii. How do we know which medium inputs we are to declare
in the global input-output rule?

Question iii. How do we know which way to join the plot points?
Question iv. How do we know, after we have somehow joined whatever

plot points we somehow got, if the curve we get is the onscreen graph?

EXAMPLE 2.34. Given a function specified by some global input-output
rule, suppose we somehow got the following input-output pairs and therefore
the plot:

4Which Educologists do not seem to wonder about or even be aware of.
5Educologists have much to answer for never even raising these questions.

https://en.wikipedia.org/wiki/History_of_science
https://en.wikipedia.org/wiki/History_of_science

74 Chapter 2. Functions

Inputs −4 −3 −2 +1 +2 +4

Outputs −1 +3 0 −1 −2 +3

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6
+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

Which of the following would you then say is the onscreen graph of the function:

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

0 +1 +2 +3 +4 +5 +6–1–2–3–4–5–6

+1
+3
+5

–1
–3
–5

+6

0
+2
+4

–6

–2
–4

Offscreen

Inputs

Outputs

Screen

As Example 2.34 demonstrates the answers to the above questions are:
Question ii. How do we know which medium inputs we are to declare

in the global input-output rule?
Answer: At the very least, which inputs we declare will have to depend on
the nature of the particular function we are trying to graph,

Question iii. How do we know which way to join the plot points?
Answer: Other than very exceptionally, there cannot possibly be a set way
to join smoothly a plot,

Question iv. How do we know, after we have somehow joined whatever
plot points we somehow got, if the curve we get is the onscreen graph?
Answer: On the basis of only a number of plot points, there is no way we

12. Joining Plot Points 75

can decide what the global graph is going to look like.

As always in the real world, recreating an analog entity (a global graph)
from a discrete sampling (a plot) is nowhere near simple.

EXAMPLE 2.35. Ask a sound engineer: how do you recreate from, say, a
CD (discrete sampling) a music performance (analog signal)?

3. At this point, we were usually told “just get more plot points” but
too many plot points can in fact make it impossible to join smoothly.

EXAMPLE 2.36. The function SINE belongs to the next volume, Tran-
scendental Functions, but the point here is Strang’s Famous Computer
Plot of SINE 6:

–1.0

–0.5

+0.5

+1.0

0

Inputs

Outputs

+200 +400 +600 +800 +1 0000

How are we to “join smoothly”?

And even computer generated graphs cannot always be taken at face value.

EXAMPLE 2.37. Given the function specified by the global input-output
rule

x
CAT−−−−−−−−→ CAT (x) = x3 − 1

x− 2
which of the following computer generated graphs is the right one?

6The plot appears on the back cover of Strang’s Calculus, 1991, Wellesley-Cambridge
Press, where it is discussed in Section 1.6 A Thousand Points of Light, pages 34-36.

76 Chapter 2. Functions

Screen

0

0

Offscreen

–1000

+1000

10+6

Inputs

Outputs

Screen

0

Offscreen

10+6

Inputs

Outputs

0–100

+100

Screen

Offscreen

Inputs

Outputs

0–20 +20–10 +10

0

Screen

Offscreen

Inputs

Outputs

0 +5–5

0

+100

+200

–100

–200

Screen

Offscreen

Inputs

Outputs

+5–5 0

0

Screen

Offscreen

Inputs

Outputs

+2+10–2 –1

0

4. Since we cannot rely on declaring Inputs (Page 64) to get the global
graph of a function specified by a global input-output rule, we will have to
develop:

i. What to use instead of plot points to get an onscreen graph which we
will do in Chapter 3 Features Near x0

ii. How to get the offscreen graph, which we will do in Chapter 4 Features
Near ∞,

iii. How to put all this together to get a global graph which we will do
in Chapter 5 Global Analysis
In those three chapters, though, our goal will only be:
• To introduce and discuss graphically the necessary concepts and
• To provide the reader with the means for picturing the “why” and the
“how” of the computations we will need to do later when we investigate
given algebraic functions.

Then, with ?? ??, we will finally start on our systematic investigation of
increasingly complicated algebraic functions in which, of course, we will get
their global graph.

In a crime novel, the victim is
not the story. The story is
around the victim.

Anonymous crime writer

input level band

Chapter 3

Features Near x0

Local Place, 77 • Local graph, 80 • Local code, 81 • Local Height, 82
• Local extreme, 84 • Zeros And Poles, 87 • Conclusive information,
89 • Local Slope, 92 • Local Concavity, 94 • Pointwise Continuity, 96
• Local Smoothness, 100 .

You may recall that:
i. We saw in ?? ??that when we specify in the real world a given amount

of stuff x0, the number we get when we measure the actual amount of stuff
will always differ from x0 by an error h so that the actual amount of stuff
is described by x0 + h

ii. We saw in section 10 that just getting f(x0) can almost never get us
any information about f(x0+h).
So, given a function f and given an input x0, we now have two reasons for
wanting to thicken the given input x0 into a neighborhood of x0, that is into
x0 + h and then investigating f(x0 + h).

1 Local Place

Thickening input numbers into input neighborhoods implies that we first
need to do a thick equivalent of picturing Input-Output Pairs (Section 3,
page 55.)

1. We will thicken input level lines into input level bands , that
is into vertical bands through the input neighborhoods.

77

78 Chapter 3. Features Near x0

output neighborhood
output level band

EXAMPLE 3.1. We will thicken
the input level line

Screen

Offscreen

–31.6

Inputs

Outputs

Input level line

Given input

into the input level band

Screen

Offscreen

Input level band

()
Inputs

Outputs

–31.6 +h–31.6
Given input Actual input

2. On the other hand, we won’t always be able to thicken an output
into an output neighborhood because it is the function which returns
the nearby outputs and f(x0 + h) is not necessarily going to be near f(x0)
(nearby outputs are not necessarily going to be near the resulting output)
which, in fact, may not even exist. See note 2.1 We will discuss this in
Section 8 Smoothness near ∞. (Page 131)

But should we somehow know that f(x0 + h) is near f(x0) (that is that
nearby outputs are near the resulting output), then we will thicken the
output level line into an output level band that is a horizontal band
through the neighborhood of f(x0).

EXAMPLE 3.2. We will thicken
the output level line

Screen

Offscreen

Inputs

Outputs

Output level line

y0

into the output level band

Screen

Offscreen

Inputs

Outputs

Output level band

()

f(x)0

f(x +h)0

1. Local Place 79

local graph place
sided local graph place

3. Since a plot point is at the intersection of an input level line and an
output level line, we will thicken a plot point into a local graph place ,
that is into the rectangle at the intersection of an input level band near x0
and an output level band near f(x0).

=======Begin WORK ZONE=======

However, inasmuch as we will usually deal separately with each one of
the two

??

(??),

we will usually know which side of the input is linked to which side of
the output

=======End WORK ZONE========

and the sided local graph place will then consist of two smaller rect-
angles, one on each side of the input level line. To get a sided local graph
place then,

we just thicken

PROCEDURE 3.1 To get the sided local graph place for an
input-output pair knowing which side of the input neighbor-
hood is paired with which side of the output neighborhood.

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which
side of the output neighborhood ,
vi. The place for the given input - output pair is at the intersection
of the corresponding sides of the level bands.

TEMO 3.1 Get the sided place for (+3 , −5) given that:
• +3− −−−→ −5+

• +3+ −−−→ −5−

80 Chapter 3. Features Near x0

local graph near x0

i. We mark a neighborhood of +3
on the input ruler ,
ii. We draw the input level band
through the neighborhood of +3 ,
iii. We mark a neighborhood of −5
on the output ruler ,
iv. We draw the output level band
through the neighborhood of −5 ,
v.Mark: • left of +3 → above −5

• right of +3 → below −5

Screen

Inputs

Outputs
Offscreen

Sided
Graph Place

(

)

()

Input level band

Output level band

+3

+3+h

f(3+h)

f(+3)= –5

vi. The sided graph place for (+3 , −5) is at the intersection of the corre-
sponding sides of the level bands.

2 Local graph

In some cases , depending on the kind of information we want, we will be
able to get this information from the local graph place but in most cases we
will need the local graph near x0, that is the part of the global graph in
the local graph place. To get the local graph near a bounded input then, we
just thicken ?? (??):

PROCEDURE 3.2 To get the local graph near x0 of a function
specified by a global graph

i. Mark a neighborhood of x0 on the input ruler,
ii. Draw the input level band through the neighborhood of x0 ,
iii. The local graph near x0 is the intersection of the input level
band with the global graph.

TEMO 3.2 Get the local graph near −3 of the function whose global graph
is

3. Local code 81

〈
〉
local code
angles
,

Outputs

0 +1

0

Offscreen

Screen

Inputs

i. We mark a neighborhood of −3
on the input ruler ,
ii. We draw the input level band
through the neighborhood of −3 ,
iii. The local graph near −3 is the
intersection of the input level band
with the global graph,

Outputs

Offscreen

Screen

ii.
 In

p
ut

 le
ve

l b
an

d

i. Mark the

–3

iii. Local Graph

Inputs

Input Neighborhood

3 Local code

In order to describe separately what happens on each side of the given input,
we will need:

DEFINITION 3.1 Local Code near x0
i. We will use a pair of angles, 〈 〉, to stand for the input neigh-
borhood with a comma , between 〈 and 〉 to stand for x0.
ii. We will have to face x0 when coding local features.
iii. Then, the code that will record the local feature for

nearby inputs that are
left of x
will go
left of

nearby inputs that are
right of x

will go
right of ,

 ,

0 0

,

82 Chapter 3. Features Near x0

height
Height-sign

TEMO 3.3 Set up for the local code to record the local behavior near +3.27

(

Outputs

Screen

Inputs
Offscreen

)
+3.27

Since the local graph is near a bounded input, we are facing it and we will code
the local feature as we see it onscreen:

()

LEFT RIGHT

+3.27

,

4 Local Height

Given a function f and a given input x0, we will thicken the output at x0

into the height near x0 . As the use of the word “near” indicates, the
height is a local feature and we will occasionally remind the reader of that
by saying “local height” instead of just “height”.

EXAMPLE 3.3.
The output at +3

Outputs

Screen

InputsOffscreen

+3

–12

is −12

The Height near +3

(

Outputs

Screen

InputsOffscreen

)

(

)

+3.2+2.8

–12.3

–11.8

is −12± small

1. The Height-sign of f near x0 is the sign, + or −, of the outputs
for nearby inputs on each side of the given input.

4. Local Height 83

height-sizePROCEDURE 3.3 To get the Height-sign near a given input
of a function from its global graph,

i. Get from the local graph the sign, + or −, of the outputs for nearby
inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)

TEMO 3.4 Get Height-sign near +5 for the function IAN from the local graph
near +5

Screen

(

+∞–∞

+∞

–∞

0)

Offscreen

)
+5

Inputs

Outputs

(

)
(

i. We get from the local graph the sign of the
outputs for nearby inputs on each side of +5 :
•The sign of the outputs left of +5 is −
•The sign of the outputs right of +5 is +

ii. We code the Height-sign:

Height-sign IAN near +5 = 〈−, +〉

2. The height-size of f near a given input is the qualitative size,
large, bounded or small, of the outputs for nearby inputs on each side of
the given input.

PROCEDURE 3.4 To get the Height-size near a given input
of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or
small, of the outputs for nearby inputs on each side of the given
input,
ii. Code Height-size f according to Definition 3.1 (Page 81)

TEMO 3.5 Get Height-size near +5 for the function IAN from the local graph
near +5

84 Chapter 3. Features Near x0

Screen

(

+∞–∞

+∞

–∞

0)

Offscreen

)
+5

Inputs

Outputs

(

)
(

i. We get from the local graph the qualitative
size, large, bounded or small, of the outputs
for nearby inputs on each side of +5 :
•The size of the outputs left of +5 is large
•The size of the outputs right of +5 is small

ii. We code the Height-size:

Height-size IAN near +5 = 〈large, small〉

TEMO 3.6 Get Height-size near∞ for the function IAN from the local graph
near ∞

Screen

(

+∞–∞

+∞

–∞

0
)

Offscreen

Inputs

Outputs

()

i. We get from the local graph the qualitative
size, large, bounded or small, of the outputs for
nearby inputs on each side of ∞ :
•The size of the height left of ∞ is large
•The size of the height right of ∞ is small

ii. We code the Height-size:

Height-size IAN near ∞ = 〈large, small〉

5 Local extreme

We will often compare the output at a given bounded input with the height
near the given bounded input.

5. Local extreme 85

local maximum-height
input

xmaxi-height
local minimum-height
input

1. A local maximum-height input is a bounded input whose out-
put is larger than the height near the bounded input. In other words, the
output at a local maximum-height input is larger than the outputs for all
nearby inputs.

x0 is al local maximum-height input whenever f(x0) > f(x0 + h)
We will use xmax-height as a name for a local maximum-height input.

LANGUAGE 3.1 xmax is the usual name for a local maximum-height
input but xmax tends to suggest that it is the input x that is maximum
while it is the output, f(xmax), which is “maximum”.

Graphically, the local graph near xmax-height is below the output-level line
for xmax-height.

EXAMPLE 3.4. The function
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Offscreen

()

[

f (xmaximum-height)

Output level line
for xmaximum-height

xmaximum-height –23.07=

has a local maximum at −23.07
because the output at −23.07 is
larger than the outputs for nearby
inputs

EXAMPLE 3.5. The function
Outputs

Screen

+∞

)

Offscreen

(

–∞

–∞

-4

Output level line
for xmaximum-height

()
Inputs
+∞xmaximum-height +4.32=

has a local maximum at +4.32 be-
cause the output at +4.32 is larger
than the outputs for nearby inputs

2. A local minimum-height input is a bounded input whose out-
put is smaller than the height near the given input. In other words, the

86 Chapter 3. Features Near x0

xmin-height
local extreme-height input

output at a local minimum-height input is smaller than the outputs for all
nearby inputs.

x0 is al local minimum-height input whenever f(x0) < f(x0 + h)
We will use xmin-height as name for a local minimum-height input.

LANGUAGE 3.2 xmin is the usual name for a local minimum-height
input but xmin tends to suggest that it is the input x that is minimum
while it is its output, f(xmin), which is “minimum”.

Graphically, the local graph near xmin-height is above the output-level line
for xmin-height.

EXAMPLE 3.6. The function
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Offscreen

f (xminimum-height)

Output level line
for xminimum-height

[

()
xminimum-height +81.35=

has a local minimum at +81.35
because the output at +81.35
is smaller than the outputs for
nearby inputs.

EXAMPLE 3.7. The function
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Offscreen

[

f (xminimum-height)

Output level line for
xminimum-height

()
xminimum-height +37.41=

has a local minimum at +37.41
because the output at +37.41
is smaller than the outputs for
nearby inputs.

3. Local extreme-height input are bounded inputs which are ei-
ther a local maximum-height input or a local minimum-height input.

NOTE 3.1 Local extreme-height inputs can only be bounded inputs.

6. Zeros And Poles 87

zero
parity
even zero
odd zero

4. Minimization problems and maximization problems (https://en.
wikipedia.org/wiki/Mathematical_optimization) as well as min-max
problems (https://en.wikipedia.org/wiki/Minimax) are of primary im-
portance in real life. So,

• It would be pointless to allow ∞ as a local extreme-height input since it
cannot be reached in the real world,
• It would be meaningless to allow +∞ as a locally largest output since

+∞ is always larger than any output or to allow −∞ as a locally smallest
output since −∞ is always smaller than any output.

6 Zeros And Poles

1. Given a function f , a zero of f is a bounded input whose Height-
size is 〈small, small〉. We will distinguish two kinds of zeros according to
their parity:

I An even zero is a zero whose Height-sign is either 〈+, +〉 or 〈−,−〉.

EXAMPLE 3.8. For the function f
specified by the global graph

Screen

Offscreen

+6

Output s

)(
Inputs

0)

the bounded input +6 is an even
zero because:
I the outputs for inputs near +6

are all small,
I Height-sign f near +6 = 〈−,−〉

(Same signs.)

I An odd zero is a zero whose Height-sign is either 〈+,−〉 or 〈−, +〉.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Minimax

88 Chapter 3. Features Near x0

pole
parity
even pole
odd pole

EXAMPLE 3.9. For the function f
specified by the global graph

Screen

Offscreen

+6

Output s

)(
Inputs

0))

the bounded input +6 is an odd
zero because:
I the outputs for inputs near +6

are all small,
I Height-sign f near +6 = 〈+,−〉

(Opposite signs.)

2. Given a function f , a pole of f is a bounded input whose Height-
size is 〈large, large〉. We will distinguish two kinds of poles according to
their parity:

We will distinguish two kinds of poles according to their parity:

I An even pole is a pole whose Height-sign is either 〈+, +〉 or 〈−,−〉.

EXAMPLE 3.10. For the function f
specified by the global graph

+6

Inputs

Screen

Outputs
Offscreen

–∞

+∞

)

)

()

the bounded input +6 is an even
pole because:
I the outputs for inputs near +6

are all large,
I Height-sign f near +6 = 〈−,−〉

(Same signs.)

I An odd pole is a pole whose Height-sign is either 〈+,−〉 or 〈−, +〉.

7. Conclusive information 89

slope
conclusive
inconclusive

EXAMPLE 3.11. For the function f
specified by the global graph

–4

Inputs

Screen

Outputs
Offscreen

–∞

+∞

)

)

()

the bounded input +− 4 is an odd
pole because:
I the outputs for inputs near −4

are all large,
I Height-sign f near −4 = 〈+,−〉

(Opposite signs.)

7 Conclusive information

Inasmuch as we can see the Magellan input and the Magellan output, a
Magellan view is conclusive while a Mercator view may often be incon-
clusive.

EXAMPLE 3.12. The Mercator view

Screen

Offscreen

Output s

Inputs
+6

is inconclusive regarding the outputs for inputs near +6 because when zooming
out we could get something like

90 Chapter 3. Features Near x0

continuation

Screen

Offscreen

Output s

Inputs
+6 or like

Screen

Offscreen

Output s

Inputs
+6

But
• While the Mercator view on the left would be conclusive regarding the
outputs for inputs near +6,

• The Mercator view on the right would still be inconclusive.
On the other hand, the Magellan view

∞

+6

would be conclusive as we would see that the input +6 is a pole.

For the sake of simplicity, from now on

AGREEMENT 3.1 Mercator view The Mercator view will always be
assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a con-
tinuation of the onscreen graph. Of course, this begs the question: What
is a continuation? For the time being we will just give a couple of examples
and leave the answer for when we have local features with which to describe
things.

EXAMPLE 3.13. To assume that the Mercator view

7. Conclusive information 91

Screen

Offscreen

Output s

Inputs
+6

is conclusive regarding the outputs returned for inputs near +6 is to assume
that when zooming out we would get something like

Screen

Offscreen

Output s

Inputs
+6 but not like

Screen

Offscreen

Output s

Inputs
+6

Inasmuch as we can see the Magellan input and the Magellan output, a
Magellan view is .

EXAMPLE 3.14. The Mercator view

Screen

Offscreen

Output s

Inputs
+6

is inconclusive regarding the outputs for inputs near +6 because when zooming
out we could get something like

92 Chapter 3. Features Near x0

slope
slope-sign

Screen

Offscreen

Output s

Inputs
+6 or like

Screen

Offscreen

Output s

Inputs
+6

But
• While the Mercator view on the left would be conclusive regarding the
outputs for inputs near +6,

• The Mercator view on the right would still be inconclusive.
On the other hand, the Magellan view

∞

+6

would be conclusive as we would see that the input +6 is a pole.

8 Local Slope

1. Inasmuch as, in this text, we will only deal with qualitative infor-
mation we will be mostly interested in the slope-sign: .

PROCEDURE 3.5 To get Slope-sign near a given input for a
function specified by a global graph

i. Mark the local graph near the given input
ii. Then the slope-sign is:

� when the local graph looks like or , that is when the outputs
are increasing as the inputs are going the way of the input ruler,

8. Local Slope 93

� when the local graph looks like or , that is when the outputs
are decreasing as the inputs are going the way of the input ruler.

iii. Code Slope-sign f according to Definition 3.1 (Page 81)

LANGUAGE 3.3 Slope-sign The usual symbols are + Instead of � and
− instead of � but, in this text, in order not to overuse + and −, we
will use � and �.1

TEMO 3.7 Let HIC be the function whose Mercator graph is
Output
Ruler

Input
Ruler

Screen

+2

Offscreen

and let the given input be +2. Then to get Slope-sign HIC near +2
i. We get the local graph near the
given input:

Screen

Offscreen

+2
()

Inputs

Outputs

ii. We then get
·The slope sign left of +2 is �
·The slope sign right of +2 is �

which we code as:

Slope-sign HIC near +2 = 〈�,�〉

TEMO 3.8 Let HIP be the function whose Mercator graph is
Output
Ruler

Input
Ruler

Screen

Offscreen

and let the given input be ∞. Then to get Slope sign HIP near ∞

1Educologists will surely appreciate “Sign-slope f = � iff Sign-heigth f ′ = +”.

94 Chapter 3. Features Near x0

slope-size
concavity
concavity-size
concavity-sign

i. We get the local graph near the
given input:
Outputs

Screen

Offscreen–∞

+∞

Inputs
()–∞ +∞

ii. We then get that:
·The slope sign left of ∞, that is near

+∞, is �
·The slope sign right of ∞, that is

near −∞, is �

which we code as:

Slope-sign HIP near ∞ = 〈�,�〉

2. In this text, we will not deal with slope-size other than in the
case of a 0-slope input that is an input, be it x0 or ∞, near which slope-
size is small. This is because 0-slope inputs will be extremely important
in global analysis as finding 0-slope inputs comes up all the time in direct
“applications” to the real world:
EXAMPLE 3.15. The function

Outputs

Screen

–∞

+∞

–∞

+∞

(

Inputs

Offscreen

((((

(

(

–17

has both −17 and ∞ as 0-slope inputs

EXAMPLE 3.16. The function
Outputs

Screen

–∞

+∞

–∞ Inputs

+∞

(

(0

Offscreen

((
+3.4

Only +3.4 is a 0-slope input.

9 Local Concavity

1. Inasmuch as, in this text, we will be only interested in qualita-
tive analysis we will not deal with the concavity-size but only with the
concavity-sign:

9. Local Concavity 95

PROCEDURE 3.6 To get Concavity-sign near a given input
for a function specified by a global graph

i. Mark the local graph near the given input
ii. Then the concavity-sign is:
∪ when the local graph is bending up like or ,
∩ when the local graph is bending down like or .

iii. Code Slope-sign f according to Definition 3.1 (Page 81)

LANGUAGE 3.4 Concavity-sign The usual symbols are + Instead of
∪ and − instead of ∩ but, in this text, in order not to overuse + and −,
we will use ∪ and ∩.2

TEMO 3.9 Let KIP be the function whose Mercator graph is
Outputs

Screen

Inputs

Offscreen

–∞

+∞

–∞

+∞–1

and let the given input be −1. Then to get Concavity sign KIP near −1

i. We get the local graph near the given input:
Outputs

Screen

Inputs
((

x0-concavity
–∞

+∞

–∞

+∞–1

ii. We then get that:
·The concavity sign left of −1,

is ∪
·The concavity sign right of
−1, is ∩

which we code as:

Concavity Sign KIP near −1 = 〈∪,∩〉

2. Given a function f , the inputs whose Concavity-size is 0 will be
particularly important in global analysis:

A bounded input x0 is a 0-concavity input if inputs that are near x0
have small concavity. We will use x0-concavity to refer to 0-concavity inputs.

2Educologists will surely appreciate “Sign-concavitye f = ∪ iff Sign-heigth f ′′ = +”.

96 Chapter 3. Features Near x0

continuous at x0
continuous EXAMPLE 3.17. Given the function

whose Mercator graph is
Outputs

Screen

–∞

+∞

–∞

+∞

Inputs

Offscreen

((
–21.04

x0−concavity = −21.04

EXAMPLE 3.18. Given the function
whose Mercator graph is

Outputs

Screen

–∞

+∞

–∞ Inputs

+∞

Offscreen

((
+31.72

x0−concavity = +31.72

10 Pointwise Continuity

The use of nearby inputs instead of the given input raises a most important
question: To what extent are the nearby outputs (outputs for nearby inputs)
all near the output at the given input? And, as it turns out, the question has
no simple answer. So, as a backdrop to what will be the case with Algebraic
Functions, we will just illustrate some of the many different possible answers.

1. Continuity at x0. Given a bounded input x0, a function f is
continuous at x0 when all the outputs for nearby inputs are themselves
near f(x0), the output at x0.

EXAMPLE 3.19. The function

–52.42

Screen

(

)

+13.06
()

Inputs

Offscreen
Outputs

is continuous at +13.06 because:
I the output at +13.06 is −52.42
and
I the outputs for all nearby In-

puts, both left of +13.06 and
right of +13.06, are themselves
near −52.42.

10. Pointwise Continuity 97

discontinuous
discontinuous at x0
jump
hollow dot

EXAMPLE 3.20. The function

–12.28

–18.71

Screen

)

()
Inputs

Offscreen
Outputs

is continuous at −18.71 because
I the output at −18.71 is −12.28
and
I the outputs for all nearby In-

puts, both left of −18.71 and
right of −18.71, are themselves
near −12.28.

2. Discontinuity at x0. Given a bounded input x0, a function is
discontinuous at x0 when not all the outputs for nearby inputs are near
f(x0), the output at x0.

• A function can be discontinuous at x0 because the function has a jump
at x0, that is because the outputs for nearby inputs on one side of x0 are
all near one bounded output while all the outputs for nearby inputs on
the other side of x0 are near a different bounded output.

Since we use solid dots to picture input-output pairs, we will use hollow
dots for points that do not picture input-output pairs.

EXAMPLE 3.21. The function
Outputs

+3

Offscreen

()

+13

+15

Inputs

Screen

is discontinuous at +3 because the
function has a jump at +3 that is:
I the outputs for nearby inputs

right of +3 are all near +15,
but
I the outputs for nearby Inputs

left of +3 are all near +13.

98 Chapter 3. Features Near x0

gap
cut-off input
on-off function
transition function
transition input

EXAMPLE 3.22. The function
Outputs

–9

Offscreen

()

+7.2

+11.6

Inputs

Screen

is discontinuous at −9 because the
function has a double jump at −9
that is:
I even though the outputs for

nearby inputs, both inputs right
of −9 and inputs left of −9, are
all near +7.2,

I the output for −9 itself is
+11.6.

• A function can be discontinuous at x0 because the function has a gap at
x0, that is because the function does not return a bounded output for x0

EXAMPLE 3.23. The function
Outputs

–9

Offscreen

()

+7.2

Inputs

Screen

is discontinuous at −9 because the
function has a gap at −9 that is:
I even though the outputs for

nearby inputs, both inputs right
of −9 and inputs left of −9, are
all near +7.2,

I there is no output for −9 itself.

• Actually, discontinuous functions are quite common in Engineering.

EXAMPLE 3.24. The following on-off functions are both discontinuous
but are different since the outputs for the cut-off inputs are different.

+5

Screen

+∞–∞

+∞

–∞

0

Offscreen

+3.7

Inputs

Outputs

Cutoff
output

Cutoff input +5Cutoff input

Screen

+∞–∞

+∞

–∞

0

Offscreen

+3.7

Inputs

Outputs

Cutoff
output

10. Pointwise Continuity 99

quasi-continuous at
removable discontinuity at
remove
override
supplement

EXAMPLE 3.25. The following transition functions are both discon-
tinuous but are different since the outputs for the transition inputs are
different.

–3

Screen

+∞–∞

+∞

–∞

0

Offscreen

+1

Inputs

Outputs

Transition
output

Transition input

–1

–3

Screen

+∞–∞

+∞

–∞

Offscreen

+1

Inputs

Outputs

Transition
output

Transition input

–1

• And, finally, there are even functions that are discontinuous everywhere!
See https://en.wikipedia.org/wiki/Nowhere_continuous_function

3. Quasi-continuity at x0. A function is quasi-continuous at x0
if the discontinuity could be removed by overriding or supplementing
the global input-output rule with an input-output table.

LANGUAGE 3.5 Removable discontinuity at x0 is the standard term
but, for the sake of language consistency, rather than saying that a func-
tion has (or does not have) a removable discontinuity at x0, we will
prefer to say that a function is (or is not) quasi-continuous at x0.

EXAMPLE 3.26. The function in
Example 3.22 is discontinuous at
−9 but the discontinuity could be
removed by overriding the input-
output pair (−9, +11.6) with the
input-output table

Input Output

−9 +7.2

Outputs

–9

Offscreen

()

+7.2

+11.6

Inputs

Screen

=========OK SO FAR=========
=======Begin WORK ZONE=======

https://en.wikipedia.org/wiki/Nowhere_continuous_function

100 Chapter 3. Features Near x0

smoothness
kink
smooth

11 Local Smoothness

For several reasons, smoothness is quite a bit more difficult to pin down
than continuity.

1. Roughly, smoothness extends to slope and concavity the require-
ments that continuity made on the height namely that slope and concavity
should not change abruptly. There is a big difference though:
• In the case of continuity, we need to look at what happens at the given
input and then to what happens near the given input but only to see if
there is a jump and not even when there is a gap at x0.
• In the case of slope and concavity, on the other hand, even with local
graphs, neither slope nor concavity makes sense at the given input and
what matters is only what happens near the given input.

NOTE 3.2 Smothness near vs. smoothmess at Most unfortunately,
the usual mathematical concept of smoothness implies continuity which
is not the way we think of smoothness in the real world.

EXAMPLE 3.27. A PVC sewer and drain pipe is usually perceived as being
“smooth” regardless of whether or not it is solid or perforated and a smoothly
bending copper pipe doesn’t stop being so if and when it develops a pinhole.

So, in this text and in trying to picture smoothness, we will go by f(x0 +
h) and not pay any attention to f(x0).

2. The first degree of smoothness is for the slope to be continuous,
that is, to borrow a word from plumbing, we don’t want the curve to have
any kink. More precisely, we don’t want any input x0 for which there is a
“jump in slope” from one side of x0 to the other side of x0. In other words,
we don’t want any input x0 for which the slope on one side differs from the
slope on the other side by some bounded number.

3. The second degree of smoothness is for the concavity to be contin-
uous but this is much harder to picture because it is hard to judge by just
looking how much a curve is bending.

So, in this text, smoothness will refer to just the first degree of smooth-
ness, that is for the curve to have no kink which, fortunately and as we will
see, will make it easy to be “reasonable” about smoothness.

11. Local Smoothness 101

=======End WORK ZONE========

102 Chapter 3. Features Near x0

Shoes need feet to walk!
Everything needs something to
function!.

Mehmet Murat ildan

compactification
Magellan input
input Magellan circle

Chapter 4

Features Near ∞

Compactification, 103 • Local graph place near ∞, 106 • Local graph
near ∞, 108 • Offscreen graph, 111 • Local code near ∞, 115 • Height
near ∞, 117 • Continuity at ∞, 125 • Smoothness near ∞, 131 .

While what we will do in this chapter near∞ will essentially be the same
as what we did near x0 in Chapter 3 Features Near x0, the difficulty near
∞ will be “seeing” large numbers in the Mercator view as they really are.

1 Compactification

This is where the Magellan view will be most helpful because, not only is
the information provided by the Mercator view not always conclusive with
regards to large numbers, but the Magellan view will often explain what
happens offscreen and therefore also what happens onscreen.

1. Magellan inputs So, the first thing we need is the equivalent of a
Cartesian setup with an input Magellan circle in place of an input ruler

103

104 Chapter 4. Features Near ∞

output Magellan circle
thicken
neighborhood of ∞
nearby input

Outputs

Inputs

Offscreen

Screen

][
Upper
bound

Lower
bound

Large inputsLarge inputs

∞

Screen

Offscreen

Magellan input

0

Large
inputs

Input Magellan circle

Large
inputs

and an output Magellan circle instead of an output ruler

Offscreen

Screen
Upper
bound

Lower
bound

(

Outputs

)

Inputs

La
rg
e

ou
tp

ut
s

La
rg
e

ou
tp

ut
s

∞

Screen

Offscreen

Magellan input

0

Input Magellan circle

Large
outputs

Large
outputs

=========OK SO FAR=========

2. We will thicken ∞ into a neighborhood of ∞ . Then, by
nearby inputs, with ∞ going without saying, we will mean large inputs

Since we will use the words near inputs both when the given input is x0
and when the given input is ∞, we must clarify:

NOTE 5.1 (Restated) Location of essential inputs will be short for
outputs returned by the function f for nearby inputs that is:
I When the given input is bounded, nearby inputs are bounded inputs

near the given input,
I When the given input is ∞, nearby inputs are large bounded inputs

near the ∞,

=======Begin WORK ZONE=======

3. Magellan views are conclusive.

1. Compactification 105

limit
input level band

Any answer, though, will obviously depend on whether or not ∞ is
allowed as Magellan input and Magellan output and the reader must be
warned that the prevalent stand in this country is that ∞ does not exist
and that one should use limits. (For what limits are, see https://en.
wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason
and certainly for none ever given.1

As for us, we will allow ∞ as Magellan input and Magellan output,
an old, tried and true approach. See https://math.stackexchange.com/
questions/354319/can_a_function_be_considered_continuous_if_it_
reaches_infinity_at_one_point and, more comprehensively, https://
en.wikipedia.org/wiki/Extended_real_number_line.

=======End WORK ZONE========
=====TRANSFERRED FROM OLD 3======

Nor can we declare a Magellan input because∞ can neither: (Page 69).
However, in both cases we can, and will, declare nearby inputs and so,

even though the computations will actually be different, the concept will be
the same and so it will be convenient to agree that, from now on, a

AGREEMENT 4.1 Given input can be either a bounded input x0 or
the Magellan input ∞.

=========OK SO FAR=========
=========OK SO FAR=========

4.

5. We will thicken input level lines into input level bands that is
vertical bands through the input neighborhoods.

Screen

Offscreen

Inputs

Outputs

)–∞ +∞(
Neighborhood of∞

Input level band

1The absolute silence maintained by Educologists in this regard is rather troubling.

https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line

106 Chapter 4. Features Near ∞

output neighborhood
output level band
local behavior
local analysis
locate
global analysis
local graph place

=========OK SO FAR=========
=========OK SO FAR=========

6. On the other hand, we won’t always be able to thicken an output
into an output neighborhood because it is the function which returns
the outputs for nearby inputs and the outputs for nearby inputs may not be
near the output at the given input. (We will discuss this in the next section,
Smoothness near ∞. (Page 131)

Nevertheless, we will often have to use output level bands that is
horizontal bands through the neighborhoods of outputs

–∞

+∞

Screen

Offscreen

Inputs

Outputs)
(

Neighborhood of ∞

Output level band

7. The local behavior of a function f at a given input will then
be determined by the outputs returned by f for nearby inputs. The local
analysis of f will be the investigation of the local behaviors of f .

In contrast, locating the input(s), if any, at which a function f has a
required local behavior will be a problem in global analysis inasmuch as
it will involve searching among all possible inputs.

=========OK SO FAR=========
=========OK SO FAR=========

2 Local graph place near ∞

=======Begin WORK ZONE=======
Since plot points are at the intersection of an input level line and an

output level line, we will thicken plot points into local graph places at the
intersection of an input level band and an output level band.

=======End WORK ZONE========
But given an input, be it ∞ or x0, we will usually deal separately with

each side of the input neighborhood. See ?? ?? (??) and ?? ?? (??.). We
will thus know which side of the input is linked to which side of the output

2. Local graph place near ∞ 107

sided local graph placeand the sided local graph place will then consist of two smaller local
graph places, one on each side of the given input.

1. We obtain the procedure to get a sided local graph place just by
thickening ?? (Page 57):

PROCEDURE 4.1 To get the sided local graph place for an
input-output pair knowing which side of the input neighbor-
hood is paired with which side of the output neighborhood.

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which
side of the output neighborhood ,
vi. The place for the given input - output pair is at the intersection
of the corresponding sides of the level bands.

TEMO 4.1 Get the sided place for (−4 , ∞) given that:
• −4− −−−→ −∞
• −4+ −−−→ +∞

i. We mark a neighborhood of −4
on the input ruler ,
ii. We draw the input level band
through the neighborhood of −4 ,
iii. We mark a neighborhood of ∞
on the output ruler ,
iv. We draw the output level band
through the neighborhood of ∞ ,
v.Mark: • left of −4 → near −∞

• right of −4 → near +∞
Inputs

Outputs

Neighborhood of –4

Output level band

(

Screen

Sided
Graph Place

(
Input level band

Offscreen

–4
()

Neighborhood of ∞

+∞

–∞

vi. The sided graph place for (−4 , ∞) is at the intersection of the corre-
sponding sides of the level bands.

TEMO 4.2 Get the sided place for (∞ , +2) given that:
• −∞ −−−→ +2+

• +∞ −−−→ +2−

108 Chapter 4. Features Near ∞

i. We mark a neighborhood of ∞ on
the input ruler ,
ii. We draw the input level band
through the neighborhood of ∞ ,
iii. We mark a neighborhood of +2
on the output ruler ,
iv. We draw the output level band
through the neighborhood of +2 ,
v.Mark: • −∞ → +2+

• +∞ → +2−

Screen

(

)

Outputs

Inputs
(

Output level band

Offscreen

(

Sided
Graph Place

Input level band

+2

+∞–∞

Neighborhood of +2

Neighborhood of ∞
vi. The sided graph place for (∞ , +2) is at the intersection of the corre-
sponding sides of the level bands.

TEMO 4.3 Get the sided place for (∞ , ∞) given that:
• −∞ −−−→ −∞
• +∞ −−−→ −∞

i. We mark a neighborhood of ∞ on
the input ruler ,
ii. We draw the input level band
through the neighborhood of ∞ ,
iii. We mark a neighborhood of ∞
on the output ruler ,
iv. We draw the output level band
through the neighborhood of ∞ ,
v.Mark: • −∞ → −∞

• +∞ → −∞

Screen

)

Outputs
(

Inputs
(

Sided Graph Place

Offscreen

Input level band

Output level band

) +∞–∞

–∞

+∞

Neighborhood of ∞

Neighborhood of ∞

vi. The sided graph place for (∞ , ∞) is at the intersection of the corre-
sponding sides of the level bands.

=========OK SO FAR=========
=========OK SO FAR=========

3 Local graph near ∞

As we will see, the local graph place near ∞ will get us the information we
want for some local feature but in most cases we will need the local graph

3. Local graph near ∞ 109

local graph
extremity

near ∞ near the given input, that is the part of the global graph which is
in the local graph place.

Later, we will get local graphs from the global input-output rule but for
the time being, and since in this chapter we only want to name and describe
local features, the global input-output rule will go without saying and, as
per ?? (??), we will get local graphs from the global graph of the function.

1. Local graph near∞ When the given input is∞, how we proceed
depends on whether we have a Mercator view or a Magellan view of the
global graph:

• With a Magellan view of the global graph, we proceed pretty much as in
?? and once we imagine facing ∞, we can see which side is which.

EXAMPLE 4.1.

Jack's RIGHT Jack's LEFT

Left side
of the
local graph
near ∞

screen

Right side
of the
local graph
near ∞

Jack is facing∞ so the local graph
near +∞ which is to his left is left
of∞ and the local graph near −∞
which is to his right is right of ∞.

• With only a Mercator view of the global graph, there is of course no way
we can get the whole local graph near ∞ and we will have to content
ourselves with just the extremities of the local graph near∞. However,
since we cannot face ∞ and can only face the screen, we have to keep in
mind ?? ?? (??) so that
I The extremity of the local graph near +∞ (left of ∞) is to our right,
I The extremity of the local graph near −∞ (right of ∞) is to our

left.

110 Chapter 4. Features Near ∞

EXAMPLE 4.2.

Screen

) (
Inputs

Local graph
near +∞

Jill's RIGHTJill's LEFT

Local graph
near –∞

OffscreenOutputs Jill is facing the screen so she can
only see the extremities of the lo-
cal graph near ∞ and she must
keep in mind ?? ?? (??) so that
the local graph near +∞ (to her
right) is left of ∞ and the local
graph near −∞ (to her left) is
right of ∞.

But then we can still use ?? to get a local graph near ∞.

TEMO 4.4 Get the local graph near ∞ of the function whose Mercator
graph is
Outputs

0 +1

0

Offscreen

Screen

Inputs

i. We mark a neighborhood of ∞
on the input ruler by marking the
part of the input ruler beyond the
bounds.,
ii. We draw the input level band
through the neighborhood of ∞ ,
iii. The local graph near ∞ is the
intersection of the input level band
with the global graph,

Outputs

iii. Local Graph

Offscreen

Screen

i. Mark the

Inputs

Input Neighborhood

ii.
 In

p
ut

 le
ve

l b
an

d

ii.
 In

p
ut

 le
ve

l b
an

d

4. Offscreen graph 111

conclusive4 Offscreen graph

We come now to ?? which we raised in ????. More precisely, an onscreen
graph is very likely to be inconclusive in that the information given by an
onscreen graph is most likely to depend on both:
• The input bounds.

EXAMPLE 4.3. The onscreen graph within the input bounds
−200, +200

Offscreen

Output s

Inputs

–200 +200

Screen
–100

+100

is not conclusive because, increasing the input bounds from −200, +200 to
−400, +400 may give the onscreen graph

Offscreen

Output s

Inputs

–200 +200–400 +400

Screen
–100

+100

just as well as the onscreen graph
Offscreen

Output s

Inputs

–200 +200–400 +400

Screen
–100

+100

• The output bounds.

112 Chapter 4. Features Near ∞

local graph near ∞
EXAMPLE 4.4. The onscreen graph within the output bounds
−100, +100

Offscreen

Output s

Inputs

–200 +200

Screen
–100

+100

is not conclusive because, increasing the output bounds to −200, +200 may
give for the very same inputs

Offscreen
Output s

Inputs

–200 +200

Screen
–100

+100

–200

+200

which would be conclusive

just as well as

Offscreen
Output s

Inputs

–200 +200

Screen
–100

+100

–200

+200

which still would not be con-
clusive.

So, the offscreen graph can involve two very different kinds of inputs.

1. The offscreen graph always includes the Local graph near ∞,
which is the part of the global graph, for large inputs left and right of the
screen. Even though the local graph near ∞ is really in one single piece
because large inputs are in a neighborhood of ∞, the local graph near ∞
appears to be in two pieces, one piece on each side of the screen:
I The part of the local graph near∞ for inputs near −∞, that is for inputs

4. Offscreen graph 113

polar graphthat are −large and which is therefore left of the screen but right of ∞.
I The part of the local graph near∞ for inputs near +∞, that is for inputs

that are +large and which is therefore right of the screen but left of ∞.

On the other hand, keep in mind that even for large inputs, a function may
return outputs of any qualitative size, bounded, large or small.

EXAMPLE 4.5.

+∞–∞

+∞

–∞ Inputs

Outputs

Screen

Offscreen

) (

Magellan graph"
near –∞

Magellan graph"
near +∞

The large inputs both left and right
of the screen have large outputs.

EXAMPLE 4.6.

+∞–∞

+∞

–∞ Inputs

Outputs

Screen

Offscreen

((

+3.42
0

Magellan graph"
near –∞

Magellan graph"
near +∞

I The large inputs left of the screen
have small outputs,

I The large inputs right of the
screen have bounded outputs,

2. The offscreen graph may include parts, the polar graphs, which
are for bounded inputs that are near poles, that is near bounded input(s)
for whose nearby inputs the function returns large outputs. A polar graph
is in two parts, one on each side of the pole

I The left part of the polar graph, that is the part of the polar graph which
is for nearby inputs that are left of the pole,

I The right part of the polar graph, that is the part of the polar graph
which is for nearby inputs that are right of the pole,

114 Chapter 4. Features Near ∞

$64,000 Question

EXAMPLE 4.7.
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Offscreen

)(
pole

–31.38

I The nearby inputs left of −31.38
have +large outputs,

I The nearby inputs right of −31.38
have −large outputs,

EXAMPLE 4.8.
Outputs

Screen

+∞

–∞

Offscreen

Inputs
+∞–∞

()
pole

+18.22

The nearby inputs both left and right
of+18.22 have +large outputs.

3. Kinds of offscreen graphs Because, as we will see, some alge-
braic functions do not have any pole while some algebraic functions do have
pole(s), what the offscreen graph will be in each instance will depend on the
answer to what will turn out to be the

DEFINITION 4.1 $64,000 Question
• Do all bounded inputs have bounded outputs?
or
• Is(Are) there any pole(s)?

So, the first step in our overall approach to the ?? will be:
PROCEDURE 4.2 To get the offscreen graph.

i. Get the local graph near ∞.
ii. Answer the ??:
iii. Get the polar graph(s) if any.

In other words, depending on the answer to the , there will be two kinds
of offscreen graphs:
• If the function has no pole, that is if the function returns bounded outputs
for all bounded inputs, then the offscreen graph will include just the local
graph near ∞.

5. Local code near ∞ 115

〈
〉
local code
angles

EXAMPLE 4.9.
Output s

Inputs

+∞–∞

+∞

–∞

ScreenOffscreen

()

Magellan graph

Neighborhood of ∞

Output s

Inputs

+∞–∞

+∞

–∞

Screen

Offscreen

()

Magellan graph

Neighborhood of ∞

Output s

+∞–∞

+∞

–∞

ScreenOffscreen

()
Inputs

Magellan graph

Neighborhood of ∞

• If the functional requirement has pole(s), that is if there are bounded
input(s) near which the function returns large outputs, then the offscreen
graph will include polar graphs in addition to the local graph near ∞.

EXAMPLE 4.10.
Output s

+∞–∞

+∞

–∞

Screen

Offscreen

() ()
Inputs

Polar graph

Pole

Output s

+∞–∞

+∞

–∞

Screen

Offscreen

() ()
Inputs

Pole

Polar graph

Output s
+∞

–∞

Screen

Offscreen

Inputs

+∞–∞ () () ()
Pole Pole

Polar graphPolar graph

5 Local code near ∞

Since there is no reason to expect the local behavior of a function to be the
same on both sides of the given input, be it x0 or ∞, see ?? ?? (??) and
?? ?? (??), in order to describe separately the local behavior on each side
of the given input, we need:

DEFINITION 4.2 Local Code Given an input, be it x0 or ∞,
i. We will use a pair of angles to stand for the input neighborhood
with a comma in-between the angles to separate the sides: 〈 , 〉.
ii. We must face the given input when coding local features.
iii. Then, the code that records the local feature for nearby inputs

116 Chapter 4. Features Near ∞

nearby inputs that are
left of x
will go
left of

nearby inputs that are
right of x

will go
right of ,

 ,

0 0

,

(Keep in mind that when the given input is∞ we must imagine facing
∞ to know which is the left side and which is the right side of ∞.)

TEMO 4.5 Set up for the local code to record the local behavior near ∞
according to the local graph

Screen

Offscreen

Outputs

Inputs

Since the local graph is near infinity , which we can only imagine facing, to
encode the local behavior, the local feature
for inputs left of
goes left of the comma.

for inputs right of
goes right of the comma.

We must imagine facing ∞:

screen

Jack's RIGHT Jack's LEFT

Jill's RIGHTJill's LEFT

=========OK SO FAR=========
==

=========OK SO FAR=========

6. Height near ∞ 117

height
Height-sign

6 Height near ∞

We will just extend the concept of D for a bounded input x0 to the concept
of local height for ∞

The Height near ∞

(

Outputs

Screen

InputsOffscreen
)

(

)

+∞

+7.3
+7.8

–∞

–∞

+∞

is −large for inputs left of ∞ and −small for inputs right of ∞
Given a function f , we will thicken the output at a given input, be it

x0 or ∞, into the height near the given input.

EXAMPLE 4.11.
The output at +3

Outputs

Screen

InputsOffscreen

+3

–12

is −12

The Height near +3

(

Outputs

Screen

InputsOffscreen

)

(

)

+3.2+2.8

–12.3

–11.8

is −12± small

The Height near ∞

(

Outputs

Screen

InputsOffscreen
)

(

)

+∞

+7.3
+7.8

–∞

–∞

+∞

is −large for inputs left of
∞ and −small for inputs
right of ∞

=========OK SO FAR=========
=========OK SO FAR=========

1. The Height-sign of f near a given input is the sign, + or −, of
the outputs for nearby inputs on each side of the given input.

PROCEDURE 4.3 To get the Height-sign near a given input
of a function from its global graph,

i. Get from the local graph the sign, + or −, of the outputs for nearby
inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)

118 Chapter 4. Features Near ∞

TEMO 4.6 Get Height-sign near +5 for the function IAN from the local graph
near +5

Screen

(
+∞–∞

+∞

–∞

0)

Offscreen

)
+5

Inputs

Outputs

(
)

(

i. We get from the local graph the sign of the
outputs for nearby inputs on each side of +5 :
•The sign of the outputs left of +5 is −
•The sign of the outputs right of +5 is +

ii. We code the Height-sign:

Height-sign IAN near +5 = 〈−, +〉

TEMO 4.7 Get Height-sign near∞ for the function IAN from the local graph
near ∞

Screen

(

+∞–∞

+∞

–∞

0
)

Offscreen

Inputs

Outputs

()

i. We get from the local graph the sign of the
outputs for nearby inputs on each side of ∞ :
•The sign of the height left of ∞ is +
•The sign of the height right of ∞ is −

ii. We code the Height-sign:

Height-sign IAN near ∞ = 〈+,−〉

=========OK SO FAR=========
=========OK SO FAR=========
=======Begin WORK ZONE=======

whose Height-sign is either 〈+, +〉 or 〈−,−〉. In other words, poles and
zeros are even

whose Height-sign is either 〈+,−〉 or 〈−, +〉. In other words, poles and
zeros are odd

6. Height near ∞ 119

height-size=======End WORK ZONE========

2. The height-size of f near a given input is the qualitative size,
large, bounded or small, of the outputs for nearby inputs on each side of
the given input.

PROCEDURE 4.4 To get the Height-size near a given input
of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or
small, of the outputs for nearby inputs on each side of the given
input,
ii. Code Height-size f according to Definition 3.1 (Page 81)

TEMO 4.8 Get Height-size near +5 for the function IAN from the local graph
near +5

Screen

(

+∞–∞

+∞

–∞

0)

Offscreen

)
+5

Inputs

Outputs

(

)
(

i. We get from the local graph the qualitative
size, large, bounded or small, of the outputs
for nearby inputs on each side of +5 :
•The size of the outputs left of +5 is large
•The size of the outputs right of +5 is small

ii. We code the Height-size:

Height-size IAN near +5 = 〈large, small〉

TEMO 4.9 Get Height-size near∞ for the function IAN from the local graph
near ∞

120 Chapter 4. Features Near ∞

x∞-height
x0-height

Screen

(

+∞–∞

+∞

–∞

0
)

Offscreen

Inputs

Outputs

()

i. We get from the local graph the qualitative
size, large, bounded or small, of the outputs for
nearby inputs on each side of ∞ :
•The size of the height left of ∞ is large
•The size of the height right of ∞ is small

ii. We code the Height-size:

Height-size IAN near ∞ = 〈large, small〉

3. The concept of Height provides us with conveniently systematic
names:
• For a pole: x∞-height
• For a zero: x0-height

=========OK SO FAR=========
=========OK SO FAR=========
=======Begin WORK ZONE=======

To do for the offscreen graph what we did in Chapter 3 for the on-
screen graph requires that we first thicken infinity just the way we thickened
bounded inputs in Chapter 3.

Obviously, the means in the case of ∞ will be quite different from the
means we used in Chapter 3 for bounded inputs but, interestingly enough,
the ends in both cases, that for infinity as well as that for bounded inputs,
will be strikingly similar.

In fact, even themeans, if not similar, will nevertheless remain in remark-
ably the same spirit and the reader should make every effort to identify and
determine this spirit.

=======End WORK ZONE========
A function can be discontinuous at x0 because the function has a pole

at x0.

6. Height near ∞ 121

conclusive
inconclusive

EXAMPLE 4.12. The function

–4

Inputs

Screen

Outputs
Offscreen

–∞

+∞

)

)

()

is discontinuous at −4 because not
only does the function have a gap
at −4 but the function has a pole
at −4 that is:
I the outputs for nearby inputs,

both inputs right of −4 and in-
puts left of −4, are all large,

but
I −4 has no bounded output.

4. Conclusive information Inasmuch as we can see the Magellan
input and the Magellan output, a Magellan view is conclusive while a
Mercator view may often be inconclusive.

EXAMPLE 4.13. The Mercator view

Screen

Offscreen

Output s

Inputs

–7

is inconclusive regarding the outpust returned for large inputs because when
zooming out we could get something like

Screen

Offscreen

Output s

Inputs

–7

or like

Screen

Offscreen

Output s

Inputs

–7

which would both still be inconclusive regarding the outputs returned for large
inputs. On the other hand, either one of the Magellan views,

122 Chapter 4. Features Near ∞

∞

Screen
Offscreen

–7

and

∞

Screen
Offscreen

–7

would be conclusive as we would see:
• from the Magellan view on the left that, for the Magellan input ∞, the
function returns the bounded output −7,

• from the Magellan view on the right that, for the Magellan input ∞ is a
pole.

EXAMPLE 4.14. To assume that the Mercator view

Screen

Offscreen

Output s

Inputs

–7

is conclusive regarding the outputs for large inputs is to assume that when
zooming out we would get something like

Screen

Offscreen

Output s

Inputs

–7

but not like

Screen

Offscreen

Output s

Inputs

–7

=======Begin WORK ZONE=======

6. Height near ∞ 123

EXAMPLE 4.15. The Mercator view

Screen

Offscreen

Output s

Inputs

–7

is inconclusive regarding the outpust returned for large inputs because when
zooming out we could get something like

Screen

Offscreen

Output s

Inputs

–7

or like

Screen

Offscreen

Output s

Inputs

–7

which would both still be inconclusive regarding the outputs returned for large
inputs. On the other hand, either one of the Magellan views,

∞

Screen
Offscreen

–7

and

∞

Screen
Offscreen

–7

would be conclusive as we would see:
• from the Magellan view on the left that, for the Magellan input ∞, the
function returns the bounded output −7,

• from the Magellan view on the right that, for the Magellan input ∞ is a
pole.

For the sake of simplicity, from now on

124 Chapter 4. Features Near ∞

continuation
AGREEMENT 4.2 Mercator view The Mercator view will always be
assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a con-
tinuation of the onscreen graph. Of course, this begs the question: What
is a continuation? For the time being we will just give a couple of examples
and leave the answer for when we have local features with which to describe
things.

EXAMPLE 4.16. To assume that the Mercator view

Screen

Offscreen

Output s

Inputs
+6

is conclusive regarding the outputs returned for inputs near +6 is to assume
that when zooming out we would get something like

Screen

Offscreen

Output s

Inputs
+6 but not like

Screen

Offscreen

Output s

Inputs
+6

EXAMPLE 4.17. To assume that the Mercator view

Screen

Offscreen

Output s

Inputs

–7

7. Continuity at ∞ 125

limit
is conclusive regarding the outputs for large inputs is to assume that when
zooming out we would get something like

Screen

Offscreen

Output s

Inputs

–7

but not like

Screen

Offscreen

Output s

Inputs

–7

=======End WORK ZONE========

EXAMPLE 4.18. For the function
Outputs

–∞

+∞

–∞

+∞((
Inputs

Offscreen

Screen
(

(0

the Magellan input∞ is a zero be-
cause:

the outputs for nearby inputs,
both inputs right of ∞ and in-
puts left of ∞, are all small,

7 Continuity at ∞
The use of nearby inputs instead of the given input raises a crucial question:
Are the outputs for nearby inputs all near the output at the given input?

Any answer, though, will obviously depend on whether or not ∞ is
allowed as Magellan input and Magellan output and the reader must be
warned that the prevalent stand in this country is that ∞ does not exist
and that one should use limits. (For what limits are, see https://en.
wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason
and certainly for none ever given.2

As for us, we will allow ∞ as Magellan input and Magellan output,
an old, tried and true approach. See https://math.stackexchange.com/
questions/354319/can_a_function_be_considered_continuous_if_it_

2The absolute silence maintained by Educologists in this regard is rather troubling.

https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point

126 Chapter 4. Features Near ∞

Magellan continuous at reaches_infinity_at_one_point and, more comprehensively, https://
en.wikipedia.org/wiki/Extended_real_number_line.

As a backdrop to what we will be doing with Algebraic Functions, we
will now show some of the many different possible answers to the above
question. For clarity, we will deal with bounded inputs and bounded outputs
separately from ∞ as Magellan input and Magellan output.

Keep in mind that we use solid dots to picture input-output pairs as
opposed to hollow dots which do not picture input-output pairs.

1. Magellan continuity at x0. A function is Magellan contin-
uous at x0 when we could remove the discontinuity at x0 by overriding
or supplementing the global input-output rule with an input-output table
involving ∞ as Magellan output.

EXAMPLE 4.19. The function
in Example 4.12 is discontinuous at
−4 because the function has a gap
at −4 but Magellan continuous as
we could remove the gap by supple-
menting the global input-output rule
with the input-output table

Input Output

−4 ∞

∞

–4

2. Magellan continuity at ∞. A function is Magellan contin-
uous at ∞ when we could remove the discontinuity at ∞ by overriding
or supplementing the global input-output rule with an input-output table
involving ∞ as Magellan input and/or as Magellan output.

https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line

7. Continuity at ∞ 127

EXAMPLE 4.20. The function

Screen

)

Outputs

(

Inputs
() +∞–∞

–∞

+∞ Offscreen

is discontinuous at ∞ but is Mag-
ellan continuous since we could
remove the discontinuity with an
input-output table involving ∞ as
Magellan input and Magellan out-
put,

Input Output

+∞ −∞
−∞ +∞

∞

Screen

Offscreen
0

EXAMPLE 4.21. The function

Screen

(

Inputs
((

+2

+∞–∞

Offscreen

(

Outputs

is discontinuous at ∞ but is Mag-
ellan continuous since we could
remove the discontinuity with an
input-output table involving ∞ as
Magellan input and Magellan output

Input Output

+∞ +∞
−∞ −2−

∞

Screen
Offscreen

+2

3. Dealing with poles. The difficulty here stems only from whether
or not it is “permisible” to use ∞ as a given input and/or as an output.

Even though, because There are no symbols for size-comparisons of
signed-numbers (Page 69), ∞ can neither:, we do use ∞ as a (Magellan)
input and as a (Magellan) output because, as explained in ?? (??), we will
only declare nearby inputs. (Which will shed much light on the local behav-

128 Chapter 4. Features Near ∞

ior of functions, in particular on the question of continuity.)

However, the reader ought to be aware that many mathematicians in
this country, for reasons never stated, flatly refuse to use nearby inputs
with their students.

Another reason we do is because Magellan views are a very nice basis on
which to discuss the local behavior of functions for inputs near∞ and when
outputs are near ∞. In particular, we can see that discontinuiities caused
by poles can be removed using ∞ as a Magellan output.

When∞ as is not permissible as Magellan input and/or Magellan output,
many functions are discontinuous

EXAMPLE 4.22. The discontinuity at −4 of the function in ?? whose
Mercator graph is

–4

Inputs

Screen

Outputs
Offscreen

–∞

+∞

)

)

()

can be removed by supplementing
the global input-output rule with the
input-output table:

Input Output

−4 ∞

If we imagine the Mercator graph
compactified into a Magellan graph,
we have

∞

–4

EXAMPLE 4.23. The discontinuity at∞ of the function BIB in ?? whose
Mercator graph is

7. Continuity at ∞ 129

Screen

)

Outputs

(
Inputs

() +∞–∞

–∞

+∞ Offscreen

can be removed by supplementing
the global input-output rule with the
input-output table:

Input Output

∞ ∞

If we imagine the Mercator graph
compactified into a Magellan graph,
we have

∞

Screen

Offscreen
0

EXAMPLE 4.24. The function
whose the global graph in Mercator
view is

Screen

(

Inputs
((

+2

+∞–∞

Offscreen

(

Outputs

is discontinuous at ∞ not only be-
cause the global graph has a gap at
∞ since Local extreme-height inputs
but also because the global graph has
a jump at ∞.

If we imagine the Mercator view
compactified into a Magellan view,
we have

∞

Screen
Offscreen

+2

130 Chapter 4. Features Near ∞

4. At ∞ The matter here revolves around whether or not ∞ should
be allowed as a given input. We did but,

Also, in this section, for a reason which we will explain after we are done,
we will have to deal separately with the case when the given input is x0 and
the case when the given input is ∞.

In accordance with ??, we should say that all functions are discontinuous
at ∞ since the outputs for inputs near ∞ cannot be near the output for ∞
for the very good reason that we cannot use ∞ as input to begin with.

LANGUAGE 4.1 Continuity at ∞ At ∞, things are a bit sticky:
• With a Magellan view, we can see if a function is continuous at ∞ or

not.
• Technically, though, to talk of continuity at ∞ requires being able

to take computational precautions not worth taking here but many
teachers feel uneasy dealing with continuity at∞ without taking these
precautions. So, we will not discuss continuity at ∞ in this text.

EXAMPLE 4.25. The function
whose global graph in Mercator view
is

Screen

)

Outputs

(

Inputs
() +∞–∞

–∞

+∞ Offscreen

is discontinuous at ∞ because, even
though the outputs of inputs near ∞
are all large,the global graph has a
gap at∞ since Local extreme-height
inputs.

If we imagine the Mercator view
compactified into a Magellan view,
we have

∞

Screen

Offscreen
0

8. Smoothness near ∞ 131

Magellan continuous atEXAMPLE 4.26. The function

–4

Inputs

Screen

Outputs
Offscreen

–∞

+∞

)

)

()

is discontinuous at −4 because the
global graph has a pole at −4:
I the outputs for nearby inputs,

both inputs right of −4 and in-
puts left of −4, are all large,

but, since Local extreme-height in-
puts,
I −4 itself has no output.

5. Magellan continuity at a pole x0. A function is Magellan
continuous at x0 when we could remove the discontinuity at x0 by over-
riding or supplementing the global input-output rule with an input-output
table involving ∞ as Magellan output.
EXAMPLE 4.27. The function
in Example 4.12 is discontinuous at
−4 because the function has a gap
at −4 but Magellan continuous as
we could remove the gap by supple-
menting the global input-output rule
with the input-output table

Input Output

−4 ∞

∞

–4

8 Smoothness near ∞

132 Chapter 4. Features Near ∞

Think globally, act locally.1

Several Mathematicians2

global feature

Chapter 5

Global Analysis

Interpolation, 134 • Feature Sign-Change Inputs, 140 • Essential
Feature Sign-Changes Inputs, 142 • Essential Extreme-Height Inputs,
145 • Non-essential Features, 146 • Essential Onscreen Graph, 148 .

that is the largest error that will not change the qualitative information
we are looking for. The largest permissible error, which is the equivalent of
a tolerance, will turn out to be easy to determine.

We can see from Chapter 3 that the reasoncould not possibly give us a
global graph is that, if a plot point may tell us where the global graph “is
at”, a plot point certainly cannot tell us anything about where the global
graph “goes from there”. And, since the latter is precisely what local graphs
do with slope and concavity, we are now in a position to:

i. Describe how to interpolate local graphs into a global graph. This
corresponds to the second of the about

ii. Describe and name global features that a function may or may not
have. As opposed to local features, which involved only inputs near a given
input, global features will involve all inputs.

iii. Discuss questions about interpolating local graphs which correspond
to the other two

i. How will we know near which inputs to get the local graphs?
ii. After we have interpolated the local graphs, how will we know if the

curve we got is the global graph?

1https://en.wikipedia.org/wiki/Think_globally%2C_act_locally
2Educologists may want to look up https://math.stackexchange.com/questions/

34053/list-of-local-to-global-principles

133

https://en.wikipedia.org/wiki/Think_globally%2C_act_locally
https://math.stackexchange.com/questions/34053/list-of-local-to-global-principles
https://math.stackexchange.com/questions/34053/list-of-local-to-global-principles

134 Chapter 5. Global Analysis

joining curve
interpolate
transition input
compatible
essential interpolation
essential
forced

Here again, to help focussing, the functions in the EXAMPLES in this
chapter will always be presumed to have been defined by a global input-
output rule but and the global graph of the function will be provided instead.

1 Interpolation

Interpolating will be for local graphs what joining cannot be for plot points,
that is, interpolating local graphs will eventually provide us with global
graphs.

1. Just to be part of the graph of a function, the joining curve we
draw from one local graph to the other local graph will have to meet

i. The FUNDAMENTAL PROBLEM.
But, in order for a joining curve to be an interpolation of local graphs of
algebraic functions which, as we will see, are continuous at all inputs as well
as smooth near all inputs,

ii. The joining curve will itself have to be continuous at, as well as
smooth near, all inputs,

iii. The joining curve will also have to be:
• Continuous at, as well as smooth near, the transition inputs, that is
the inputs where the joining curve meets the local graphs,
• Compatible with the local graphs, that is the slope-sign and the concavity-
sign will have to be the same on both sides of the transition inputs.

A particularly important kind of interpolation will be essential interpo-
lations that is interpolations in which

iv. The joining curve is essential, that is has only local features that
are forced by the local graphs being interpolated.

Which local graphs we will interpolate will depend on the answer in each
case to Explicit Functions.

We will now illustrate these requirements with EXAMPLES that will show
what makes a joining curve an interpolation of local graphs and what pre-
vents a joining curve from being an interpolation of local graphs.

2. When the answer to the Explicit Functions is that the function
does not have a pole, the offscreen graph consists of just the local graph
near ∞ and therefore we interpolate with a joining curve from one end of
the local graph near ∞ across the screen to the other end. The transition
inputs are thus the lower bound and the upper bound.

1. Interpolation 135

In Example 5.1 to Example 5.5 we will examine whether or not the
joining curve is an interpolation for the

DATA 5.1 Function with the offscreen graph

Screen

+∞–∞

+∞

–∞

Offscreen

Inputs

Outputs

) (Transition!
inputs

EXAMPLE 5.1. For functions whose offscreen graph is as in Data 5.1,
the joining curve

Screen

+∞–∞

+∞

–∞

Joining!
curve

Offscreen

Inputs

Outputs

) (Transition!
inputs

Local!
features

Local!
features

i. is continuous at all inputs and smooth
near all inputs,
ii. is continuous at, as well as smooth near ,
both transition inputs,
iii. is compatible with the offscreen graph
near both transition inputs,
iv. is not essential because the local mini-
mum and the local maximum are not forced
by the offscreen graph.

So: This joining curve is an interpolation
of the offscreen graph but not an essential
interpolation.

EXAMPLE 5.2. For functions whose offscreen graph is as in Data 5.1,

136 Chapter 5. Global Analysis

the joining curve

Screen

+∞–∞

+∞

–∞

Joining!
curve

Offscreen

Inputs

Outputs

) (Transition!
inputs

kink

jump
Local!
features

Local!
features

i. is continuous at all inputs and smooth
near all inputs,
ii. is not smooth near the left transition in-
put and not continuous at the right transi-
tion input,
iii. is compatible with the offscreen graph
near both transition inputs,
iv. is essential

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

EXAMPLE 5.3. For functions whose offscreen graph is as in Data 5.1,
the joining curve

Screen

+∞–∞

+∞

–∞

Offscreen

Inputs

Outputs

) (Transition!
inputs

Joining!
curve

Local!
features

Local!
features

i. is not continuous at all inputs but is
smooth near all inputs,
ii. is continuous at the transition inputs as
well as smooth near both transition inputs,
iii. is compatible with the offscreen graph
near both transition inputs,
iv. is not essential because the jump is not
forced by the offscreen graph.

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

EXAMPLE 5.4. For functions whose offscreen graph is as in Data 5.1,

1. Interpolation 137

the joining curve

Screen

+∞–∞

+∞

–∞

Offscreen

Inputs

Outputs

Joining!
curve

introduces a pole in the offscreen graph
so the function is not as in Data 5.1 any-
more and nothing onscreen matters after
that.

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

EXAMPLE 5.5. For functions whose offscreen graph is as in Data 5.1,
the joining curve

Screen

+∞–∞

+∞

–∞

Offscreen

Inputs

Outputs

) (Transition!
inputs

Joining!
curve

Local!
features

Local!
features

i. is continuous at all inputs and is smooth
near all inputs,
ii. is both continuous at the transition in-
puts and smooth near the transition inputs,
iii. is compatible with the offscreen graph
near the right transition input but is not
compatible with the offscreen graph near
the left transition input (Easy to miss.),
iv. is not essential .(Easy to miss.)

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

3. When the answer to the Explicit Functions is that the function
does have a pole x∞-height, the offscreen graph consists of the local graph
near ∞ together with the local graph near x∞-height and therefore we must
interpolate with a joining curve in two pieces:
• one piece between:

I the end of the right side of the local graph near ∞
and
I the end of the left side of the local graph near x∞-height,

and
• another piece between:

138 Chapter 5. Global Analysis

I the end of the right side of the local graph near x∞-height,
and
I the end of the left side of the local graph near ∞

The transition inputs are then:
• the lower bound and the extremity of the left side of the neighborhood
of x∞-height
• the extremity of the right side of the neighborhood of x∞-height and the
upper bound.
In Example 5.6 and Example 5.7 we will examine whether or not the

joining curve is an interpolation for the

DATA 5.2 Function with the offscreen graph

Screen

+∞

+∞

–∞

Offscreen

Inputs

Outputs

–∞) (
Transition inputs

)(

x∞-height

EXAMPLE 5.6. For functions whose offscreen graph is as in Data 5.2,
the joining curve

Screen

+∞

+∞

–∞

Offscreen

Inputs

Outputs

–∞) (
Transition inputs

)(

x∞-height

i. is continuous at all inputs and is smooth
near all inputs,
ii. is continuous at all transition inputs and
smooth near all transition inputs except the
leftmost transition input,
iii. is compatible with the offscreen graph
near all transition inputs except the leftmost
transition input,
iv. is essential .

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

1. Interpolation 139

fudge
EXAMPLE 5.7. For functions whose offscreen graph is as in Data 5.2,
the joining curve

Screen

+∞–∞

+∞

–∞

Offscreen

Inputs

Outputs

) (
Transition inputs

)(

xmin-height
x∞-height

i. is continuous at all inputs and is smooth
near all inputs,
ii. is continuous at all transition inputs and
smooth near all transition inputs,
iii. is compatible with the offscreen graph
near all transition inputs,
iv. is essential because xmin-height is forced
by the offscreen graph.

So: This joining curve is an interpolation
of the offscreen graph and is an essential
interpolation.

4. Occasionally, we will need to interpolate with an onscreeen local
graph near a bounded input (As opposed to a local graph near a pole which
is offscreen).

5. Occasionally, we will need to fudge the offscreen graph that is .

6. So, based on the preceding EXAMPLES, to draw an interpolation,
we proceed as follows

PROCEDURE 5.1 Interpolate an offscreen graph.

i. Going from left to right, mark the features where the offscreen
graph enters the screen and where the offscreen graph exits the
screen
ii. Draw the joining curve(s) from the point(s) where the offscreen
graph enters the screen to the point(s) where the offscreen graph
exits the screen making sure that:
• Each joining curve is smooth,
• Each transition between a joining curve and the local graph is
smooth
• The joining curves do not introduce any infinite height input.

TEMO 5.1 Let f be the function whose offscreen graph is

140 Chapter 5. Global Analysis

Screen

+∞–∞

+∞

–∞

Offscreen

x∞-height

Outputs

Inputs

To interpolate,
i. Mark the features where the
offscreen graph enters and
exits the screen:

Screen

+∞–∞

+∞

–∞

Offscreen

x∞-height

Outputs

Inputs

ii. Draw the joining curve(s)
smoothly

Screen

+∞–∞

+∞

–∞

Offscreen

x∞-height

Outputs

Inputs

2 Feature Sign-Change Inputs

We will often need to find bounded inputs such that the outputs for nearby
inputs left of x0 and the outputs for nearby inputs right of x0 have specified
feature-signs.

1. An input is a Height sign-change inputwhenever Height sign =
〈+,−〉 or 〈−, +〉. We will use xHeight sign-changeto refer to a bounded Height
sign-change input.

EXAMPLE 5.8.
Let f be the function
specified by the global
graph

Screen

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞

Offscreen

Local Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

0

x0-height x∞-height

Then,
• x0-height is not a Height sign-
change input,

• x∞-height is a Height sign-
change input.

• ∞ is a Height sign-change in-
put.

2. Feature Sign-Change Inputs 141

EXAMPLE 5.9.
Let f be the function
specified by the global
graph

Screen

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞

Offscreen

Local Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

0

x0-height x∞-height

Then,
• x0-height is a Height sign-
change input,

• x∞-height is not a Height sign-
change input,

• ∞ is a Height sign-change in-
put.

2. An input is a Slope sign-change inputwhenever Slope sign =
〈�,�〉 or 〈�,�〉. We will use xSlope sign-changeto refer to a Slope sign-
change input.

EXAMPLE 5.10.
Let f be the function
specified by the global
graph

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞ Offscreen

Local Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

0

x0-slope

Screen

x∞-height

Then,
• x0-slope is a Slope sign-change
input,

• x∞-height is a Slope sign-
change input,

• ∞ is not a Slope sign-change
input.

EXAMPLE 5.11.
Let f be the function
specified by the global
graph

Screen

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞

OffscreenLocal Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

0

x0-slope x∞-height

Then,
• x0-slope is not a Slope sign-
change input,

• x∞-slope is not a Slope sign-
change input,

• ∞ is not a Slope sign-change
input.

3. An input is a Concavity sign-change inputwhenever Concavity
sign = 〈∪,∩〉 or 〈∩,∪〉. We will use xConcavity sign-changeto refer to a Con-
cavity sign-change input.

EXAMPLE 5.12.

142 Chapter 5. Global Analysis

essential
Let f be the function
specified by the global
graph

Screen

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞

OffscreenLocal Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

x0-concavityx∞-height

Then,
• x0-concavity is a Concavity
sign-change input,

• x∞-height is a Concavity sign-
change input.

• ∞ is not a Concavity sign-
change input.

EXAMPLE 5.13.
Let f be the function
specified by the global
graph

Screen

+∞–∞

+∞

–∞

Local
Graph!
near +∞

Local Graph!
near –∞ Offscreen

Local Graph!
near x∞-height

Local Graph!
near x∞-height

Outputs

Inputs

x0-concavity x∞-height

Then,
• x0-concavity is a Concavity
sign-change input,

• x∞-height is not a Concavity
sign-change input,

• ∞ is a Concavity sign-change
input.

3 Essential Feature Sign-Changes Inputs

1. A feature sign-change input is essential whenever its existenceis
forcedby the offscreen graph. So, given the offscreen graph of a function,
in order

PROCEDURE 5.2 Establish the existence of essential feature
sign change inputs in a joining curve

i. For each piece of the joining curve, check the feature sign at both
end of the piece.
• If the feature signs at the two ends of the piece are opposite, there
has to be a feature sign change input for that piece.
• If the feature signs at the two ends of the piece are the same, there

does not have to be a feature sign change input for that piece.
ii. For each ∞ height input, if any, check the feature sign on either
side of the ∞ height input:
• If the feature signs on the two sides of the ∞ height input are
opposite, the ∞ height input is a feature sign change input.
• If the feature signs on the two sides of the ∞ height input are the

3. Essential Feature Sign-Changes Inputs 143

same, the ∞ height input is not a feature sign change input..
iii. Check the feature sign on the two sides of ∞
• If the feature signs on the two sides of ∞ are opposite, ∞ is a
feature sign change input.
• If the feature signs on the two sides of ∞ are the same, ∞ is not

a feature sign change input..

TEMO 5.2 Let f be the function whose offscreen graph is

+∞–∞

+∞

–∞

Outputs

0

Offscreen

ScreenHeight sign "
left of x∞-height
Height sign
near –∞ Height sign

near +∞

Height sign right
of x∞-height

x∞-height
Inputs

To establish the existence of Height-sign change inputs
• Since the Height signs near −∞ and left of x∞-height are opposite there is

an essential Height sign-change between −∞ and x∞-height.
• Since the Height signs right of x∞-height and near +∞ are the same there is

no essential Height sign-change between x∞-height and +∞.

TEMO 5.3 Let f be the function whose offscreen graph is

+∞

–∞

Outputs

0

Offscreen

Screen

+∞–∞
Inputs

x∞-height

To establish the existence of Slope-sign change inputs
• Since the Slope signs near −∞ and left of x∞-height are opposite there is an

essential Slope sign-change between −∞ and x∞-height.
• Since the Slope signs right of x∞-height and near +∞ are the same there is

no essential Slope sign-change between x∞-height and +∞.

TEMO 5.4 Let f be the function whose offscreen graph is

144 Chapter 5. Global Analysis

+∞

–∞

Outputs

0

Offscreen

Screen

+∞–∞
Inputs

x∞-height

To establish the existence of Concavity-sign change inputs
• Since the Concavity signs near −∞ and left of x∞-height are opposite there

is an essential Concavity sign-change between −∞ and x∞-height.
• Since the Concavity signs right of x∞-height and near −∞ are the same there

is no essential Concavity sign-change between x∞-height and +∞.

2. However, things can get a bit more complicated.

TEMO 5.5 Let f be the function whose offscreen graph is
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

To establish the existence of Concavity-sign change inputs
• Since the concavity-sign at the transitions from −∞ is ∪ and the concavity-

sign at the transition to +∞ is also ∪, one might be tempted to say that
there is no essential concavity sign-change input.

• However, attempting a smooth interpolation shows that things are a bit more
complicated than would at first appear.

i. Since the slope-signs at the transition from −∞ is
� and the slope-sign at the transition to +∞ is �
there has to be an essential Slope sign-change input
near which Concavity sign = 〈∩,∩〉

Outputs

Inputs

Screen

+∞–∞

+∞

–∞
x0-slope

Offscreen

4. Essential Extreme-Height Inputs 145

essential␣local␣extreme-
height␣input

ii. Since the concavity-signs near −∞ and left of
x0-slope are opposite, there is an essential Concavity
sign-change input between −∞ and x0-slope.

Outputs

Inputs

Screen

+∞

+∞

–∞
x0-concavity

Offscreen

x0-slope

iii. Since the concavity-signs right of x0-slope and near
+∞ are opposite, there is an essential Concavity
sign-change input between x0-slope and +∞.

Outputs

Inputs

Screen

+∞–∞

+∞

–∞
x0-slope x0-concavity

Offscreen

3. That there is no essential feature sign-change input does not mean
that there could not actually be a non-essential feature sign-change input.

EXAMPLE 5.14.
Let f be the function
whose offscreen graph
is

+∞–∞

+∞
Outputs

x∞-height

0

Offscreen

Screen

–∞
Inputs

• There is no essential Height sign-change input, no
essential Slope sign-change input, and no essential
Concavity sign-change input.

• However, the actual bounded graph could very well
be:

+∞

–∞

Outputs

0

Offscreen

Screen

+∞–∞
Inputs

x∞-height

4 Essential Extreme-Height Inputs

An extreme-height input is an essential local extreme-height input
if the existence of the local extreme-height input is forced by the offscreen
graph in the sense that any smooth interpolation must have a local extreme-
height input.

146 Chapter 5. Global Analysis

EXAMPLE 5.15.
Let f be a function
whose offscreen graph
is
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Offscreen

Then,
i. Since the Slope signs near −∞ and +∞ are opposite
there is an essential Slope sign-change between −∞
and +∞.
ii. Since the Height of xSlope sign-change is not infinite,
the slope near xSlope sign-change must be 0

Outputs

Inputs

Screen

+∞–∞

+∞

–∞

?

xmaximum output

iii. x0-slope is a local essential Maximum-Height input.

EXAMPLE 5.16.
Let f be a function
whose offscreen graph
is

Screen

–∞

+∞

–∞

Outputs

Inputs

+∞

Offscreen

Then,
i. Since the Slope signs near −∞ and near +∞ are
opposite there is an essential Slope sign-change be-
tween −∞ and +∞.
ii. But since there is an ∞-height input, the Height
near xslopesign−change is infinite and there is no essen-
tial local maximum height input.

5 Non-essential Features

While, as we have just seen, the offscreen graph may force the existence
of certain feature-sign changes in the onscreen graph, there are still many
other smooth interpolations of the offscreen graph that are not forced by
the onscreen graph.

EXAMPLE 5.17. The moon has an influence on what happens on earth—
for instance the tides—yet the phases of the moon do not seem to have an
influence on the growth of lettuce (see http://www.almanac.com/content/

http://www.almanac.com/content/farming-moon

5. Non-essential Features 147

bump
wigglefarming-moon) or even on the mood of the math instructor.

We will say that a global feature is non-essentialif it is not forced by
the offscreen graph.

1. As we saw above, feature sign-change inputs can be non-essential.

EXAMPLE 5.18.
Let f be a function
whose graph is
Outputs
+∞

0

xheight sign-change

Offscreen

Screen

Inputs

–∞

–∞

Then,
i. The two Height sign-change inputs left of x∞-height
are non-essential because if the 0-output level line were
higher, there would be no Height sign-change input.
For instance:

Outputs

Screen

–∞

+∞

–∞

0

Offscreen

Inputs

xheight-sign change

ii. The Height sign-change input right of x∞-height is
essential because, no matter where the 0-output level
line might be, the joining curve has to cross it.

2. There other non-essential features:
• A smooth function can have a bump in which the slope does not change

sign but the concavity changes sign twice.

EXAMPLE 5.19. The function whose graph is
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Local Graph near +∞

Local Graph near –∞

Offscreen

xconcavity sign-change

Bump

has a bump.

• A smooth function can also have a wiggle, that is a pair of bumps in
opposite directions with the slope keeping the same sign throughout but
with three inputs where the concavity changes sign.

http://www.almanac.com/content/farming-moon
http://www.almanac.com/content/farming-moon
http://www.almanac.com/content/farming-moon

148 Chapter 5. Global Analysis

max-min␣fluctuation
min-max␣fluctuation EXAMPLE 5.20. The function whose graph is

Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Local Graph near +∞

Local Graph near –∞

Offscreen

xconcavity sign-change

Wiggle

has a wiggle.

• A smooth function can also have a max-min fluctuation or a min-
max fluctuation that is a sort of “extreme wiggle” which consists of a
pair of extremum-heights inputs in opposite directions. In other words,
a fluctuation involves:
– two inputs where the slope changes sign
– two inputs where the concavity changes sign

EXAMPLE 5.21. The function whose graph is
Outputs

Inputs

Screen

+∞–∞

+∞

–∞

Local Graph near +∞

Local Graph near –∞ Offscreen

xconcavity sign-change

Max-Min

xconcavity sign-change

xmax
xmin

has a max-min fluctuation.

6 Essential Onscreen Graph

It should be realized that in each and everyone of the above EXAMPLES we
were only able to determine how many essential inputs

NOTE 5.1 Location of essential inputs Locating essential inputs is a
totally different question from finding how many essential inputs there
are. Locating essential inputs is usually a much more difficult question
which, except in a very few cases, we will not deal with in this text.

We will thus use the following

6. Essential Onscreen Graph 149

DEFINITION 5.1 An essential onscreen graph is a simplest pos-
sible smooth interpolation of the offscreen graph, that is without any
nonessential feature-sign change inputs and without any nonessential
features.

EXAMPLE 5.22. Given the offscreen graph,

Screen

+∞–∞

+∞

–∞

Offscreen
Outputs

Inputs

the following

a.

Screen

+∞–∞

+∞

Smooth"
Interpolation

Offscreen
Outputs

Inputs

b.

Screen

+∞–∞

+∞

Smooth"
Interpolation

Offscreen
Outputs

Inputs–∞

c.

Screen

+∞–∞

+∞

Smooth"
Interpolation

Offscreen
Outputs

Inputs–∞

are all smooth interpolations but only c. is an essential onscreen graph.

EXAMPLE 5.23. Given the offscreen graph,

Screen

+∞–∞

+∞

–∞

Offscreen

x∞-height

Outputs

Inputs

the following

a.

Screen

+∞–∞

+∞

x∞-height

Offscreen

Outputs

Inputs

b.

Output Ruler

Input!
Ruler

Screen

+∞–∞

+∞

x∞-height

Offscreen–∞

c.

Screen

+∞–∞

+∞

x∞-height

Outputs

Inputs
–∞

Offscreen

150 Chapter 5. Global Analysis

are all smooth interpolations but only a. is an essential onscreen graph.

1. The essential onscreen graph will be about the best we will be able
to get with the technology in this text and, in order to detect, locate and
investigate nonessential features such as bumps, hiccups and fluctuations,
one needs the stronger technology of the Differential Calculus

2. There are two ways essential onscreen graphs come up in the real
world:
• The essential onscreen graph is how we see the actual graph from “far-
away” inasmuch as nonessential features such as bumps, hiccups and
fluctuations are too small to be seen from faraway.

EXAMPLE 5.24. Given the global graph,
Output Ruler

Input!
Ruler

Screen

+∞–∞

+∞

–∞

Offscreen

here is what we see from further and further away:
Output Ruler

Input!
Ruler+∞–∞

+∞

–∞

Screen

Offscreen
Output Ruler

Input!
Ruler+∞–∞

+∞

–∞

Screen

Offscreen
Output Ruler

Input!
Ruler+∞–∞

+∞

–∞

Offscreen

Offscreen
Output Ruler

Input!
Ruler+∞–∞

+∞

–∞

• The essential onscreen graph is what we would get if the onscreen graph
were a wire being pulled out so as to straighten it.

EXAMPLE 5.25. Given the global graph,

6. Essential Onscreen Graph 151

Screen

+∞–∞

+∞

–∞

OffscreenOutputs

Inputs

we can imagine the non-essential onscreen graph as a “wire” being pulled
by the offscreen graph so as to smooth it out into an essential bounded
graph.

Screen

+∞–∞

+∞

–∞

Offscreen

"wire"

Outputs

Inputs

pull

pu
ll

Screen

+∞–∞

+∞

–∞

"wire"

Offscreen
Outputs

Inputs

pull

pu
ll

Input!
Ruler

Screen

+∞–∞

Output Ruler
+∞

–∞

"wire"

Offscreen

pull

pu
ll

Screen

+∞–∞

+∞

–∞

"wire"

OffscreenOutputs

Inputs

152 Chapter 5. Global Analysis

monomial function
coefficient
output-specifying code
exponent
power

Chapter 6

Regular Monomial Functions
- Local Analysis

Output At x0, 154 • Plot Point, 157 • Normalization, 158 • Thickening
The Plot, 160 • Output Near ∞, 161 • Output Near 0, 165 • Graph Place
Near ∞ and Near 0, 169 • Local Graph Near ∞ and Near 0, 174 • Local
Features Near ∞ and Near 0, 175 .

Monomial functions are functions that multiply or divide a given num-
ber, referred to as the coefficient, by a number of copies of the input.

1. More precisely,

DEFINITION 6.1 Monomial Functions are algebraic functions
whose global input-output rule is of the form

x︸︷︷︸
input

f−−→ f(x)︸ ︷︷ ︸
output

= coefficient xexponent︸ ︷︷ ︸
output-specifying code

where:
I The coefficient can be any bounded number.
I The exponent in the power xexponent is a signed counting num-

ber that specifies what the function is to do to the coefficient with
the copies of x:
• The size of the exponent specifies how many copies of x are to
be made. (If the exponent is 0, no copy is to be made and the
coefficient is to be left alone.)
• The sign of the exponent specifies whether the coefficient is to

153

154 Chapter 6. Regular Monomial Functions - Local Analysis

power function
regular monomial function
exceptional monomial
function

be multiplied or to be divided by the copies of x:
+ means the coefficient is to be multiplied by the copies of x,
− means the coefficient is to be divided by the copies of x.

LANGUAGE 6.1 Power Functions is the name that is normally used
for those monomial functions whose coefficient is +1 or −1 . Unfor-
tunately, the name power function is often used in place of monomial
function and, even more unfortunately, this was the case in the previous
editions of this text.

2. For reasons that will appear shortly we will distinguish:
• The regular monomial functions, to be discussed in this and the

next chapter, which are those monomial functions whose exponent is
any signed counting number other than 0 or +1 .

from
• The exceptional monomial functions, to be discussed in chapter 8,
which are those monomial functions whose exponent is either 0 or +1 .

1 Output At x0

Let f be the regular monomial function specified by the global input-output
rule

x︸︷︷︸
input

f−−→ f(x)︸ ︷︷ ︸
output

= ax±n︸ ︷︷ ︸
output-specifying code

where n is the number of copies used by f , and let x0 be the specified input.
To get the output of the function f at the specified input x0, we use ?? on
?? which, for regular monomial functions, becomes:

PROCEDURE 6.1 To get the output at x0 of a regular mono-
mial function f .

i. Declare that x is to be replaced by x0

x
∣∣∣
x←x0

f−−→ f(x)
∣∣∣
x←x0

= ax±n
∣∣∣
x←x0

which, once carried out, gives:

x0
f−−→ f(x0) = ax0

±n︸ ︷︷ ︸
output-specifying code

1. Output At x0 155

ii. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the com-

putations to be performed according to the output-specifying code.
b. Perform the computations specified by the output-specifying

code and thus get the output f(x0);

• For positive exponents , the code specifies that the out-
put f(x0) is obtained by multiplying the coefficient a by n copies of
the specified input x0:

f(x0) = a · x0 · . . . · x0︸ ︷︷ ︸
n copies of x0

• For negative exponents , the code specifies that the
output f(x0) is obtained by dividing the coefficient a by the n copies
of the specified input x0:

f(x0) =
a

x0 · . . . · x0︸ ︷︷ ︸
n copies of x0

DEMO 6.1 Let FLIP be the function specified by the global input-output
rule

x
F LIP−−−−−−→ FLIP (x) = (+527.31)x+11

To get the output of the function FLIP at −3 :
i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

F LIP−−−−−−→ FLIP (x)
∣∣∣
x←−3

= (+527.31)x+11
∣∣∣
x←−3

which, once the replacement has been carried out, gives:

−3 F LIP−−−−−−→ FLIP (−3) = (+527.31) · (−3)+11︸ ︷︷ ︸
output-specifying code

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a positive expo-

nent, the code specifies that the output FLIP (−3) is obtained by multiplying
the coefficient +527.31 by 11 copies of the specified input −3:

FLIP (−3) = (+527.31) · (−3) · . . . · (−3)︸ ︷︷ ︸
11 copies of −3

156 Chapter 6. Regular Monomial Functions - Local Analysis

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= (527.31) · (−) · . . . · (−)︸ ︷︷ ︸
11 copies of −

· (3) · . . . · (3)︸ ︷︷ ︸
11 copies of 3

and since
• by theorem 19.2 on page 365, an odd number of copies of − multiply to −
and we get

= (527.31) · (−) · (177 147)

= −93 411 384.57
The input-output pair is (−3,−93 411 384.57)

DEMO 6.2 Let FLOP be the function specified by the global input-output
rule

x
F LOP−−−−−−→ FLOP (x) = (+3 522.38)x−6

To get the output of the function FLOP at −3 :
i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

F LOP−−−−−−→ FLOP (x)
∣∣∣
x←−3

= (+3 522.38)x−6
∣∣∣
x←−3

which, once carried out, gives:

−3 F LOP−−−−−−→ FLOP (−3) = (+3 522.38) · (−3)−6︸ ︷︷ ︸
output-specifying code

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a negative expo-

nent, the code specifies that the output FLOP (−3) is obtained by dividing
the coefficient +3 522.38 by 6 copies of the specified input −3:

FLOP (−3) = +3 522.38
(−3) · . . . · (−3)︸ ︷︷ ︸

6 copies of −3

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

=
+3 522.38

(−) · . . . · (−)︸ ︷︷ ︸
even number of copies of −

· (3) · . . . · (3)︸ ︷︷ ︸
6 copies of 3

2. Plot Point 157

and since,
• by theorem 19.2 on page 365, an even number of copies of − multiply to +

and we get

= +3 522.38
(+) · (729)

= +4.8317 + [...]

The input-output pair is (−3, +4.8317 + [...])

2 Plot Point

Let f be the regular monomial function specified by the global input-output
rule

x︸︷︷︸
input

f−−→ f(x) = ax±n︸ ︷︷ ︸
output-specifying code

where n is the number of copies used by f , and let x0 be the specified input.
To plot the input-output pair for the specified input x0, we use ?? on ??
which, in the case of regular monomial functions, becomes

PROCEDURE 6.2 To get the plot point for a specified bounded
input

1. To get the output at the specified input using ?? on ?? to get the
input-output pair,
2. Locate the plot point with ?? on ??.

DEMO 6.3 Let FLIP be the function specified by the global input-output
rule

x
F LIP−−−−−−→ FLIP (x) = (+527.31)x+11

To plot the input-output pair for the input −3 :
1. We get the output of the function FLIP at −3 . We found in EXAMPLE

5.1 above that FLIP (−3) = −93 411 384.57

158 Chapter 6. Regular Monomial Functions - Local Analysis

features, of input-output
rule

Coefficient Sign
Exponent Sign
Exponent Parity
even
odd

2. Thus, the input-output pair for the
plot point of FLIP at −3 is
(−3,−93 411 384.57) and the plot
point is:

–∞

+∞

–∞
Offscreen

Screen

Screen

Outputs

+∞–3

Inputs

–93411384.57
(–3, –93411384.57)

Offscreen

Plot
point for
FLIP (–3)

DEMO 6.4 Let FLOP be the function specified by the global input-output
rule

x
F LOP−−−−−−→ FLOP (x) = (+3 522.38)x−6

To plot the input-output pair for the input −3 :
1. We get the output of the function FLOP at −3 . We found in Demo 6.2
on page 156 that FLOP (−3) = +4.8317 + [...]

2. Thus, the input-output pair for the
graph point of FLOP at −3 is
(−3,+4.8317 + [...]) and the plot
point is:

–∞

+∞

–∞
Offscreen

Screen

Screen

Plot
point for
FLIP (–3)

Outputs

+∞–3

Inputs

+4.8317 + [...]
(–3, +4.8317 + [...])

Offscreen

3 Normalization

Since in this text we will take a qualitative viewpoint, all the features of
the global input-output rule that specifies a regular monomial function will
not be equally important for us.

As we will see, the three features that will be important for us are:
• Coefficient Sign which can be + or −.
• Exponent Sign which can be + or −,
• Exponent Parity which can be even or odd depending on whether the
size of the exponent, that is the number of copies, is even or odd.

3. Normalization 159

Coefficient Size
Exponent Size
normalize

DEMO 6.5 The function specified by the global input-output rule

x
BLIP−−−−−−→ BLIP (x) = (−160.42)x+7

is a monomial function whose global input-output rule has the following features
• Coefficient Sign BLIP = −.
• Exponent Sign BLIP = +,
• Exponent Parity BLIP = odd,

But, because, in this text, we are only interested in qualitative analysis,
we will not pay any attention to the following two features:
• Coefficient Size (other than the coefficient having to be bounded)
• Exponent Size (other than the size of the exponent being even or odd)

NOTE 6.1
A deeper analysis would require taking into account the actual number
of copies but even then the size of the coefficient would still not matter
much.

Accordingly, in order to focus on the important features of regular mono-
mial functions, it will often be helpful to normalize the global input-output
rule of a regular monomial function as follows:

PROCEDURE 6.3 Normalize the global I-O rule of a regular
monomial function.

i. Replace the Coefficient Size by the word bounded,
ii. Replace the Exponent Size by the Exponent Parity

TEMO 6.1 Let BLIP be the function specified by the global input-output
rule

x
BLIP−−−−−−→ BLIP (x) = (− 160.42)x+ 7

To normalize BLIP .
i. We replace the Coefficient Size, namely 160.42 , by the word bounded

ii. We replace the Exponent Size, namely 7 , by the word odd
The normalized global input-output rule of BLIP is thus

x
BLIP−−−−−−→ BLIP (x) = (− bounded) · x+ odd

TEMO 6.2 Let BLOP be the function specified by the global input-output
rule

x
BLOP−−−−−−→ BLOP (x) = (− 365.28)x− 6

To normalize BLOP ,

160 Chapter 6. Regular Monomial Functions - Local Analysis

code
bi-level sign
±
∓

i. We replace the Coefficient Size, namely 365.28, by the word bounded
ii. We replace the Exponent Size, namely 6, by the word even

The normalized global input-output rule of BLOP is thus

x
BLOP−−−−−−→ BLOP (x) = (− bounded) · x− even

4 Thickening The Plot

As mentioned in on , instead of using single inputs to get single plot points,
we will “thicken the plot” that is we will use neighborhoods of given inputs
to get graph places. But to use neighborhoods with global input-output rules,
we will first have to introduce code to be able to declare by what to replace
x. And, since this at the very core of what we will be doing in the rest of
this text, we want to proceed with the utmost caution.

Since we are dealing here with regular monomial functions we will only
be interested in inputs near ∞ and/or inputs near 0 and so here all we will
need is the sign-size.

In order to declare by what we want to replace x, we will use the following
code:

Near Side Code

Infinity Left (0 ∞ positive +∞ +large
Right (0∞ negative −∞ −large

Zero Left (∞ 0 negative 0− −small
Right (∞0 positive 0+ +small

For the input-output pairs on one side, we will basically use on but declare
that x is to be replaced using the above code for the given input.

For the input-output pairs of both sides, we will use the bi-level signs
± and ∓ as follows:

Instead of We can just write and the I-O pair

+ −−−−→ + and − −−−−→ + ± −−−−→ +
(
± , +

)
+ −−−−→ − and − −−−−→ − ± −−−−→ −

(
± , −

)
+ −−−−→ + and − −−−−→ − ± −−−−→ ±

(
± , ±

)
+ −−−−→ − and − −−−−→ + ± −−−−→ ∓

(
± , ∓

)

5. Output Near ∞ 161

5 Output Near ∞

1. When we want to thicken only one side of ∞, we proceed as follows:

PROCEDURE 6.4 To get the input-output pairs on one side
of ∞.

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by +large or −large
3. Execute the output-specifying code that is:

a. Decode the output-specifying code, that is write out the com-
putations to be performed according to the output-specifying code.

b. Perform the computations specified by the code using theo-
rem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on
page 39

DEMO 6.6 Let NADE be the function specified by the global input-output
rule

x
NADE−−−−−−−→ NADE(x) = (−83.91)x−5

To get the input-output pairs near +∞ for NADE :
i. We normalize NADE:

x
NADE−−−−−−−→ NADE(x) = (−bounded) x−odd

ii. We declare that x is to be replaced by +large

x
∣∣∣
x←+large

NADE−−−−−−−→ NADE(x)
∣∣∣
x←+large

= (−bounded)x−odd
∣∣∣
x←+large

which, once carried out, gives:

+large NADE−−−−−−−→ NADE(+large) = (−bounded)(+large)−odd︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative ,

we get the output NADE(+large) by dividing the coefficient −bounded by
an odd number of copies of the specified input +large:

= −bounded
(+large) · . . . · (+large)︸ ︷︷ ︸
odd number of copies of +large

162 Chapter 6. Regular Monomial Functions - Local Analysis

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

=
−bounded

(+) · . . . · (+)︸ ︷︷ ︸
odd number of copies of +

· (large) · . . . · (large)︸ ︷︷ ︸
odd number of copies of large

and since,
• by theorem 19.2 on page 365, any number of copies of + multiply to +,
• by the Definition of large, any number of copies of large multiply to large

= −bounded
+ · large

and by theorem 19.2 on page 365 and theorem 1.3 on page 39 we get
= −small

iv. The input-output pairs are (+large,−small)

DEMO 6.7 Let RADE be the function specified by the global input-output
rule

x
RADE−−−−−−→ RADE(x) = (+45.67)x−4

To get the input-output pairs near −∞ for RADE:
i. We normalize RADE:

x
RADE−−−−−−→ RADE(x) = (+bounded) x−even

ii. We declare that x is to be replaced by −large

x
∣∣∣
x←−large

RADE−−−−−−→ RADE(x)
∣∣∣
x←−large

= (+bounded)x−even
∣∣∣
x←−large

which, once carried out, gives:

−large RADE−−−−−−→ RADE(−large) = (+bounded)(−large)−even︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative ,

we get the output RADE(−large) by dividing the coefficient +bounded by
an even number of copies of the specified input −large:

= +bounded
(−large) · . . . · (−large)︸ ︷︷ ︸
even number of copies of −large

b. We perform the computations specified by the code:

5. Output Near ∞ 163

Dealing separately with the signs and the sizes , we have

=
+bounded

(−) · . . . · (−)︸ ︷︷ ︸
even number of copies of −

· (large) · . . . · (large)︸ ︷︷ ︸
even number of copies of large

and since,
• by the Sign Multiplication Rule, any even number of copies of − multiply
to +

• by the Definition of large, any number of copies of large multiply to arge
= +bounded

+ · large
and by the Sign Division Rule and the Size Division Theorem

= +small
iv. The input-output pairs are (−large, +small)

2. When we want to thicken both sides of ∞, we declare that x is to be
replaced by ±large and keep track of the signs as we perform the compu-
tations specified by the output-specifying code.

DEMO 6.8 Let DADE be the function specified by the global input-output
rule

x
DADE−−−−−−−→ DADE(x) = (−83.91)x+5

To get the input-output pairs near ∞ for DADE:
i. We normalize DADE:

x
DADE−−−−−−−→ DADE(x) = (−bounded) x+odd

ii. We declare that x is to be replaced by ±large

x
∣∣∣
x←±large

DADE−−−−−−−→ DADE(x)
∣∣∣
x←±large

= (−bounded)x+odd
∣∣∣
x←±large

which, once carried out, gives:

±large DADE−−−−−−−→ DADE(±large) = (−bounded)(±large)+odd︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,

we get that the output DADE(±large) is obtained by multiplying the coeffi-
cient −bounded by an odd number of copies of the specified input ±large:

= (−bounded) · (±large) · . . . · (±large)︸ ︷︷ ︸
odd number of copies of ±large

164 Chapter 6. Regular Monomial Functions - Local Analysis

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= (−bounded) · (±) · . . . · (±)︸ ︷︷ ︸
odd number of copies of ±

· (large) · . . . · (large)︸ ︷︷ ︸
odd number of copies of large

and since,
• by the Sign Multiplication Rule, an odd number of copies of + multiply
to + and an odd number of copies of − multiply to −

• by the Definition of large, any number of copies of large multiply to large
= (−bounded) · ± · large

and by the Sign Multiplication Rule and the Size Multiplication Theorem
= ∓large

iv. The input-output pairs are (±large,∓large)

DEMO 6.9 Let PADE be the function specified by the global input-output
rule

x
P ADE−−−−−−→ PADE(x) = (−65.18)x+6

To get the input-output pairs near ∞ for PADE
i. We normalize PADE.

x
P ADE−−−−−−→ PADE(x) = (−bounded) x+even

ii. We declare that x is to be replaced by ±large

x
∣∣∣
x←±large

P ADE−−−−−−→ PADE(x)
∣∣∣
x←±large

= (−bounded)x+even
∣∣∣
x←±large

which, once carried out, gives:

±large P ADE−−−−−−→ PADE(±large)) = (−bounded)(±large)+even︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,

we get the output PADE(±large) by multiplying the coefficient −bounded
by an even number of copies of the specified input ±large:

= (−bounded) · (±large) · . . . · (±large)︸ ︷︷ ︸
even number of copies of ±large

6. Output Near 0 165

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= (−bounded) · (±) · . . . · (±)︸ ︷︷ ︸
even number of copies of ±

· (large) · . . . · (large)︸ ︷︷ ︸
even number of copies of large

and since,
• by the Sign Multiplication Rule, an even number of copies of + multiply
to + and an even number of copies of − multiply to +

• by the Definition of large, any number of copies of large multiply to large
= (−bounded) · + · large

and by the Sign Division Rule and the Size Division Theorem
= −large

iv. The input-output pairs are (±large,−large)

6 Output Near 0

1. When we want to thicken only one side of 0, we proceed as follows:

PROCEDURE 6.5 To get the input-output pairs on one side
of 0.

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by +small or −small
3. Execute the output-specifying code that is:

a. Decode the output-specifying code, that is write out the com-
putations to be performed according to the output-specifying code.

b. Perform the computations specified by the code using theo-
rem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on
page 39

DEMO 6.10 LetMADE be the function specified by the global input-output
rule

x
MADE−−−−−−−→MADE(x) = (+27.61)x+5

To get the input-output pairs near 0+ for MADE:
i. We normalize MADE:

x
MADE−−−−−−−→MADE(x) = (+bounded) x+odd

166 Chapter 6. Regular Monomial Functions - Local Analysis

ii. We declare that x is to be replaced by +small

x
∣∣∣
x←+small

MADE−−−−−−−→MADE(x)
∣∣∣
x←+small

= (+bounded)x+odd
∣∣∣
x←+small

which, once carried out, gives:

+small MADE−−−−−−−→MADE(+small) = (−bounded)(+small)+odd︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,

we get that the output MADE(+small) is obtained by multiplying the coef-
ficient +bounded by an odd number of copies of the specified input +small :

= (+bounded) · (+small) · . . . · (+small)︸ ︷︷ ︸
odd number of copies of +small

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= (+bounded) · (+) · . . . · (+)︸ ︷︷ ︸
odd number of copies of +

· (small) · . . . · (small)︸ ︷︷ ︸
odd number of copies of small

and since,
• by the Sign Multiplication Rule, any number of copies of + multiply to +
• by the Definition of small, any number of copies of small multiply to
small

= (+bounded) · + · small
and by the Sign Multiplication Rule and the Size Multiplication Theorem

= +small
iv. The input-output pairs are (+small,−small)

DEMO 6.11 Let WADE be the function specified by the global input-output
rule

x
W ADE−−−−−−−→WADE(x) = (−28.34)x−3

To get the output of WADE near 0+

i. We normalize WADE:
x

W ADE−−−−−−−→WADE(x) = (−bounded) x−even

ii. We declare that x is to be replaced by +small

x
∣∣∣
x←+small

W ADE−−−−−−−→WADE(x)
∣∣∣
x←+small

= (−bounded)x−even
∣∣∣
x←+small

6. Output Near 0 167

which, once carried out, gives:

+small W ADE−−−−−−−→WADE(+small) = (−bounded)(+small)−even︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative ,

we get the output WADE(+small) by dividing the coefficient −bounded by
an even number of copies of the specified input +small :

=
−bounded

(+small) · . . . · (+small)︸ ︷︷ ︸
even number of copies of +small

iv. b. We perform the computations specified by the code. Dealing sepa-
rately with the signs and the sizes , we have

= −bounded

(+) · . . . · (+)︸ ︷︷ ︸
even number of copies of +

· (small) · . . . · (small)︸ ︷︷ ︸
even number of copies of small

and since,
• by the Sign Multiplication Rule, any number of copies of + multiply to +
• by the Definition of small, any number of copies of small multiply to
small

= −bounded
+ · small

and by the Sign Division Rule and the Size Division Theorem
= −large

iv. The input-output pairs are (+small,−large)

2. When we want to thicken both sides, we will declare that x is to
be replaced by ±small and keep track of the signs as we perform the
computations specified by the output-specifying code.

DEMO 6.12 Let JADE be the function specified by the global input-output
rule

x
JADE−−−−−−→ JADE(x) = (−65.71)x−5

To get the output of JADE near 0 ,
i. We normalize JADE:

x
JADE−−−−−−→ JADE(x) = (−bounded) x−odd

168 Chapter 6. Regular Monomial Functions - Local Analysis

ii. We declare that x is to be replaced by ±small

x
∣∣∣
x←±small

JADE−−−−−−→ JADE(x)
∣∣∣
x←±small

= (−bounded)x−odd
∣∣∣
x←±small

which, once carried out, gives:

±small JADE−−−−−−→ JADE(±small) = (−bounded)(±small)−odd︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative ,

we get the output JADE(±small) by dividing the coefficient −bounded by
an odd number of copies of the specified input ±small :

= −bounded
(±small) · . . . · (±small)︸ ︷︷ ︸
odd number of copies of ±small

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= −bounded

(±) · . . . · (±)︸ ︷︷ ︸
odd number of copies of ±

· (small) · . . . · (small)︸ ︷︷ ︸
odd number of copies of small

and since,
• by the Sign Multiplication Rule, an odd number of copies of + multiply
to + and an odd number of copies of − multiply to −

• by the Definition of small, any number of copies of small multiply to
small

= −bounded
± · small

and by the Sign Division Rule and the Size Division Theorem
= ∓large

iv. The input-output pairs are (±small,∓large)

DEMO 6.13 Let FADE be the function specified by the global input-output
rule

x
F ADE−−−−−−→ FADE(x) = (−65.18)x+6

To get the input-output pairs near 0 for FADE:
i. We normalize FADE.

x
F ADE−−−−−−→ FADE(x) = (−bounded) x+even

7. Graph Place Near ∞ and Near 0 169

ii. We declare that x is to be replaced by ±small

x
∣∣∣
x←±small

F ADE−−−−−−→ FADE(x)
∣∣∣
x←±small

= (−bounded)x+even
∣∣∣
x←±small

which, once carried out, gives:

±small F ADE−−−−−−→ FADE(±small)) = (−bounded)(±small)+even︸ ︷︷ ︸
output-specifying code

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,

we get the output FADE(−small) by multiplying the coefficient −bounded
by an even number of copies of the specified input ±small :

= (−bounded) · (±small) · . . . · (±small)︸ ︷︷ ︸
even number of copies of ±small

b. We perform the computations specified by the code. Dealing separately
with the signs and the sizes , we have

= (−bounded) · (±) · . . . · (±)︸ ︷︷ ︸
even number of copies of ±

· (small) · . . . · (small)︸ ︷︷ ︸
even number of copies of small

and since,
• by the Sign Multiplication Rule, an even number of copies of + multiply
to + and an even number of copies of − multiply to +

• by the Definition of small, any number of copies of small multiply to
small

= (−bounded) · + · small
and by the Sign Multiplication Rule and the Size Multiplication Theorem

= −small
iv. The input-output pairs are (±small,−small)

7 Graph Place Near ∞ and Near 0

Once we have the input-output pairs near ∞ and near 0, we get the graph
places as in ?? ?? on ??. Here again,

i. In the first four demos, Demo 6.14 on page 170, Demo 6.15 on page 170,
Demo 6.16 on page 171, Demo 6.17 on page 171, we will deal with only one
side or the other.

ii. In the next four demos, Demo 6.18 on page 172, Demo 6.19 on
page 172, Demo 6.20 on page 173, Demo 6.21 on page 173, we will deal

170 Chapter 6. Regular Monomial Functions - Local Analysis

with both sides at the same time.

PROCEDURE 6.6 Locate the graph place near ∞ or 0

1. Get the input-output pairs using ?? ?? on ?? or ?? ?? on ??.
2. Locate the graph place using ?? ?? on ??.

DEMO 6.14 Let NADE be the function specified by the global input-output
rule

x
NADE−−−−−−−→ NADE(x) = (−83.91)x−5

To locate the graph place of NADE near +∞ :
1. We get that the input-output pairs for NADE near +∞ are
(+large,−small) (See Demo 6.6 on page 161)

2. The graph place of NADE near +∞
then is:

–∞

+∞

–∞
Offscreen

Screen

Screen

0

(+large, –small)

Outputs

+∞+large(
Inputs

(–small

Offscreen

Graph Place
near +∞

DEMO 6.15 Let MADE be the function specified by the global input-output
rule

x
MADE−−−−−−−→MADE(x) = (+27.61)x+5

To locate the graph place of MADE near 0+ :
1. We get that the input-output pairs for MADE near 0+ are
[+small,+small](See Demo 6.10 on page 165)

7. Graph Place Near ∞ and Near 0 171

2. The graph place of MADE near 0+

then is:
+∞

–∞

Screen

Screen

0

Graph Place
near 0

+∞

(

Offscreen

Outputs

Inputs

–∞
(

+sm
all

(+small, +small)

+small

0

+

DEMO 6.16 Let RADE be the function specified by the global input-output
rule

x
RADE−−−−−−→ RADE(x) = (+45.67)x−4

To locate the graph place of RADE near −∞ :
1. We get that the input-output pairs for RADE near −∞ are
[−large,+small](See Demo 6.7 on page 162)

2. The graph place near −∞ then is: +∞

–∞

Screen

Screen

0

[–large, +small]

Graph Place
near –∞

Outputs

+∞–large

Inputs

+small

–∞
(

(

Offscreen

DEMO 6.17 Let WADE be the function specified by the global input-output
rule

x
W ADE−−−−−−−→WADE(x) = (−28.34)x−3

To locate the graph place of WADE near 0+ :
1. We get that the input-output pairs for WADE near 0+ are
[+small,−large](See Demo 6.17 on page 171)

172 Chapter 6. Regular Monomial Functions - Local Analysis

2. The graph place near 0+ then is:

–∞

+∞

–∞

Offscreen

Screen

[+small, –large]
–large

(
+∞+small

(

Outputs

Inputs

Screen

0

Graph Place
near 0+

DEMO 6.18 Let PADE be the function specified by the global input-output
rule

x
P ADE−−−−−−→ PADE(x) = (−65.18)x+6

To locate the graph place of PADE near ∞ .
1. We get that the input-output pairs for PADE near ∞ are
[±large,−large](See Demo 6.9 on page 164)

2. The graph place of PADE near ∞ then
is:

–∞

+∞

–∞

Offscreen

Screen

Screen

Graph Place
near +∞

[+large, –large]

–large

(
+∞+large

(

Outputs

Inputs

Graph Place
near –∞

[–large, –large]

(–large

DEMO 6.19 Let JADE be the function specified by the global input-output
rule

x
JADE−−−−−−→ JADE(x) = (−65.71)x−5

To locate the graph place of JADE near 0 :
1. We get that the input-output pairs for JADE near 0 are [±small,∓large]
(See Demo 6.12 on page 167)

7. Graph Place Near ∞ and Near 0 173

2. The graph place of JADE near 0 then
is:

–∞

0
+∞

+large

Offscreen

Inputs

–∞

+∞
Outputs

(

[–small, +large]

(
–small

Graph Place
near 0–

+small

–large

(

[+small, –large]

Graph Place
near 0+

Screen

DEMO 6.20 Let DADE be the function specified by the global input-output
rule

x
DADE−−−−−−−→ DADE(x) = (−83.91)x+5

To locate the graph place of DADE near ∞ :
1. We get that the input-output pairs for DADE near ∞ are [±large,∓large]
(See Demo 6.8 on page 163)
2. The graph place ofDADE near ∞ then

is:
+∞

–∞

Screen

Screen
Graph Place
near –∞

[–large, +large]

+large

+∞–large

(

Offscreen

Outputs

–∞ +large((

–large

[+large, –large]
Graph Place
near +∞

Inputs

DEMO 6.21 Let FADE be the function specified by the global input-output
rule

x
F ADE−−−−−−→ FADE(x) = (−65.18)x+6

To locate the graph place of FADE near 0− .
1. We get that the input-output pairs for FADE near 0 are [±small,−small]
(See Demo 6.13 on page 168)

174 Chapter 6. Regular Monomial Functions - Local Analysis

shape
forced 2. The graph place of FADE near 0 then

is:
+∞

–∞

Screen

0

+∞

Offscreen

Outputs

Inputs

–∞

[–small, –small]

–small

0

(

Screen

Graph Place
near 0–

–small +small
((

[+small, –small]

Graph Place
near 0+

8 Local Graph Near ∞ and Near 0

Regular monomial functions are very nice in that the shapes of the local
graphs near ∞ and near 0 are forced by the graph place. In other words,
once we know the graph place, there is only one way we can draw the local
graph because:

i. The smaller or the larger the input is, the smaller or the larger the
output will be,

ii. The local graph cannot escape from the place.

DEMO 6.22 Given a monomial function for which the place of a local graph
is [+large,+small], we get the shape of the local graph as follows

i. The slope is forced by the fact that
the larger the input is,
the smaller the output will be.
ii. The concavity is forced by the fact
that the local graph cannot cross the
0-output level line.

–∞

+∞

–∞
Offscreen

Screen

Screen

0

[+large, +small]

Outputs

+∞

+small

The larger the input

The sm
aller

the o
utp

ut

(

+large(
Inputs

9. Local Features Near ∞ and Near 0 175

DEMO 6.23 Given a monomial function for which the place of a local graph
is [−small,−large], we get the shape of the local graph as follows

i. The slope is forced by the fact that
the smaller the input is,
the larger the output will be.
ii. The concavity is forced by the fact
that the local graph cannot cross the
0-input level line.

–∞

+∞

Screen

0

[–small, –large]

Outputs

+∞

–large

The smaller
the input

(

–small
(

Screen

–∞

Offscreen
T

he larg
er

the o
utp

ut

Inputs

9 Local Features Near ∞ and Near 0

1. Given a regular monomial function being specified by a global input-
output rule, to get the Height sign near ∞ or near 0, we need only compute
the sign of the outputs for nearby inputs with the global input-output rule.

DEMO 6.24 Let JOE be the function specified by the global input-output
rule

x
JOE−−−−−→ JOE(x) = (−65.18)x+6

To get the Height sign of JOE near 0+

We ignore the size and just look at the sign:

+ JOE−−−−−→ JOE(+) = (−)(+)+6

= (−) · (+)
= −

and

− JOE−−−−−→ JOE(−) = (−)(−)+6

= (−) · (+)
= −

So, Height sign JOE near 0 is 〈−,−〉

2. Given a regular monomial function being specified by a global input-
output rule, to get the Slope sign or the Concavity sign near ∞ or near 0,
we need the local graph near ∞ or near 0.

176 Chapter 6. Regular Monomial Functions - Local Analysis

DEMO 6.25 Let JILL be the function specified by the global input-output
rule

x
JILL−−−−−−→ JILL(±) = (+32.06)(±)+6

To get the Slope sign of JILL near 0
We need the local graph of JILL near 0.
i. We get the output for JILL near
0

±small JILL−−−−−−→ JILL(±small)
= (+bounded)(±small)+even

= (+bounded)(±)even(small)+

= (+bounded)(+) · (small)
= +small

iii. Slope sign JILL near 0 = 〈�,�〉

ii. The local graph of JILL near 0 is

–∞ +∞

Outputs

(

–small

–∞
Inputs

Offscreen
+∞

0
Screen

((

+small

+small

DEMO 6.26 Let JIM be the function specified by the global input-output
rule

x
JIM−−−−−→ JIM(x) = (−72.49)x−5

To get the Concavity sign of JIM near ∞
We need the local graph of JIM near ∞.
i. We get the output for JIM near ∞

±large JIM−−−−−→ JIM(±large)
= (−bounded)(±large)−odd

= −bounded
(±large)...(±large)︸ ︷︷ ︸

odd number of copies

= −bounded
±large

= −bounded · ±small
= ∓small

iii. Concavity sign JIM near∞ = 〈∩,∪〉

ii. The local graph of JIM near 0 is

–∞ +∞

Outputs

(

–large

–∞

Offscreen
+∞

0 (

Screen

((

+large

+small
–small

Inputs

type

Chapter 7

Regular Monomial Functions
- Global Analysis

Types of Global Input-Output Rules, 177 • Output Sign, 178 • Output
Qualitative Size, 184 • Reciprocity, 187 • Global Graphing, 193 • Types of
Global Graphs, 198 .

The Global Analysis of regular monomial functions is very systematic
because the global input-output rule is very simple.

1 Types of Global Input-Output Rules

1. From the point of view of their global input-output rule, there are
eight types of regular monomial functions:

Coefficient Sign Exponent Sign Exponent Parity Output-specifying code

+
+ even (+bounded)x+ even

odd (+bounded)x+ odd

− even (+bounded)x− even

odd (+bounded)x− odd

−
+ even (−bounded)x+ even

odd (−bounded)x+ odd

− even (−bounded)x− even

odd (−bounded)x− odd

177

178 Chapter 7. Regular Monomial Functions - Global Analysis

2. There are two kinds of regular monomial functions which come up so
often that they have special names:

DEFINITION 7.1 Square Functions are monomial functions
with exponent +2 , that is functions specified by x

SQUARE−−−−−−−→
SQUARE(x) = ax+2. (Where Sign a can be either + or −.)

EXAMPLE 7.1. The function specified by x SQUARE−−−−−−−→ SQUARE(x) =
−41.87x+2 is a square function.

DEFINITION 7.2 Cube Functions are monomial functions with
exponent +3 , that is functions specified by x CUBE−−−−−→ CUBE(x) =
ax+3. (Where Sign a can be either + or −.)

EXAMPLE 7.2. The function specified by x
CUBE−−−−−→ CUBE(x) =

+27.61x+3 is a cube function.

2 Output Sign

Since Exponent Sign specifies only whether the coefficient is to be multiplied
or divided by the copies of the input and since theorem 19.2 on page 365 says
that signs are multiplied and divided the same way, Exponent Sign cannot
have any effect on Output Sign.

1. More precisely, since
output = coefficient multiplied/divided power

we have
Output Sign = Coefficient Sign multiplied/divided Power Sign

so that only Coefficient Sign and Input Sign can possibly have an effect on
Output Sign. But then:
• If Exponent Parity = even, then as a consequence of theorem 19.2 on
page 365, Power Sign = + both when Input Sign = + and when Input
Sign = −

and therefore, when Exponent Parity = even

. Output Sign = Coefficient Sign both when Input Sign = + and when
Input Sign = −.

2. Output Sign 179

• If Exponent Parity = odd, then as a consequence of theorem 19.2 on
page 365,
. Power Sign = + when Input Sign = +,
. Power Sign= − when Input Sign = −,

and therefore, when Exponent Parity = odd

. Output Sign = Coefficient Sign when Input Sign = +,

. Output Sign = Opposite Coefficient Sign when Input Sign = −,

EXAMPLE 7.3. Given the function specified by the global input-output
rule

x
KIP−−−−−→ KIP (x) = (+82.33) · x−4

using theorem 19.2 on page 365, we have

+ KIP−−−−−→ KIP (+) =
+

+ · . . . ·+︸ ︷︷ ︸
even number of copies of +

=
+
+

= +

EXAMPLE 7.4. G iven the function specified by the global input-output rule
x

KAP−−−−−→ KAP (x) = (−73.93) · x+11

using theorem 19.2 on page 365, we have
+ KAP−−−−−→ KAP (+) = − · (+) · . . . · (+)︸ ︷︷ ︸

odd number of copies of +

= − · +
= −

EXAMPLE 7.5. Given the function specified by the global input-output
rule

x
KAT−−−−−→ KAT (x) = (−25.25) · x+7

180 Chapter 7. Regular Monomial Functions - Global Analysis

using theorem 19.2 on page 365, we have
− KAT−−−−−→ KAT (−) = − · (−) · . . . · (−)︸ ︷︷ ︸

odd number of copies of −

= − · −
= +

EXAMPLE 7.6. Given the function specified by the global input-output
rule

x
KIT−−−−−→ KIT (x) = (+44.06) · x−4

using theorem 19.2 on page 365, we have

− KIT−−−−−→ KIT (−) =
+

− · . . . · −︸ ︷︷ ︸
even number of copies of −

=
+
+

= +

We therefore have the following which summarizes the results of the above
investigation.

THEOREM 7.1 Output Sign (For Regular Monomial Functions.)
• If Input Sign = +,

Output Sign = Coefficient Sign.
• If Input Sign = −,
Output Sign depends on Exponent Parity:
. If Exponent Parity = even,

Output Sign = Coefficient Sign,
. If Exponent Parity = odd,

Output Sign =Opposite Coefficient Sign.

2. Then, for
PROCEDURE 7.1 To get the Output Sign for a regular mono-
mial function

Use theorem 7.1 on page 180.

2. Output Sign 181

horizontal flipDEMO 7.1 Given the function specified by the global input-output rule

x
KIP−−−−−→ KIP (x) = (+82.33) · x−4

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ KIP−−−−−→ KIP (+) = +

− KIP−−−−−→ KIP (−) = +

DEMO 7.2 Given the function specified by the global input-output rule

x
KAP−−−−−→ KAP (x) = (−73.93) · x+11

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ KAP−−−−−→ KAP (+) = −

− KAP−−−−−→ KAP (−) = +

DEMO 7.3 Given the function specified by the global input-output rule

x
KAT−−−−−→ KAT (x) = (−25.25) · x+7

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ KAT−−−−−→ KAT (+) = −

− KAT−−−−−→ KAT (−) = +

DEMO 7.4 Given the function specified by the global input-output rule

x
KIT−−−−−→ KIT (x) = (+44.06) · x−4

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ KIT−−−−−→ KIT (+) = +

− KIT−−−−−→ KIT (−) = +

3. In order to graph monomial functions more efficiently, we need to
invest a little bit on a couple of graphic maneuvers:
a. If we do a horizontal flip on a first plot point we get a second plot point

182 Chapter 7. Regular Monomial Functions - Global Analysis

vertical flip
diagonal flip

and

• The input of the second plot point will be the opposite of the input of
the first plot point
• The output of the second plot point will be the same as the output of
the first plot point

EXAMPLE 7.7. If we do a horizontal flip on a the plot point (+2,−48)
we will get a second plot point and:

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0 +2–2

–48 Horizontal

• the input of the second plot point
will be −2

• the output of the second plot point
will be −48

b. If we follow the horizontal flip on the first plot point by a vertical flip
on the second plot point, we will get a third plot point and:

• the input of the third plot point will be the same as the input of the
second plot point, that is the opposite of the input of the first plot point
• the output of the third plot point will be the opposite of the output of

the second plot point, that is the opposite of the output of the first plot
point

In other words, we can get the third plot point by a diagonal flip on the
first plot point.

EXAMPLE 7.8. If we do a horizontal flip on the plot point (+2,−48) we
get a second plot point and if we follow by a vertical flip on the second plot
point, we get a third plot point and:

2. Output Sign 183

opposite input
Outputs

Screen

Inputs

–∞

Offscreen

+∞

0 +2–2

–40 Horizontal

+40

Vertical

Diagonal

• the input of the second plot point will be −2
• the output of the second plot point will be −40
and then
• the input of the third plot point will be −2
• the output of the third plot point will be +40

In other words, both the input and the output of
the third plot point are opposite of the input and
output of the first plot point and so to get the third
plot point directly from the first plot point we can
just use a diagonal flip instead of a horizontal flip
followed by a vertical flip.

4. So a consequence of theorem 7.1 on page 180 is that once we have the
plot point for an input, we can get the plot point for the opposite input,
that is for the input with the same size and opposite sign with just one flip:

THEOREM 7.2 Symmetry (For Regular Monomial Functions.)
Given the plot point for an input, we get the plot point for the opposite
input with:
• A horizontal-flip if Exponent Parity = even,
• A diagonal-flip if Exponent Parity = odd.

EXAMPLE 7.9. Given the function specified by the global input-ouput rule
x

KAT−−−−→ KAT (x) = (−3) · x+4

a. For instance

+2 KAT−−−−→ KAT (+2) = −3 •+2 •+2 •+2 •+2
= −48

and

−2 KAT−−−−→ KAT (−2) = −3 • −2 • −2 • −2 • −2
= −48

b. We see that we can get the plot point
for input −2 by a horizontal flip of the plot
point for input +2:

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0 +2–2

–48 Horizontal

184 Chapter 7. Regular Monomial Functions - Global Analysis

EXAMPLE 7.10. Given the function specified by the global input-ouput
rule

x
KAT−−−−−→ KAT (x) = (+5) · x+3

a. For instance

+2 KAT−−−−→ KAT (+2) = +5 •+2 •+2 •+2
= +40

and

−2 KAT−−−−→ KAT (−2) = +5 • −2 • −2 • −2
= −40

b. We see that we can get the plot point
for input −2 by a diagonal flip of the plot point
for input +2:

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0 +2–2

–40 Horizontal

+40

Vertical

Diagonal

3 Output Qualitative Size

LANGUAGE 7.1 Size. When it is clear from the context that we refer to
Qualitative Size, as in this section, we will just say Size as in, for instance,
“Input Size = small” instead of “Input Qualitative Size = small”.

Since Exponent Sign specifies if the coefficient is to be multiplied or
divided by the copies of the input and since, depending on Exponent Sign, we
use either theorem 1.2 or theorem 1.3, Output Size will depend on Exponent
Sign.

1. More precisely, Output Size has to depend on both Input Size and
Exponent Sign:
• If Exponent Sign is +, the coefficient is to be multiplied by copies of the
input then, as a consequence of theorem 1.2 on page 38:
. If Input Size = large, Output Size = bounded × large = large
. If Input Size = small, Output Size = bounded × small = small

• If Exponent Sign = −, then the coefficient is to be divided by copies of
the input so that, as a consequence of theorem 1.3 on page 39:
. If Input Size = large, Output Size = bounded ÷ large = small
. If Input Size = small, Output Size = bounded ÷ small = large

3. Output Qualitative Size 185

EXAMPLE 7.11. Given the function specified by the global input-output
rule

x
KIP−−−−−→ KIP (x) = (+82.33) · x−4

Using theorem 1.3, we have

small
KIP−−−−−→ KIP (small) =

bounded

small · . . . · small

=
bounded

small

= large

EXAMPLE 7.12. Given the function specified by the global input-output
rule

x
KAP−−−−−→ KAP (x) = (−73.93) · x+11

Using theorem 1.2, we have
large

KAP−−−−−→ KAP (large) = bounded · large · . . . · large

= bounded · large

= large

EXAMPLE 7.13. Given the function specified by the global input-output
rule

x
KAT−−−−−→ KAT (x) = (−25.25) · x+7

Using theorem 1.2, we have
small

KAT−−−−−→ KAT (small) = bounded · small · . . . · small

= bounded · small
= small

EXAMPLE 7.14. Given the function specified by the global input-output
rule

x
KIT−−−−−→ KIT (x) = (+44.06) · x−4

186 Chapter 7. Regular Monomial Functions - Global Analysis

Using theorem 1.3, we have

large
KIT−−−−−→ KIT (large) =

bounded

large · . . . · large

=
bounded

large

= small

We therefore have the following which summarizes the results of the above
investigations

THEOREM 7.3 Output Size (For Regular Monomial Functions)
• If Exponent Sign = +,

Output Size = Input Size.
• If Exponent Sign = −,

Output Size = Reciprocal Input Size.
(For “Reciprocal” see theorem 15.12 on page 318.)

2. Then, for

PROCEDURE 7.2 To get the Output Size for a regular mono-
mial function

Use theorem 7.3 on page 186.

DEMO 7.5 Given the function specified by the global input-output rule

x
KIP−−−−−→ KIP (x) = (+82.33) · x−4

get the Output Size.
Using theorem 7.3 on page 186 we get

large
KIP−−−−−→ small

small
KIP−−−−−→ large

4. Reciprocity 187

DEMO 7.6 Given the function specified by the global input-output rule

x
KAP−−−−−→ KAP (x) = (−73.93) · x+11

get the Output Size.
Using theorem 7.3 on page 186 we get

large
KAP−−−−−→ large

small
KAP−−−−−→ small

DEMO 7.7 Given the function specified by the global input-output rule

x
KAT−−−−−→ KAT (x) = (−25.25) · x+7

get the Output Size.
Using theorem 7.3 on page 186 we get

large
KAT−−−−−→ large

small
KAT−−−−−→ small

DEMO 7.8 Given the function specified by the global input-output rule

x
KIT−−−−−→ KIT (x) = (+44.06) · x−4

get the Output Size.
Using theorem 7.3 on page 186 we get

large
KIT−−−−−→ small

small
KIT−−−−−→ large

4 Reciprocity

1. Another way to look at theorem 7.3 on 186 is to realize that, for a
monomial function,
• If Output Size = Input Size, this can only be because Exponent Sign =

+,
• If Output Size = Reciprocal Input Size, this can only be because Expo-

nent Sign = −.
Which gives us the following which we will use to graph regular monomial
functions efficiently:

188 Chapter 7. Regular Monomial Functions - Global Analysis

THEOREM 7.4 Reciprocity (For Regular Monomial Functions.)
• If large→ large, then small→ small (And vice versa.)
• If large→ small, then small→ large (And vice versa.)

EXAMPLE 7.15.
After we have found, for instance,

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

Diagonal

(

(

+large

+l
ar
ge

We get from theorem 7.4

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

Diagonal

(

(

+sm
all

+small0

EXAMPLE 7.16.
After we have found, for instance,

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

Diagonal

(

(

+sm
all

–large

0

–∞

+∞

We get from theorem 7.4

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

Diagonal

(

(

+large

–small0

–∞

+∞

4. Reciprocity 189

2. The relationship between ∞ and 0 is not only important but also
fascinating.

a. Even though, as an input, 0 is usually not particularly important,
there is an intriguing “symmetry” between ∞ and 0 namely:

numbers

Ruler
0+

()
0––∞ +∞

()

numbers
are

near 0–

 numbers
are

near 0+

TheseTheseThese These
numbers

near +∞
areare

near –∞

More precisley, small numbers are some sort of inverted image of large num-
bers since the reciprocal of a large number is a small number and vice versa.

EXAMPLE 7.17.
The opposite of the reciprocal of −0.001 is +1 000. In a Magellan view, we
have

∞

)
)(

0

+0.001

)

–1000

Neighborhood of 0

Neighborhood of Infinity

+∞

0+0–

–∞

b. Here is yet another way to look at reciprocity. We start with the
graph of a monomial function and we “turn” it so as to see it while facing
∞ and we then compare it with the graph near 0 of the reciprocal function.

EXAMPLE 7.18.
Let the monomial function specified by the global input-output rule

x
RAIN−−−−−−−−−→ RAIN(x) = (+1)x+4

190 Chapter 7. Regular Monomial Functions - Global Analysis

the local graph near 0 of RAIN is:

0

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.

0

0

0

0

∞

0

∞

0

∞

0

–∞

0

touchingbending
closing

+∞
enlarging

–∞ +∞
–∞ +∞

We then glue shut the edges of the
screen at ∞ to get a cylinder.

0

glue

∞

Then we turn the cylinder half a
turn so that ∞ gets to be in front
of us:

∞

0

0

∞

∞

0

0

∞

rotating

Now we cut open the cylinder along
the input level line for 0

0

∞

0

∞

cut

Finally we widen

the cut and unbend the screen forward more and more until it becomes flat.

4. Reciprocity 191

0

∞ ∞∞

+0
∞ ∞∞

0

∞

∞

open
widen out unbend

–0

shrink

+0 –0

+0 –0

The local graph near∞ that we got
for RAIN is:

It is the same as the local graph near
0 of the reciprocal function specified
by the global input-output rule
x

T ENA−−−−−−→ TENA(x) = (+1)x−4

∞

∞ –∞+∞

0

0 0+0–

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right
side of ∞ is the negative side of ∞. So the graphs on the positive sides are
the same and the local graphs on the negative sides are also the same.)

EXAMPLE 7.19.
Given the monomial function specified by the global input-output rule

x
MIKE−−−−−−−−−→MIKE(x) = (+1)x−3

the local graph near 0 ofMIKE is:

0

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more closing down the gap until the edges touch:

192 Chapter 7. Regular Monomial Functions - Global Analysis

–∞ +∞
–∞ +∞

–∞ +∞ 0+0–0+0– 0+
0– 0+

0–

touchingbending
closing

–∞ +∞ –∞ +∞ ∞
enlarging

–∞ +∞

We then glue shut the edges of the
screen at ∞ to get a cylinder.

0+
0–

–∞ +∞

glue

Then we rotate the cylinder half a
turn so that ∞ gets to be in front
of us:

–∞ +∞

0+0– –∞+∞

0+ 0–

rotating

Now we cut open the cylinder along
the input level line for 0

cut

0+ 0–

+∞ –∞
Finally we widen the cut and unbend the screen forward more and more until
it becomes flat.

0+ 0–

–∞+∞ –∞+∞ –∞+∞0+ 0–
0+ 0–

0+ 0–

+∞ –∞

open
widen out unbend

5. Global Graphing 193

The local graph near∞ that we just
got for MIKE is:

It is the same as the local graph near
0 of the reciprocal function specified
by the global input-output rule
x

JANE−−−−−−→ JANE(x) = (+1)x+3

0+ –∞+∞ 0– 0+0––∞ +∞

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right
side of ∞ is the negative side of ∞. So the graphs on the positive sides are
the same and the local graphs on the negative sides also are the same.)

5 Global Graphing

We can of course get the global graph the way we will get the global graph
of all the other functions in this text, that is as described in ??, but, in
the case of regular monomial functions, we will be taking advantage of the
following Theorems which we must become completely familiar with—but
which we certainly must not memorize:
• The first part of theorem 7.1 on page 180 namely:

THEOREM 7.5 Output Sign for positive inputs. (For Reg-
ular Monomial Functions.)

Output Sign for positive inputs = Coefficient Sign.

• Theorem 7.3 on page 186
• Theorem 7.4 on page 188
• Theorem 7.2 on page 183

Then, after a little bit of practice, we will be able to get the global graph
very rapidly:

PROCEDURE 7.3 Graph a regular monomial function:

a. Locate the graph place for inputs near +∞ as follows:
i. Determine if the graph place for inputs near +∞ is above or

194 Chapter 7. Regular Monomial Functions - Global Analysis

below the 0-output level line.
(Use theorem 7.5 on page 180)

ii. Determine if the graph place for inputs near +∞ is near the
0-output level line or near the ∞-output level line,
(Use theorem 7.3 on page 186)

b. Locate the graph place for inputs near 0+.
(Use theorem 7.4 on page 188).

c. Locate the graph places for inputs near −∞ and inputs near
0−.
(Use theorem 7.2 on page 183)

d. Draw the global graph through the graph places.

DEMO 7.9 Get the global graph of the function specified by the global input-
output rule

x
KIR−−−−−→ KIR(x) = (+52.92) · x−13

1. We locate the graph place for inputs near
+∞:

i. Since Coefficient Sign = +,
+ KIR−−−−−→ +

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = −,

large
KIR−−−−−→ small

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near
0+.
(Using theorem 7.4 on page 188.)

Outputs

Screen

Inputs)
–∞

–∞

)

)

)
+small +large

+
sm
al
l

+
la
rg
e

Offscreen

Graph
places

3. We locate the graph places for inputs near
−∞ and near 0−.
(Using theorem 7.2 on page 183.)

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

Od
d

Graph
places

5. Global Graphing 195

4. We draw the
global graph
through the
graph places.
And, to the right
is a Magellan
view of the
global graph.

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0+0–

+∞–∞

DEMO 7.10 Get the global graph of the function specified by the global input-
output rule

x
KIM−−−−−→ KIM(x) = (−40)x+6

1. We locate the graph place for inputs near
+∞:

i. Since Coefficient Sign = −,
+ KIM−−−−−→ +

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = +,

large
KIM−−−−−→ large

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near
0+.
(Using theorem 7.4 on page 188.)

Outputs

Screen

)
–∞

)

)
+small +large

–sm
all

–large

Offscreen

+∞

Inputs

)

3. We locate the graph places for inputs near
−∞ and near 0−.
(Using theorem 7.2 on page 183.)

Outputs

Screen

Inputs)
–∞

)

)

)

–sm
all

–large

Offscreen

+∞

0

Even

196 Chapter 7. Regular Monomial Functions - Global Analysis

4. We draw the
global graph
through the
graph places.
And, to the right
is a Magellan
view of the
global graph.

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

–∞

0

+∞

0+0–

+∞–∞

DEMO 7.11 Get the global graph of the function specified by the global input-
output rule

x
KIN−−−−−→ KIN(x) = (−40.87)x+5

1. We locate the graph place for inputs near
+∞:

i. Since Coefficient Sign = −,
+ KIN−−−−−→ −

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = +,

large
KIN−−−−−→ large

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near
0+.
(Using theorem 7.4 on page 188.)

Outputs

Screen

Inputs)
–∞

)

)

)
+small +large

–small

–large Offscreen

+∞

3. We locate the graph places for inputs near
−∞ and near 0−.
(Using theorem 7.2 on page 183.)

Outputs

Screen

Inputs)
–∞

)

)

)

+small

+large
Offscreen

0

–∞

Odd

5. Global Graphing 197

4. We draw the
global graph
through the
graph places.
And, to the right
is a Magellan
view of the
global graph.

Outputs

Screen

Inputs

–∞

Offscreen

+∞

0

–∞

0

+∞

0–

+∞–∞

0+

DEMO 7.12 Get the global graph of the function specified by the global input-
output rule

x
KIB−−−−−→ KIB(x) = (+77.03) · x−8

1. We locate the graph place for inputs near
+∞:

i. Since Coefficient Sign = +,
+ KIB−−−−−→ +

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = −,

large
KIB−−−−−→ small

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near
0+.
(Using theorem 7.4 on page 188.)

Outputs

Screen

Inputs)
–∞

–∞

)

)

)
+small +large

+small

+large

Offscreen

3. We locate the graph places for inputs near
−∞ and near 0−.
(Using theorem 7.2 on page 183.)

Outputs

Screen

Inputs)
–∞

–∞

)

)

)

Offscreen

0 +∞

+∞

0

Even

198 Chapter 7. Regular Monomial Functions - Global Analysis

4. We draw the
global graph
through the
graph places.
And, to the right
is a Magellan
view of the
global graph.

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

0+0–

+∞–∞

6 Types of Global Graphs

Each type of global input-output rule corresponds to a type of global graph.
The global graphs are shown both from “close-up” to see the bounded graph
and from “faraway” to see how the graphs flatten out.

Input-output rule From “close-up” From “faraway”

x
P EP−−−−→ PEP (x) = (+1)x+even

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

x
P EN−−−−→ PEN(x) = (−1)x+even

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

Continued on next page

6. Types of Global Graphs 199

Input-output rule From “close-up” From “faraway”

x
P OP−−−−→ POP (x) = (+1)x+odd

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

x
P ON−−−−→ PON(x) = (−1)x+odd

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

x
NEP−−−−→ NEP (x) = +x−even

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

x
NEN−−−−→ NEN(x) = −x−even

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

Continued on next page

200 Chapter 7. Regular Monomial Functions - Global Analysis

Input-output rule From “close-up” From “faraway”

x
KIR−−−−→ KIR(x) = +x−odd

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

x
NON−−−−→ NON(x) = −x−odd

Outputs

Screen

Inputs
–∞

–∞

Offscreen

0 +∞

+∞

0

approximate
constant coefficient

Chapter 8

Exceptional Monomial
Functions

Outputs Of Constant Functions, 202 • Graphs Of Constant Functions,
203 • Features Of Constant Functions, 205 • Output Of Linear Functions
at x0, 207 • Outputs Of Linear Functions near ∞ and 0, 208 • Graphs Of
Linear Functions, 209 • Features Of Linear Functions, 212 .

We now investigate the exceptional monomial functions, that is the
monomial functions with exponent 0 and the monomial functions with ex-
ponent +1 . Even though they are . . . exceptionally simple, they are . . .
exceptionally important, the monomial functions with exponent 0 because
they are used to approximate other functions in Integral Calculus and
the monomial functions with exponent +1 because they are at the basis of
Applied Mathematics.

FUNCTIONS

DEFINITION 8.1 Constant Functions are monomial functions
with exponent 0 , that is functions specified by x

CONST ANT−−−−−−−−−→
CONSTANT (x) = ax0. (Where a, called the constant coefficient,
is the bounded number that specifies the function CONSTANT .)

EXAMPLE 8.1. The constant function FLAP specified by the constant

201

202 Chapter 8. Exceptional Monomial Functions

abuse of language
UNIT+
UNIT−

coefficient +5 273.1 is the function specified by the global input-output rule
x

F LAP−−−−−−−−−→ FLAP (x) = +5 273.1︸ ︷︷ ︸ x0

constant coefficient

= +5 273.1︸ ︷︷ ︸
constant coefficient

LANGUAGE 8.1 The name constant functions is an abuse of language
because it is not the function itself which is constant but its output which
is constant in the sense that, since the coefficient is neither multiplied nor
divided by any copy of x and thus to be left alone, the output remains
constantly equal to the coefficient no matter what the input is.

NOTE 8.1 x 0 must absolutely not be read “xmultiplied by 0” because
that would give the output 0 no matter what. (This is a very common
error among beginners.)

Contrary to what we did with regular monomial functions we will not
normalize constant functions. In fact, the constant functions with constant
coefficients +1 and −1 have special names:
• The constant function with coefficient +1 is usually called UNIT+. In
other words, UNIT+ is the function specified by the global input-output
rule

x
UNIT+−−−−−−−→ UNIT+(x) = +1

• The constant function with coefficient −1 is usually called UNIT−. In
other words, UNIT− is the function specified by the global input-output
rule

x
UNIT−−−−−−−−→ UNIT−(x) = −1

1 Outputs Of Constant Functions

1. In order to get the output at a given bounded input x0 of a monomial
function with exponent 0 , we still use ?? on ?? which, in the case of constant
functions, boils down to nothing.

2. Graphs Of Constant Functions 203

PROCEDURE 8.1 To get the output at x0 of the con-
stant function specified by the global input-output rule
x

CONST ANT−−−−−−−−−−→ CONSTANT (x) = a

i. Declare that x is to be replaced by x0

x
∣∣∣
x←x0

CONST ANT−−−−−−−−−−→ CONSTANT (x)
∣∣∣
x←x0

= a
∣∣∣
x←x0

which however, since there is nothing to replace with x0 , gives:

x0
CONST ANT−−−−−−−−−−→ CONSTANT (x0) = a︸︷︷︸

output-specifying code

ii. There is nothing to execute and the output number is:
= a

which gives the input-output pair
(x0,a)

TEMO 8.1 To get the output at −3 of the function specified by the global
input-output rule

x
F LAP−−−−−−→ FLAP (x) = +5 273.1︸ ︷︷ ︸

output specifying code

This is short for
= +5 273.1x0︸ ︷︷ ︸

output specifying code
and since the exponent is 0 so that we do not multiply or divide the coefficient
by any copy of the input there is no point declaring that the input is −3 and
nothing to execute and the output of the function FLAP at −3 is just the
coefficient:

= +5 273.1
In other words, . . . just as stated by the output-specifying code to begin with!

2. Since the output of a constant function is the coefficient no matter
what the input, the size of the output does not matter and the outputs,
both for inputs near ∞ and for inputs near 0, are again going to be the
coefficient.

2 Graphs Of Constant Functions

Constant functions are the first of the only three kinds of functions for which
we can get the global graph directly because the global graph is a straight

204 Chapter 8. Exceptional Monomial Functions

straight line line.
1. Since the output of a constant function is equal to the constant co-

efficient no matter what the input is, the quantitative global graph will be
the output level line of the constant coefficient.

PROCEDURE 8.2 Graph the function specified by
x

CONST ANT−−−−−−−−−→ CONSTANT (x) = a

i. Mark the constant coefficient a on the output ruler
ii. Draw the output level line through the tickmark

EXAMPLE 8.2. Here is the global graph of the function UNIT+:
In Mercator view:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

+1

Screen

0

In Magellan view:

0-
in

pu
t l

ev
el

0-output level

0+0–

+∞–∞

EXAMPLE 8.3. Here is the global graph of the function UNIT−:
In Mercator view:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

–1
Screen

0

In Magellan view:

0-
in

pu
t l

ev
el

0-output level

0+0–

+∞–∞

–1

2. Since the global graph is so easy to get, we get the local graphs from
the global using?? on ??. In fact, we will usually need only the local graph
near ∞ and the local graph near 0 .

3. Features Of Constant Functions 205

global height
EXAMPLE 8.4.
Local graph of UNIT+ near ∞:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

+1

Screen

0

((

Local graph of UNIT+ near 0:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

+1

Screen

((

0+0–

0

EXAMPLE 8.5.
Local graph of UNIT− near ∞:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

–1
Screen

0

((

Local graph of UNIT− near 0:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

–1
Screen

((

0+0–

0

3 Features Of Constant Functions

What makes constant functions exceptional among monomial functions is
that they lack both local slope and local concavity and have only local height.

But then, since for a constant function the local height is the same ev-
erywhere, we can talk of the global height of a constant function.

EXAMPLE 8.6. Let f be the function specified by the global input-output

206 Chapter 8. Exceptional Monomial Functions

linear coefficient
rule

x
f−−−→ f(x) = (−31.72)x0

= −31.72

the global height of f is −31.72:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

Global Height
–31.72

LINEAR FUNCTIONS

DEFINITION 8.2 Linear Functions are monomial functions
with exponent +1 , that is functions specified by x

LINEAR−−−−−−−→
LINEAR(x) = ax+1. (Where a, called the linear coefficient, is
the bounded number that specifies the function LINEAR.)

EXAMPLE 8.7. The constant function FLOP specified by the constant
coefficient +5 273.1 is the function specified by the global input-output rule

x
F LOP−−−−−−−−−→ FLOP (x) = +5 273.1︸ ︷︷ ︸x+1

linear coefficient

= +5 273.1︸ ︷︷ ︸ x
linear coefficient

LANGUAGE 8.2 The reason monomial functions with exponent +1
are called linear functions is that they are (the simplest instance of)
a kind of functions with an extremely desirable but extremely rare
feature, namely linearity . (See https://en.wikipedia.org/wiki/
Linearity.) However, one should be careful because the name lin-
ear function is also used in Precalculus textbooks for a different kind
of functions, which we will investigate in chapter 9 and chapter 10 under
the name of affine functions.

https://en.wikipedia.org/wiki/Linearity
https://en.wikipedia.org/wiki/Linearity

4. Output Of Linear Functions at x0 207

IDENTITY
OPPOSITE
opposite of x

Contrary to what we did with regular monomial functions—and just like
what we did with constant functions, we will not normalize linear functions.
In fact, the linear functions with linear coefficients +1 and −1 have special
names:
• The linear function with coefficient +1 is usually called IDENT IT Y

because the output is identical with the input. In other words, IDENTITY
is the function specified by the global input-output rule

x
IDENT IT Y−−−−−−−−−−→ IDENTITY (x) = x

• The linear function with coefficient −1 is usually called OP P OSIT E.
In other words, OPPOSITE is the function specified by the global input-
output rule
x

OP P OSIT E−−−−−−−−−−→ OPPOSITE(x) = −x (Where −x is read opposite of x)

4 Output Of Linear Functions at x0

In order to get the output at a given bounded input x0 of a linear function,
we proceed exactly as with regular monomial functions, that is we still use
?? on ?? but, in the case of linear functions, the execution boils down to
just one multiplication.

TEMO 8.2 To get the output at −3 of the function specified by the global
input-output rule

x
BINK−−−−−−→ BINK(x) = (−26.18)x+1︸ ︷︷ ︸

output-specifying code

i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

BINK−−−−−−→ BINK(x)
∣∣∣
x←−3

= (−26.18)x+1
∣∣∣
x←−3

which gives:

−3 BINK−−−−−−→ BINK(−3) = (−26.18) · (−3)
+1︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code into an output number :
= −26.18 · −3

and, using theorem 19.2 on page 365, we get:
= +78.54

which gives the input-output pair
(−3, +78.54)

208 Chapter 8. Exceptional Monomial Functions

5 Outputs Of Linear Functions near ∞ and 0

In order to get the output near ∞ or near 0 of a linear function, we proceed
exactly as in the case of regular monomial functions but, in the case of linear
functions, the execution boils down to just one multiplication.

TEMO 8.3 To get the output near ∞ of the function specified by the global
input-output rule

x
BINK−−−−−−→ BINK(x) = (−26.18)x+1︸ ︷︷ ︸

output-specifying code

i. We declare that x is to be replaced by ±large

x
∣∣∣
x←±large

BINK−−−−−−→ BINK(x)
∣∣∣
x←±large

= (−26.18)x+1
∣∣∣
x←±large

which gives:

±large BINK−−−−−−→ BINK(−3) = (−26.18) · (±large)
+1︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code
= −26.18 · ±large

Since 26.18 is bounded , theorem 1.2 on page 38 gives 26.18 · large = large
and, using theorem 19.2 on page 365, we get:

= ∓large
which gives the input-output pair

(±large,∓large)

TEMO 8.4 To get the output near 0 of the function specified by the global
input-output rule

x
JINK−−−−−−→ JINK(x) = (+45.57)x︸ ︷︷ ︸

output-specifying code

i. We declare that x is to be replaced by ±small

x
∣∣∣
x←±small

JINK−−−−−−→ JINK(x)
∣∣∣
x←±small

= (+45.57)x+1
∣∣∣
x←±small

which gives:

±small JINK−−−−−−→ JINK(±small) = (+45.57) · (±small)
+1︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code
= +45.57 · ±small

6. Graphs Of Linear Functions 209

Since 45.57 is bounded , theorem 1.2 on page 38 gives 45.57 · small = small
and, using theorem 19.2 on page 365, we get:

= ±small
which gives the input-output pair

(±small,±small)

6 Graphs Of Linear Functions

After the constant functions, the linear functions are the second of only three
kinds of functions for which we can get the global graph directly because the
global graph is a straight line.

With linear functions, though, it is not as easy to make the case that
the global graph is a straight line as with constant functions because making
the case requires having a geometric definition of what a straight line is. So,
here we will take for granted that the global graph of a linear function is a
straight line.

1. Given a linear function specified by a global input-output rule, the key
to finding the quantitative global graph is another theorem from Geometry,
namely that a straight line is specified once we know two of its points.
(Which, in the real world, corresponds to the fact that all we need to draw
a straight line through two points is a straightedge.) As a consequence,
the quantitative global graph of a linear function will be specified by two
input-output pairs.
There is no restriction as to what bounded inputs to use but given the linear
function specified by the global input-output rule

x
f−−−−−→ f(x) = a · x

there are two bounded inputs that make it very easy namely 0 and +1
because:
• Inputting 0 gives:

x
∣∣∣
x←0

f−−−−−→ f(x)
∣∣∣
x←0

= a · x
∣∣∣
x←0

0 f−−−−−→ f(0) = a · 0

and, because any number multiplied by 0 gives 0

= 0
So, (0, 0) is an input-output pair.

210 Chapter 8. Exceptional Monomial Functions

• Inputting +1 gives:

x
∣∣∣
x←+1

f−−−−−→ f(x)
∣∣∣
x←+1

= a · x
∣∣∣
x←+1

+1 f−−−−−→ f(+1) = a · (+1)

and, because any number multiplied by +1 gives that number

= a

So, (+1, a) is an input-output pair.
2. Given a function specified by a global input-output rule, we will use:

PROCEDURE 8.3 Graph the function specified by x
LINEAR−−−−−−→

LINEAR(x) = a · x

i. Plot the input-output pairs for two inputs, for instance 0 and 1
ii. Draw a straight line through the two plot points

EXAMPLE 8.8. Let f be the function specified by the global input-output
rule

x
f−−−−−→ f(x) = −2.5x

in order to get the quantitative global graph,

i. We plot the input-output pairs
(0, 0) and (1,−2.5)

Outputs

Inputs

+6

0
+2
+4

–6

–2
–4

+60 +2+4–6 –2–4

Screen

Offscreen

ii. We draw a straight line
through the input-output pairs
(0, 0) and (1,−2.5)
Outputs

Inputs

+6

0
+2
+4

–6

–2
–4

+60 +2+4–6 –2–4

Screen

Offscreen

EXAMPLE 8.9. Here is the global graph of the function IDENTITY :

6. Graphs Of Linear Functions 211

In Mercator view:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

In Magellan view:

0-
in

pu
t l

ev
el

0-output level
0+0–

+∞–∞

EXAMPLE 8.10. Here is the global graph of the function OPPOSITE:
In Mercator view:

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

In Magellan view:

0-
in

pu
t l

ev
el

0-output level
0+0–

+∞–∞

3. Since the global graph is so easy to get, we get the local graphs near
0 and near∞ using ?? on ??. In the rest of this text, though, given a linear
function, we will usually need only the local graph near ∞ and the local
graph near 0.

EXAMPLE 8.11.

212 Chapter 8. Exceptional Monomial Functions

global slope
run
rise

Local graph of IDENTITY+ near
∞::

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

((

Local graph of IDENTITY+ near
0::

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

((

0+0–

EXAMPLE 8.12.
Local graph of IDENTITY− near
∞::

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

((

Local graph of IDENTITY− near
0::

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

((

0+0–

7 Features Of Linear Functions

What makes linear functions exceptional among monomial functions is that
they lack local concavity and have only local height and local slope.

But then, since for a linear function the local slope is the same every-
where, the graph of a linear function has a global slope, that is the fraction
Rise
Run where, given two input-output pairs, the run is the difference from one
input to the other and the rise is the corresponding difference from one
output to the other.

In fact, the reason we like to use the inputs 0 and 1 is that they make

7. Features Of Linear Functions 213

dilation functionit easy to see that the global slope of the global graph of a linear function is
the linear coefficient of the global input-output rule.

EXAMPLE 8.13. Let f be the function specified by the global input-output
rule

x
f−−→ f(x) = (+0.5)x+1

= +0.5x

the global slope of f is Rise
Run = +0.5

+1 = +0.5

–∞ +∞

Outputs

–∞
Inputs

Offscreen
+∞

0

Screen

0

Rise =+0.5

+1

+0.5

Run =+1

LANGUAGE 8.3 Another name for linear function is dilation function
because it is easy to prove that the distance between any two outputs
is obtained by just “dilating” the distance between the two inputs by
the coefficient. (See https://en.wikipedia.org/wiki/Dilation_
(metric_space).)

https://en.wikipedia.org/wiki/Dilation_(metric_space)
https://en.wikipedia.org/wiki/Dilation_(metric_space)

214 Chapter 8. Exceptional Monomial Functions

base function
add-on number
add-on function
sum function

Chapter 9

Prelude To Polynomial
Functions

Adding Functions, 215 • Binomial Functions, 217 • Graphs of Binomial
Functions, 219 • Trinomial Functions, 222 • Comparing Monomial
Functions, 223 .

As already mentioned, monomial functions will be the building blocks
from which all the functions we will be investigating in this text are built
from. So we will always have to use more than a single monomial function
at a time.

1 Adding Functions

1. Given a function, to which we will refer as base function, one of-
ten needs to add a number to each output that the base function returns.
Whether or not this add-on number remains the same regardless of the
input or differs depending on the input, we can look upon the add-on num-
ber as being itself the output returned for the same input by some other
function to which we will refer as add-on function. (If the add-on number
is the same regardless of the input this just means that the add-on function
is a constant function.)
There is then going to be a third function, to be referred as sum function,
which, for each input, will return the output returned by the base function
plus the add-on number returned by the add-on function for that input.
In other words, given the two functions

215

216 Chapter 9. Prelude To Polynomial Functions

bar graph
bar x

BASE−−−−−→ BASE(x)
and

x
ADD-ON−−−−−−−→ ADD-ON(x)

there will be a third function specified as
x

SUM−−−−→ SUM(x) = BASE(x) +ADD-ON(x)
2. In sciences such as

textscBiology,
textscPsychology and
textscEconomics the three functions are often in tabular form.

EXAMPLE 9.1. When we shop online for, say for a textbook, we first see
a price list —the base function. However, a shipping charge, which might or
might not depend on the textbook, is usually added-on to the list price and is
given by the Shipping charge list —the add-on function. The price we end-up
having to pay is thus given by the actual price list—the sum function.

x
LIST−−−→ LIST (x)

English 140
History 80
Biology 130
Math 10
Poetry 70

x
SHIP−−−−→ SHIP (x)

English 13.15
History 3.45
Biology 7.25
Math 3.75
Poetry 5.32

x
P AY−−−→ PAY (x)

English 140+13.15 = 153.15
History 80+3.45 = 83.45
Biology 130+7.35 = 137.25
Math 10+3.75 = 13.75
Poetry 70+5.32 = 75.32

which says, for instance, that while the list price of the English textbook is
$140 , a shipping charge of $13.15 brings the price to be paid to $140 +
$13.15 = $153.15.

3. Instead of representing the functions by tables, one might want to
represent them by graphs. Rather than to use plots, though, one often uses
bar graphs in which the pieces of input level lines that are between the
0-output level line and the plot point are highlighted into bars.

2. Binomial Functions 217

binomial function
EXAMPLE 9.2. The situation in the above example would be represented
by the following bar graphs.

x
LIST−−−→ LIST (x) x

SHIP−−−−→ SHIP (x) x
P AY−−−→ PAY (x)

Outputs

Inputs

Offscreen

0

Biology

History

M
ath

English

Poetry

20
40
60

100
120
140

80

160

Outputs

Inputs

Offscreen

0

Biology

History

M
ath

English

Poetry

20
40
60

100
120
140

80

160

Outputs

Inputs

Offscreen

0

Biology

History

M
ath

English

Poetry

20
40
60

100
120
140

80

160

2 Binomial Functions

1. Given a base function which is a monomial function, when we add-
on a monomial function with the same exponent, the sum is a monomial
function with the same exponent.

EXAMPLE 9.3. Given the base function MINT specified by the global
input-output rule

x
MINT−−−−−−→MINT (x) = −12.82x+4

and given the add-on function TEA specified by the global input-output rule
x

T EA−−−−−→ TEA(x) = +49.28x+4

then the sum function will be specified by the global input-output rule
x

SUM−−−−−−−−→ SUM(x) = MINT (x) + TEA(x)
= −12.82x+4 ⊕+49.28x+4

= [−12.82⊕+49.28]x+4

= +36.46x+4

2. However, when the exponent of the add-on function is different from
the exponent of the base function, then the sum function is not a monomial
function but what is called a binomial function.

218 Chapter 9. Prelude To Polynomial Functions

EXAMPLE 9.4. Let BASE be specified by the global input-ouput rule
x

BASE−−−−−→ BASE(x) = (−3)x+2

and let ADD-ON be specified by the global input-ouput rule
x

ADD-ON−−−−−−−→ ADD-ON(x) = (+5)x0

= +5
then the SUM function is specified by the global input-ouput rule

x
SUM−−−−→ SUM(x) = (−3)x+2 ⊕ (+5)x0

= (−3)x+2 + 5
To see that SUM cannot be replaced by a single monomial function, we first
evaluate all three functions at some input, for instance +2:

+2 BASE−−−−−→ BASE(+2) = (−3)(+2)+2

= −12
and

+2 ADD-ON−−−−−−−→ ADD-ON(+2 = (+5)(+2)0

= +5
then

x
SUM−−−−→ SUM(x) = (−3)(+2)+2 ⊕ (+5)(+2)0

= −12⊕+5
= −7

The question then is what monomial function could return the output −7 for
the input +2.

Of course, we can easily find a monomial function that would return the
output −7 for the input +2. For instance, the dilation function x f−→ f(x) =
−7

2x does return the output −7 for the input +2. Butf is not going to return
the same output as SUM for other inputs, say, +3, +4, etc which it should.
So, the binomial function

x
SUM−−−−→ SUM(x) = (−3)x+2 + 5

cannot be replaced by the single monomial function

x
f−→ f(x) = −7

2x

3. Graphs of Binomial Functions 219

NOTE 9.1
We noted at the beginning of Chapter 5 that monomial functions were
only rarely called monomial functions and that this was unfortunate:
indeed, it would be nicer to say that a binomial function cannot be
replaced by a single monomial function. (We cannot have two for the
price of one.)

3 Graphs of Binomial Functions

1. When the exponent of the add-on function is the same as the exponent
of the base function, the bar graphs show exactly why the sum function will
have again the same exponent.
a. Given a constant base function, adding-on a constant function:

EXAMPLE 9.5.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

b. Given a dilation base function, adding-on a dilation function:

EXAMPLE 9.6.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

220 Chapter 9. Prelude To Polynomial Functions

2. When the exponent of the add-on function is not the same as the
exponent of the base function, the bar graphs show clearly why the sum
function cannot be a monomial function.

a. Given a constant base function,

• Adding-on a dilation function:

EXAMPLE 9.7.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

• Adding-on an even positive exponent monomial function:

EXAMPLE 9.8.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

• Adding-on an odd positive exponent monomial function:

EXAMPLE 9.9.

3. Graphs of Binomial Functions 221

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

b. Given a dilation base function,

• Adding-on an even monomial function:

EXAMPLE 9.10.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

• Adding-on an odd monomial function:

EXAMPLE 9.11.
Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8 –6 –4 –2 +2+4+60 +8 –8 –6 –4 –2 +2+4+60 +8

–8
–6
–4
–2

+2
+4
+6

0

+8

Outputs

Inputs

Offscreen

–8
–6
–4
–2

+2
+4
+6

0

+8

–8 –6 –4 –2 +2+4+60 +8

222 Chapter 9. Prelude To Polynomial Functions

trinomial function 4 Trinomial Functions

There is of course no reason why the base function could not itself be a
binomial function. In fact, this can very well be the case and the sum
function will then be called a trinomial function.

EXAMPLE 9.12. Let BASE be specified by the global input-ouput rule
x

BASE−−−−−→ BASE(x) = (−3)x0 ⊕ (+7)x+1

and let ADD-ON be specified by the global input-ouput rule
x

ADD-ON−−−−−−−→ ADD-ON(x) = (+5)x+3

then the SUM function is specified by the global input-ouput rule
x

SUM−−−−→ SUM(x) = (−3)x0 ⊕ (+7)x+1 ⊕ (+5)x+3

= −3 + 7x + 5x+3

EXAMPLE 9.13. Let BASE be specified by the global input-ouput rule
x

BASE−−−−−→ BASE(x) = (−3)x+1 ⊕ (+7)x0

and let ADD-ON be specified by the global input-ouput rule
x

ADD-ON−−−−−−−→ ADD-ON(x) = (+5)x−2

then the SUM function is specified by the global input-ouput rule
x

SUM−−−−→ SUM(x) = (−3)x+1 ⊕ (+7)x0 ⊕ (+5)x−2

= −3x + 7 + 5x−2

5. Comparing Monomial Functions 223

5 Comparing Monomial Functions

224 Chapter 9. Prelude To Polynomial Functions

affine␣function
generic global
input-output rule

linear␣coefficient
constant␣coefficient

Chapter 10

Affine Functions: Local
Analysis

Output at x0, 226 • Output near ∞, 228 • Output near x0, 230 • Local
graphs, 234 • Local Feature-signs, 237 .

Affine functions are specified by global input-output rules like the
generic global input-output rule:

x
AF F INE−−−−−−−−→ AFFINE(x) = a x+1 ⊕ b x0︸ ︷︷ ︸

output-specifying code

which we usually write

= ax+ b︸ ︷︷ ︸
output-specifying code

where a, called the linear coefficient, and b, called the constant coeffi-
cient, are the bounded numbers that specify the function AFFINE.

EXAMPLE 10.1. The affine function NINA specified by the linear co-
efficient −31.39 and the constant coefficient +5.34 is the function specified
by

x
NINA−−−−−−−−−→ NINA(x) = −31.39︸ ︷︷ ︸

linear coefficient

x + 5.34︸︷︷︸
constant coefficient

It is worth noting that

225

226 Chapter 10. Affine Functions: Local Analysis

term
linear term
constant term
x0
generic given input

NOTE 10.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 10.2. The function specified by the global input-output rule
x

NINA−−−−−−−−−→ NINA(x) = −31.39x+ 5.34
could equally well be specified by the global input-output rule

x
NINA−−−−−−−−−→ NINA(x) = +5.34− 31.39x

We now introduce some standard terminology to help us describe very
precisely what we we will be doing.

The output-specifying code of the affine function specified by

x
AF F INE−−−−−−−−→ AFFINE(x) = ax+ b︸ ︷︷ ︸

output-specifying code

consists of two terms:
• ax which is called the linear term.
• b which is called the constant term.

EXAMPLE 10.3. The output-specifying code of the function specified by
the global input-output rule

x
NINA−−−−−−−−−→ NINA(x) = −31.39x+ 5.34︸ ︷︷ ︸

Output specifying formula

consists of two terms:
= −31.39x︸ ︷︷ ︸

linear term

+5.34︸ ︷︷ ︸
constant term

LANGUAGE 10.1 Whether we look upon b as the constant coefficient,
that is as the coefficient of x0 in the constant term bx0 or as the constant
term bx0 itself with the power x0 “going without saying” will be clear
from the context.

1 Output at x0

We will use x0 as a generic given input, that is x0 is a bounded input that
has been given but whose identity remains undisclosed for the time being.

1. Output at x0 227

PROCEDURE 10.1 To evaluate at x0 the function specified
by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

i. Declare that x is to be replaced by x0

x
∣∣∣
x←x0

AF F INE−−−−−−−−→ AFFINE(x)
∣∣∣
x←x0

= ax+ b
∣∣∣
x←x0

which gives:
x0

AF F INE−−−−−−−−→ AFFINE(x0) = ax0 + b︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into an output number :
= ax0 + b

which gives the input-output pair
(x0,ax0 + b)

TEMO 10.1 To evaluate at −3 the function specified by

x
ALDA−−−−−−→ ALDA(x) = −32.67x+ 71.07

i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

ALDA−−−−−−→ ALDA(x)
∣∣∣
x←−3

= −32.67x+ 71.07
∣∣∣
x←−3

which gives

−3 ALDA−−−−−−→ ALDA(−3) = −32.67(−3) + 71.07︸ ︷︷ ︸
output specifying code

ii. We execute the output-specifying code into an output number :
= +98.01 + 71.07
= +169.08

which gives the input-output pair

(−3, +169.08)

However, as already discussed in ?? ?? and as has already been the case
with monomial functions, instead of getting the output of an affine function
at a given input, be it ∞ or x0, we will usually get the output of the affine
function near that given input.

228 Chapter 10. Affine Functions: Local Analysis

jet
local input-output rule
near ∞

2 Output near ∞
In order to get the output near ∞, we could proceed as we did in section 5
Output Near ∞ with monomial functions, that is we could declare “x is
±large” and replace x everywhere in the output-specifying code by ±large.
However, the output-specifying code of affine functions and all functions
thereafter will involve more than just one term and using ±large would
become more and more time consuming.

So, in conformity with universal practice, we will declare “x near∞” but
write just x after that. This, though, is extremely dangerous as it is easy to
forget that what we write may be true only because x has been declared
to be near ∞.

1. We will execute the output-specifying code, here ax + b, into a jet,
that is with the terms in descending order of sizes, which, because x is large,
means that the powers of x must be in descending order of exponents. We
will then have the local input-output rule near∞:

x near ∞ AF F INE−−−−−−−−→ AFFINE(x) = ax+ b︸ ︷︷ ︸
output jet near ∞

EXAMPLE 10.4. Given the function specified by
x

BIBA−−−−−−→ BIBA(x) = −61.03− 82.47x
To get the jet near ∞, we first need to get the order of sizes.
i. −61.03 is bounded
ii. −82.47 is bounded and x is large. So, since bounded · large = large,
−82.47 · x is large
Then, in the jet near ∞, −82.47x must come first and −61.03 comes second
So, we get the local input-output rule near ∞:

x near ∞ BIBA−−−−−−→ BIBA(x) = −82.47x− 61.03︸ ︷︷ ︸
output jet near ∞

2. Altogether, then:
PROCEDURE 10.2 To evaluate near ∞ the function specified
by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

i. Declare that x is near ∞
x
∣∣∣
x near ∞

AF F INE−−−−−−−−→ AFFINE(x)
∣∣∣
x near ∞

= ax+ b
∣∣∣
x near ∞

2. Output near ∞ 229

linear coefficient in the jet
near ∞

constant coefficient in the
jet near ∞

which gives:
x near ∞ AF F INE−−−−−−−−→ AFFINE(x) = ax+ b︸ ︷︷ ︸

output-specifying code

ii. Execute the output-specifying code into a jet near ∞
x near ∞ AF F INE−−−−−−−−→ AFFINE(x) = [a] x ⊕ [b]︸ ︷︷ ︸

output jet near ∞
where
• a is the linear coefficient in the jet near ∞
• b is the constant coefficient in the jet near ∞.
which gives the local input-output rule near ∞:

x near ∞ AF F INE−−−−−−−−→ AFFINE(x) = [a] x ⊕ [b]︸ ︷︷ ︸
output jet near ∞

(Here the jet near∞ looks the same as the given global input-output
rule but that is only because the output-specifying code happened to
be written in descending order of exponents.)

TEMO 10.2 To evaluate near ∞ the function specified by

x
NINA−−−−−−−→ NINA(x) = −61.03− 82.47x

i. We declare that x is near ∞

x
∣∣∣
x near∞

NINA−−−−−−→ NINA(x)
∣∣∣
x near∞

= −61.03− 82.47x
∣∣∣
x near∞

which gives:

x near ∞ NINA−−−−−−→ NINA(x) = −61.03− 82.47 x︸ ︷︷ ︸
output-specifying code

ii. We execute the output-specifying code into a jet near ∞:
= [−82.47] x ⊕ [−61.03]

which gives the local input-output rule near ∞:

x near ∞ NINA−−−−−−→ NINA(x) = [−82.47] x ⊕ [−61.03]︸ ︷︷ ︸
output jet near ∞

where:
• −82.47 is the linear coefficient in the jet near ∞

230 Chapter 10. Affine Functions: Local Analysis

approximate • −61.03 is the constant coefficient in the jet near ∞.
(Here the jet near ∞ does not look the same as the global input-output rule
because the output-specifying code happened not to be in descending order of
exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 10.1 Approximate output near ∞ . For affine func-
tions, the term in the jet that contributes most to the output near∞
is the highest degree term in the output jet near ∞:

x near ∞ AF F INE−−−−−−−−−→ AFFINE(x) = [a]x+ [...]

EXAMPLE 10.5. Given the function specified by
x

NINA−−−−−−−→ NINA(x) = −61.03− 82.47x

x near ∞ NINA−−−−−−→ NINA(x) = [−82.47] x + [−61.03]
near ∞ we will often just use the approximation

x near ∞ NINA−−−−−−→ NINA(x) = [−82.47] x + [...]

3 Output near x0

While with monomial functions 0 played just as important a role as∞ (Sec-
tion 4 Reciprocity), this will not at all be the case with affine functions and
all functions thereafter as we will very often be interested in the neighbor-
hood of some given bounded input(s) other than 0. As a matter of fact,
the input 0 will usually not be of much more interest than other bounded
inputs. (But we will often be concerned with the output 0.)

1. In order to “thicken the plot” near a given bounded input, we could
proceed basically just as we did in section 6 Output Near 0 with monomial
functions, that is declare “x← x0 + small” or “x← x0− small”and replace
x everywhere in the output-specifying code by “x0 ⊕+small”

3. Output near x0 231

+small

Inputs
0

()

Neighborhood of
0

–small+

x0

x0

x0

EXAMPLE 10.6. The input +2.5 is near the given input +2:

Inputs

+0.5

+2.5 = +2 +0.5

+2

+2 +2.2
+2.4
+2.6
+2.8

+1.8
+1.6
+1.4
+1.20

0
()

Neighborhood of +2

+0.2
+0.4
+0.6
+0.8

–0.2
–0.4
–0.6
–0.8

or by “x← x0 − small”.

Inputs
0

()

Neighborhood of
0

–small+

–small

x0

x0

x0

EXAMPLE 10.7. The input +17.4 is near the given input +18:

Inputs

–0.6

+17.4 = +18 –0.6

0 0

()

Neighborhood of +18

+0.2
+0.4
+0.6
+0.8

–0.2
–0.4
–0.6
–0.8

+18
+18.2
+18.4
+18.6
+18.8

+17.8
+17.6
+17.4
+17.2

+18

However, as already pointed out in ?? ??, unlike monomial functions the

232 Chapter 10. Affine Functions: Local Analysis

h
output jet near x0

output-specifying code of affine functions and all functions thereafter will
involves more than just one term. So, using “x0⊕+small” or “x0⊕−small”
would become more and more time consuming and instead we will use “x0 +
h” where the letter h is universally accepted as standing for +small or
−small. In other words, h already includes the sign.
Of course, in order to input a neighborhood of 0, we will declare that x← h,
aka x← 0 + h, in other words that x is to be replaced by h.

2. We can then execute the input-output specifying phrase into a jet
that is with the terms in descending order of sizes which here, since h
is small, means that the powers of h will have to be in ascending order of
exponents. We will then have the local input-output rule near the given
input:

x0 ⊕ h
AF F INE−−−−−−−−→ AFFINE(x0 ⊕ h) = Powers of h in ascending order of exponents︸ ︷︷ ︸

output jet near ∞
3. We will therefore use:
PROCEDURE 10.3 To evaluate near x0 the function specified
by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

i. Declare that x is to be replaced by x0 + h

x
∣∣∣
x←x0+h

AF F INE−−−−−−−−→ AFFINE(x)
∣∣∣
x←x0+h

= ax+ b
∣∣∣
x←x0+h

which gives:
x0 + h

AF F INE−−−−−−−−→ AFFINE(x0 + h) = a(x0 + h)+ b︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into a jet near x0:
= ax0 + ah+ b

= [ax0 + b]⊕ [a]h︸ ︷︷ ︸
output jet near x0

which gives the local input-output rule near x0:
x0 + h

AF F INE−−−−−−−−→ AFFINE(x0 + h) = [ax0 + b]⊕ [a]h︸ ︷︷ ︸
output jet near x0

TEMO 10.3 To evaluate near −3 the function specified by

x
ALDA−−−−−−→ ALDA(x) = −32.67x+ 71.07

3. Output near x0 233

i. We declare that x is to be replaced by −3 + h

x
∣∣∣
x←−3+h

ALDA−−−−−−→ ALDA(x)
∣∣∣
x←−3+h

= −32.67x+ 71.07
∣∣∣
x←−3+h

which gives

−3 + h
ALDA−−−−−−→ ALDA(−3 + h) = −32.67(−3 + h) + 71.07︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code into a jet near −3:
= −32.67(−3)− 32.67h+ 71.07
= +98.01− 32.67h+ 71.07
= +98.01 + 71.07− 32.67h

= [+169.08]⊕[−32.67]h︸ ︷︷ ︸
output jet near −3

which gives the local input-output rule near −3:

−3 + h
ALDA−−−−−−→ ALDA(−3 + h) = [+169.08]⊕[−32.67]h︸ ︷︷ ︸

output jet near −3

4. When all we want is a feature-sign, though, the above procedure is
inefficient and we will then use the following procedure based directly on
the fact that an affine function is the addition of:
• a linear function , (See ?? on ??.)
• a constant function . (See ?? on ??.)

that is:
x

AF F INE−−−−−−−−→ AFFINE(x) = cx︸︷︷︸
linear

⊕ d︸︷︷︸
constant

We declare that x is near x0 that is that x must be replaced by x0 + h:
x

AF F INE−−−−−−−−→ AFFINE(x) = c (x0 + h)︸ ︷︷ ︸
linear

⊕ d︸︷︷︸
constant

The output of the local input-output rule near x0 will have to be a jet:
x0 + h

AF F INE−−−−−−→ AFFINE(x0 + h) = []⊕ []h
and we want to be able to get any one of the coefficients of the output jet
without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.

More precisely,

234 Chapter 10. Affine Functions: Local Analysis

i. If we want the coefficient of h0 in the output jet:
• The linear function contributes cx0

• The constant function contributes d
so we have:

x0 + h
AF F INE−−−−−−→ AFFINE(x0 + h) = [cx0 + d]⊕ []h

ii. If we want the coefficient of h1 in the output jet:
• The linear monomial function contributes c
• The constant monomial function contributes nothing

so we have:
x0 + h

AF F INE−−−−−−→ AFFINE(x0 + h) = []⊕ [c]h

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input,
we get the local graph near any input, be it bounded or infinity, from the jet
near that input.

PROCEDURE 10.4 To graph near ∞ the function specified
by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

1. Get the jet near ∞ using ?? ?? on ??
x near ∞ AF F INE−−−−−−−−→ AFFINE(x) = [a] x + [b]

2. Get the local graph near ∞ of each term:
a. Get the graph of the linear term near ∞ by graphing near ∞

the monomial function x→ ax using ?? ?? on ??.
b. Get the graph of the constant term near ∞ by graphing near

∞ the monomial function x→ b using ?? ?? on ??.
3. Get the local graph near ∞ of AFFINE by adding-on the con-
stant term to the linear term using chapter 9.

TEMO 10.4 To graph near ∞ the function specified by

x
NINA−−−−−−−→ NINA(x) = −61.03− 82.47x

1. We get the jet near ∞: (See Demo 10.2 on page 229)

x near ∞ NINA−−−−−−−→ NINA(x) = [− 82.47]x+ [− 61.03]
2. Get the local graph near ∞ of each term:

4. Local graphs 235

a. We get the graph of the linear
term by graphing near ∞ the
monomial function x→ [− 82.47]x
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

Screen

Linear term near ∞

Offscreen

0

b. We get the graph of the
constant term near ∞ by graphing
near ∞ the monomial function
x→ [− 61.03] (See Demo 6.24 on
page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen
–61.03

Offscreen

Constant term near ∞

3. We get the local graph near ∞ of NINA by adding-on to the graph of the
linear term the graph of the constant term. (See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

–61.03

Offscreen

Constant term near ∞
Linear term near ∞

Local graph
near ∞

PROCEDURE 10.5 To graph near x0 the function speci-
fied by the generic global input-output rule x

AF F INE−−−−−−−−→
AFFINE(x) = ax+ b

i. Get the jet near x0 of AFFINE using ?? ?? on ??
ii. Get the graph of the constant term in the jet near x0 namely of
[ax0 + b]
iii. Add-on the graph of the linear term in the jet near x0 namely of
[a]h

236 Chapter 10. Affine Functions: Local Analysis

TEMO 10.5 To graph near −3 the function specified by

x
ALDA−−−−−−−→ ALDA(x) = −32.67x+ 71.07

i. We get the jet near −3 of ALDA by evaluating ALDA near −3: (See
Demo 10.3 on page 232)

−3 + h
ALDA−−−−−−→ ALDA(−3 + h) = [+169.08]⊕ [−32.67]h︸ ︷︷ ︸

output jet near −3

ii. We get the graph of the constant
term near −3: (See Demo 6.24 on
page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Constant term
near

Offscreen

–3 0

–3

+169.08

iii. We get the graph of the linear
term near −3 is: (See Demo 6.24 on
page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Linear term
near –3

–3 0
iv. We add-on the graph of the linear term near −3 to the graph of the linear
term near −3. (See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Constant term
near

Offscreen

0

Linear term
near –3

Local graph
near

–3 0

–3
+169.08

5. Local Feature-signs 237

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near
x0, can be read from the local graph and so all we need to do is:

i. Get the output jet from the global input-output rule. (See ?? on ??
when the given input is ∞ or ?? on ?? when the given input is x0.)

ii. Get the local graph from the output jet. (See ?? on ?? when the
given input is ∞ or ?? on ?? when the given input is x0.)

iii. Get the feature-sign from the local graph(See ??
However, with a little bit of reflection, it is faster and much more useful to
read the feature-signs directly from the jet in the local input-output rule.
But since, in order for the terms in the jet to be in descending order of sizes,
• In the case of infinity, the exponents of x have to be in descending order.
• In the case of a bounded input, the exponents of h have to be in ascending

order.
we will deal with ∞ and with x0 separately.

1. Nearinfinity things are quite straightforward:
PROCEDURE 10.6 To get the feature-signs near ∞ of the
function specified by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

i. Get the local input-output rule near ∞:
x near ∞ AF F INE−−−−−−−−−→ AFFINE(x) = ax+ b

= [a]x⊕ [b]︸ ︷︷ ︸
output jet near ∞

ii. Then, in the jet near ∞:
• Get both the Height-sign and the Slope-sign from the linear term
[a]x because the next term [b] is too small to matter .
• Since both the linear term and the constant term have no concav-

ity, AFFINE has no Concavity-sign near ∞.

TEMO 10.6 Get the Height-sign near ∞ = of the function specified by

x
JULIE−−−−−−−−→ JULIE(x) = −2x+ 6

i. We get the local input-output rule near ∞:

x near ∞ JULIE−−−−−−−−→ JULIE(x) = −2x+ 6

= [− 2]x⊕ [+ 6]︸ ︷︷ ︸
output jet near ∞

238 Chapter 10. Affine Functions: Local Analysis

ii. We get Height-sign from the linear term [− 2]x because the constant term
[+ 6] is too small to matter .
Since the linear coefficient −2 is negative, we get that Height-sign JULIE near
∞ = 〈−, +〉. (Seen from ∞.)

TEMO 10.7 Get the Slope-signs near ∞ of the function specified by

x
P ET ER−−−−−−−−→ PETER(x) = +3x− 8

i. We get the local input-output rule near ∞:

x near ∞ P ET ER−−−−−−−−→ PETER(x) = +3x− 8

= [+ 3]x⊕ [− 8]︸ ︷︷ ︸
output jet near ∞

ii. We get Slope-sign from the linear term [+ 3]x because the constant term
[− 8] is too small to matter (Not to mention that a constant term has no
slope.)
Since the linear coefficient +3 is positive, we get that Slope-sign PETER near
∞ = 〈�,�〉. (Seen from ∞.)

2. In the case of a bounded input, things are a bit more complicated
because the bounded input may turn out to be ordinary or critical for the
height. But it will always be ordinary for the slope.

PROCEDURE 10.7 To get the feature-signs near x0 of the
function specified by x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

i. Get the local input-output rule near x0:
x0 + h

AF F INE−−−−−−−−−→ AFFINE(x0 + h) = a(x0 + h) + b

= ax0 + ah+ b

= ax0 + b+ ah

= [ax0 + b]⊕ [a]h︸ ︷︷ ︸
output jet near x0

ii. Then, in the jet near x0:
• If x0 is ordinary, that is if [ax0 + b] 6= 0, get the Height-sign from

the sign of the constant term [ax0 +b] because the next term [a]h
is too small to matter . In other words, Height-sign AFFINE near
x0 = Height-sign of the monomial function h→ ax0 + b near 0.
But if x0 is critical, that is if [ax0 +b] = 0, the next term, namely

5. Local Feature-signs 239

the linear term [a]h, now does matter even though it is small. In
other words, now Height-sign AFFINE near x0 = Height-sign of
the monomial function h→ ah near 0.
• Since the constant term has no slope, get the Slope-sign from

the next smaller term in the jet, namely the linear term. In other
words, Slope-sign AFFINE near x0 = Slope-sign of the monomial
function h→ ah near 0.
• Since both the constant term and the linear term have no concav-
ity, AFFINE has no Concavity-sign near x0.

TEMO 10.8 Get the feature-signs near +2 of the function specified by

x
JULIE−−−−−−−−→ JULIE(x) = −2x− 6

i. We get the local input-output rule near +2:

+2 + h
JULIE−−−−−−−−→ JULIE(+2 + h) = −2(+2 + h)− 6

= −2(+2)− 2h− 6
= −4− 2h− 6
= −4− 6− 2h

= [− 10]⊕ [− 2]h︸ ︷︷ ︸
output jet near +2

ii. Then, from the jet:
• We get the Height-sign of JULIE from the constant term [−10] and since

the Height-sign of the monomial function h→ −10 near 0 is 〈−,−〉, we get
that Height-sign JULIE near +2 = 〈−,−〉.

• Since the constant term [−10] has no slope we get Slope-sign from the
next term, namely the linear term [−2]h, and since the Slope-sign of the
monomial function h → −2h near 0 is 〈�,�〉, we get that Slope-sign
JULIE near +2 = 〈�,�〉.

• Since the constant term [−10] and the linear term [−2h] both have no
concavity, JULIE has no Concavity-sign near +2.

TEMO 10.9 Get the feature-signs near −2 of the function specified by

x
P ET ER−−−−−−−−→ PETER(x) = +3x+ 6

240 Chapter 10. Affine Functions: Local Analysis

i. We get the local input-output rule near −2:

−2 + h
P ET ER−−−−−−−−→ PETER(−2 + h) = +3(−2 + h) + 6

= +3(−2) + 3h+ 6
= −6 + 3h+ 6
= −6 + 6 + 3h

= [0]⊕ [+ 3]h︸ ︷︷ ︸
output jet near −2

ii. Then, from the jet:
• Since the constant term is 0, we get Height-sign of PETER from the next
term, namely the linear term [+3]h even though it is small. Since the
Height-sign of the monomial function h→ +3h near 0 is 〈−, +〉 we get that
Height-sign PETER near −2 = 〈−, +〉.

• Since the constant term [0] has no slope we get Slope-sign from the next
term, namely the linear term [+3]h, and since the Slope-sign of the mono-
mial function h → +3h near 0 is 〈�,�〉 we get that Slope-sign PETER
near −2 = 〈�,�〉

• Since the constant term [0] and the linear term [+3h] both have no con-
cavity, PETER has no Concavity-sign near −2.

EVERYTHING IN THE SOURCE AFTER THIS BELONG ELSEWHERE
AND IS COMMENTED OUT THREE TIMES HERE.

general local analysis

Chapter 11

Affine Functions: Global
Analysis

Smoothness, 241 • The Essential Question, 242 • Slope-sign,
244 • Extremum, 245 • Height-sign, 245 • Bounded Graph, 246 • 0-Slope
Location, 248 • Locating Inputs Whose Output = y0, 248 • Locating
Inputs Whose Output > y0 Or < y0, 248 • Initial Value Problem,
249 • Boundary Value Problem, 251 .

In contrast with local analysis which involves only inputs that are near a
given input, be it∞ or x0, global analysis involves, one way or the other, all
inputs. We will see that, while the local analysis of all algebraic functions
will turn out to remain essentially the same, the global analysis of each kind
of algebraic functions will turn out to be vastly different.

In fact, with most functions, we will be able to solve only some global
problems and mostly only approximately so. Affine functions, though, are
truly exceptional in that we will be able to solve all global problems exactly.

Anyway, the first step in investigating the global behavior of a kind of
algebraic function will always be to do the general local analysis of that
kind of algebraic function, that is the local analysis of the generic algebraic
function of that kind near ∞ and near a generic input x0.

1 Smoothness

Given the function specified by the generic global input-output rule
x

AF F INE−−−−−−−−→ AFFINE(x) = ax+ b

241

242 Chapter 11. Affine Functions: Global Analysis

generic local input-output
rule

first derivative

the generic local input-output rule is:
x0 + h

AF F INE−−−−−−−−→ AFFINE(x0 + h) = [ax0 + b]⊕[a]h︸ ︷︷ ︸
jet near x0

1. The constant term in the jet near x0, namely [ax0 + b], is just the
output at x0. (See ?? on ??). In other words:

THEOREM 11.1 The function which outputs at the given input the
constant coefficient in the jet of a given affine function near a given
bounded input is the given affine function itself.

EXAMPLE 11.1. Observe that in the local input-output rule in Demo 10.3
on page 232 the constant coefficient in the jet near −3, namely +169.08 , is
just the output at−3. (See Demo 12.1 on page 255)

2. Since the linear term in the jet of an affine function near x0, namely
[a]h, is small, we have:

THEOREM 11.2 Approximate output near x0 . For affine func-
tions, inputs near x0 have outputs that are near the output at x0.

which, with the language we introduced in ??, we can rephrase as:

THEOREM ?? (Restated) ?? All affine functions are continuous
at all inputs.

(In fact, we will see that this will also be the case for all the functions which
we will be investigating in this text.)

3. The function which outputs the linear coefficient in the jet of a given
affine function near a given input is called the first derivative of the given
function.

2 The Essential Question

As always when we set out to investigate any kind of functions, the first
thing we must do is to find out if the offscreen graph of an affine function
consists of just the local graph near ∞ or if it also includes the local graph
near one or more ∞-height inputs.
In other words, we need to ask the Essential Question:

2. The Essential Question 243

• Do all bounded inputs have bounded outputs
or
• Are there bounded inputs that are ∞-height inputs, that is are there
inputs whose nearby inputs have unbounded outputs?

Now, given a bounded input x, we have that:
• since a is bounded, ax is also bounded
• b is bounded
and so, altogether, we have that ax + b is bounded and that the answer to
the Essential Question is:

THEOREM 11.3 Approximate output near ∞ . Under an affine
function, all bounded inputs return bounded outputs.

and therefore

THEOREM 11.4 Offscreen Graph . The offscreen graph of an
affine function consists of just the local graph near ∞.

EXISTENCE THEOREMS

The notable inputs are those
• whose existence is forced by the offscreen graph which, by the Bounded
Height Theorem for affine functions, consists of only the local graph
near ∞.
• whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only
way a feature can change sign is near an input where the feature is 0. Thus,
with affine functions, the feature-change inputs will also be 0-feature inputs.

None of the theorems, though, will indicate where the notable inputs
are. The Location Theorems will be dealt with in the last part of the
chapter.

EXAMPLE 11.2. When somebody has been shot dead, we can say that
there is a murderer somewhere but locating the murderer is another story.

244 Chapter 11. Affine Functions: Global Analysis

3 Slope-sign

Given the affine function AFFINEa,b, that is the function specified by the
global input-output rule

x
AF F INE−−−−−−−−−−−→ AFFINE(x) = ax+ b

recall that when x is near∞ the Slope-sign Near ∞ Theorem says that:
• When a is + , Slope-Sign|x near ∞ = (�,�)
• When a is − , Slope-Sign|x near ∞ = (�,�)

1. Since the slope does not changes sign as x goes through ∞ from the
left side of ∞ to the right side of ∞, the slope need not change sign as x
goes across the screen from the left side of∞ to the right side of∞ so there
does not have to be a bounded Slope-sign change input:

EXAMPLE 11.3. Given an affine function whose offscreen graph is
Output Ruler

Input
Ruler

+∞–∞

+∞

–∞

Screen

Mercator view Magellan view
we don’t need a bounded slope-sign change input to join smoothly the local
graphs near ∞:

Output Ruler

Input
Ruler

+∞–∞

+∞

–∞

Screen

Mercator view Magellan view

2. In fact, not only does there not have to be a bounded slope-sign
change input, there cannot be a bounded slope-sign change input since the
local linear coefficient is equal to the global linear coefficient a and the slope
must therefore be the same everywhere:

THEOREM 11.5 Slope-Sign Change Non-Existence . An affine
function has no bounded Slope-Sign Change input.

4. Extremum 245

global slope3. Another consequence of the fact that the local slope does not depend
on x0, and is thus the same everywhere, is that it is a feature of the function
AFFINEa,b itself and so that the function AFFINEa,b has a global slope
specified by the global linear coefficient a.

4. Moreover, the slope cannot be equal to 0 somewhere because the slope
is equal to a everywhere. So, we also have:

THEOREM 11.6 0-Slope Input Non-Existence . An affine func-
tion has no bounded 0-slope input.

4 Extremum

From the optimization viewpoint, an affine function has no extremum input,
that is no bounded input whose output would be larger (or smaller) than
the output of nearby inputs.

THEOREM 11.7 Extremum Non-existence . An affine function
has no bounded local extremum input.

5 Height-sign

Given the affine function AFFINEa,b, that is the function specified by the
global input-output rule

x
AF F INE−−−−−−−−−−−→ AFFINE(x) = ax+ b

recall that when x is near ∞ the Height-sign Near ∞ Theorem says
that:
• When a is + , Height-Sign|x near ∞ = (+,−)
• When a is − , Height-Sign|x near ∞ = (−, +)

1. Since the height changes sign as x goes from the left side to the right side
of ∞ across ∞, the height must also change sign as x goes from the left
side to the right side of ∞ across the screen so there has to be at least one
bounded Height-sign change input:

EXAMPLE 11.4. Given the affine function whose offscreen graph is

246 Chapter 11. Affine Functions: Global Analysis

straight
Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Offscreen Space

Mercator view Magellan view
there has to be a bounded height-sign change input:

Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Offscreen Space

Mercator view Magellan view

2. On the other hand, an affine function can have at most one 0-height
input because, if it had more, it would have to have 0-slope inputs in-between
the 0-height inputs which an affine function cannot have. So, we have:

THEOREM 11.8 0-Height Existence . An affine function has
exactly one bounded 0-height input and it is a 0-height input:
xHeight-sign change = x0-height

6 Bounded Graph

There are two ways to look at the shape of the bounded graph.
1. As a consequence of the Bounded Height Theorem for affine func-

tions, the offscreen graph consists only of the local graph near∞ and we can
obtain the forced bounded graph by extrapolating smoothly the local graph
near ∞.
There remains however a question namely whether the extrapolated bounded
graph is straight that is has no concavity. However, affine functions have
no concavity and that settles the mater: the local graph near −∞ and the
local graph near +∞ must be lined up and can therefore be joined smoothly
with a straight line.

6. Bounded Graph 247

2. In the case of affine functions, it happens that we can also obtain the
bounded graph by interpolating local graphs near bounded inputs:
We start from the local graphs near a number of bounded points as follows:

We construct local graphs near, say,
three different bounded inputs, x1, x2,
x3. They would look something like this:

Output
Ruler

Input
Rulerx1 x2 x3

Offscreen Space

Space

However, this is not possible because
that would mean that inputs such as x4
would have two outputs:

x4

Output
Ruler

Input
Ruler

Offscreen Space

Space

As a result, the local graphs near
bounded inputs must all line up and so
the bounded graph must be a straight
line:

Output
Ruler

Input
Ruler

Offscreen Space

Space

Of course, the bounded graph must line up with the local graph near ∞ as,
otherwise, there would have to be a jump in the transition zone.

LOCATION THEOREMS

Previously, we only established the existence of certain notable features of
affine functions and this investigation was based on graphic considerations.
Here we will investigate the location of the inputs where these notable fea-
tures occur and this investigation will be based on input-output rule consid-
erations.

248 Chapter 11. Affine Functions: Global Analysis

7 0-Slope Location

We saw earlier that affine functions cannot have a 0-slope input. On the
other hand, since the slope is the same everywhere, it is a global feature of
the function itself and we have:

THEOREM 11.9 Global Slope-sign . Given the affine function
AFFINEa,b,
• When a is positive, Slope-signAFFINE = �.
• When a is negative, Slope-signAFFINE = �

8 Locating Inputs Whose Output = y0

The simplest global problem is, given a number y0, to ask for the input
numbers for which the function returns the output y0.

PROCEDURE 11.1 Find the input(s), if any, whose output
under the function specified by

x
AF F INE−−−−−−−−−−−→ AFFINE(x) = ax+ b

Solve the equation ax+ b = y0 (See ?? on ??.)

9 Locating Inputs Whose Output > y0 Or < y0

Given the affine function AFFINEa,b, we are now ready to deal with the
global problem of finding all inputs whose output is smaller (or larger) than
some given number y0.

EXAMPLE 11.5. Given the inequation problem in which
• the data set consists of all numbers
• the inequation is

x = −13.72
we locate separately.

i. The boundary point of the solution subset of the inequation problem is
the solution of the associated equation:

x = −13.72
which, of course, is −13.72 and which we graph as follows since the boundary

10. Initial Value Problem 249

point is a solution of the inequation.

–13.72
–∞ +∞

Boundary point

ii. The interior of the solution subset, that is the solution subset of the
associated strict inequation

x > −13.72
i. The boundary point −13.72 separates the data set in two intervals, Sec-

tion A and Section B:

–∞ +∞

Section B

Boundary point

Section A

–13.72

ii. We then test each interval:
• We pick −1 000 as test number for Section A because, almost without a
glance we know −1 000 is going to be in Section A and because it is easy
to check in the inequation: we find that −1 000 is a non-solution so that,
by Pasch Theorem, all numbers in Section A are non-solutions.

–∞ +∞

Section B

Boundary point

Section A

–13.72

Non-solutions

• We pick +1 000 as test number for Section B because, almost without a
glance we know +1 000 is going to be in Section B and because it is easy
to check in the inequation: we find that +1 000 is a solution so that, by
Pasch Theorem, all numbers in Section A are solutions.

–∞ +∞

Section BSection A

–13.72

Non-solutions Solutions

10 Initial Value Problem

An Initial Value Problem asks the question:

250 Chapter 11. Affine Functions: Global Analysis

What is the input-output rule of a function F given that:
• The function F is affine
• The slope of the function F is to be a given number a
• The output returned by the function F for a given input x0 is to be a
given number y0.

EXAMPLE 11.6. Find the global input-output rule of the function KATE
given that it is affine, that its slope is −3 and that the output for the input +2
is +5.
We use all three given pieces of information:
i. Since we are given that KATE is an affine function, we give temporary
names for the dilation coefficient, say a, and for the constant term, say b, and
we write the global input-output rule of KATE in terms of these names:

x
KAT Ea,b−−−−−−−−−−→ KATEa,b(x) = ax+ b

ii. By the Local Slope Theorem, the slope is equal to the dilation coefficient:
−3 = a

which give the equation a = −3
iii. Since the output for the input +2 is +5, we write

KATEa,b(x)|x:=+2 = +5
ax+ b|x:=+2 = +5
a(+2) + b = +5

which give the equation 2a+ b = +5
iv. So we must solve the system of two equations for two unknowns a and b:
===========

and
{
a = −3
2a+ b = +5

This kind of system is very simple to solve since we need only replace a by −3
in the second equation to get the equation:

2(−3) + b = +5
which we solve using the REDUCTION METHOD:

−6 + b = +5
−6 + b+ 6 = +5 + 6

b = +11
v. So, the global input-output rule for KATE is

x
KAT E−3,+11−−−−−−−−−−−−−→ KATE−3,+11(x) = −3x+ 11

11. Boundary Value Problem 251

11 Boundary Value Problem

A Boundary Value Problem asks the question:
What is the input-output rule of a function F , given that:

• The function F is affine
• The output returned by the function F for a given input x1 is to be a
given number y1.
• The output returned by the function F for a given input x2 is to be a
given number y2.

In other words, we want to find an affine function F such that:

both

x1
F−−−→ F (x1) = y1

x2
F−−−→ F (x2) = y2

EXAMPLE 11.7. Find the global input-output rule of the function DAV E
given that it is affine, that the output for the input +2 is −1 and that the
output for the input −4 is −19.
We use all three pieces of information that we are given:
i. Since we are given that DAV E is an affine function, we give temporary
names for the dilation coefficient, say a, and for the constant term, say b, and
we write the global input-output rule of DAV E in terms of these names:

x
DAV Ea,b−−−−−−−−−−→ DAV Ea, b(x) = ax+ b

ii. Since the output for the input +2 is −1 we write:
DAV Ea,b(x)|x:=+2 = −1

ax+ b|x:=+2 = −1
a(+2) + b = −1

which give the equation +2a+ b = −1
iii. Since the output for the input −4 is −19 we write:

DAV Ea,b(x)|x:=−4 = −19
ax+ b|x:=+2 = −19
a(−4) + b = −19

which give the equation −4a+ b = −19
iv. So we must solve the system of two equations for two unknowns a and b:{

+2a+ b = −1
−4a+ b = −19

252 Chapter 11. Affine Functions: Global Analysis

This kind of system is a bit more complicated to solve but since b appears in
both equations, we replace one of the two equations, say the second one, by
“the first one minus the second one”:{

+2a+ b = −1
[+2a+ b]− [−4a+ b] = [−1]− [−19]

This gives us: {
+2a+ b = −1
+2a+ b+ 4a− b = −1 + 19

that is {
+2a+ b = −1
+6a = +18

that is +2a+ b = −1
+6a
+6 = +18

+6
that is {

+2a+ b = −1
a = +3

and now we replace in the first equation a by +3:{
+2a+ b = −1|a:=+3
a = +3

that is {
+2(+3) + b = −1
a = +3

that is {
+6 + b = −1
a = +3

and we reduce the first equation{
+6 + b− 6 = −1− 6
a = +3

which gives us, finally {
b = −7
a = +3

v. So the global input-output rule of DAV E is

x
DAV E+3,−7−−−−−−−−−−−−→ DAV E+3,−7(x) = +3x− 7

Quadratic␣function
quadratic␣coefficient
linear␣coefficient
constant␣coefficient

Chapter 12

Quadratic Functions: Local
Analysis

Output at x0, 255 • Output near ∞, 256 • Output near x0, 258 • Local
graphs, 261 • Local Feature-signs, 266 .

Quadratic functions are specified by global input-output rules like the
generic global input-output rule:

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = ax+2 ⊕ bx+1 ⊕ cx0︸ ︷︷ ︸

output-specifying code

which we usually write

= ax2 + bx+ c︸ ︷︷ ︸
output-specifying code

where a, called the quadratic coefficient, b, called the linear coefficient,
and c, called the constant coefficient, are the bounded numbers that spec-
ify the function QUADRATIC.

EXAMPLE 12.1. The quadratic function RINA specified by the quadratic
coefficient −23.04, the linear coefficient −17.39 and the constant coefficient
+5.84 is the function specified by the global input-output rule

x
RINA−−−−−−−−−→ RINA(x) = −23.04︸ ︷︷ ︸

quadratic coeff.

x2 −17.39︸ ︷︷ ︸
linear coeff.

x +5.84︸ ︷︷ ︸
constant coeff.

It is worth noting again that

253

254 Chapter 12. Quadratic Functions: Local Analysis

term
quadratic term
linear term
constant term
affine␣part

NOTE 12.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 12.2. The function specified by the global input-output rule
x

BIBI−−−−−−−−→ BIBI(x) = +21.03x2 − 31.39x+ 5.34
could equally well be specified by the global input-output rule

x
BIBI−−−−−−−−→ BIBI(x) = +5.34 + 21.03x2 − 31.39x

or by the global input-output rule
x

BIBI−−−−−−−−→ BIBI(x) = −31.39x+ 5.34 + 21.03x2

We now introduce some standard terminology to help us describe very
precisely what we will be doing. The output-specifying code of the affine
function specified by

x
AF F INE−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c︸ ︷︷ ︸

output-specifying code
consists of three terms:
• ax2 which is called the quadratic term.
• bx which is called the linear term.
• c which is called the constant term,
and there is of course also
• bx+ c which is called the affine part

EXAMPLE 12.3. The output-specifying code of the function specified by
the global input-output rule

x
RINA−−−−−−−−−→ RINA(x) = −23.04︸ ︷︷ ︸

quadratic coeff.

x2 −31.39︸ ︷︷ ︸
linear coeff.

x +5.84︸ ︷︷ ︸
constant coeff.

consists of three terms:
= −23.04x2︸ ︷︷ ︸

quadratic term

−31.39x︸ ︷︷ ︸
linear term

+5.34︸ ︷︷ ︸
constant term

LANGUAGE 12.1 Whether we look upon c as the constant coefficient,
that is as the coefficient of x0 in the constant term cx0 or as the constant
term cx0 itself with the power x0 “going without saying” will be clear
from the context.

1. Output at x0 255

1 Output at x0

1. Remember from section 1 that x0 is a generic given input, that is
that x0 is a bounded input that has been given but whose identity remains
undisclosed for the time being.

2. We will use

PROCEDURE 12.1 To evaluate at x0 the function specified

by x
QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

i. Declare that x is to be replaced by x0

x
∣∣∣
x←x0

QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x)
∣∣∣
x←x0

= ax2 + bx+ c
∣∣∣
x←x0

which gives:

x0
QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x0) = ax0

2 + bx0 + c︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into an output number :
= ax2

0 + bx0 + c

which gives the input-output pair(
x0,ax2

0 + bx0 + c
)

DEMO 12.1 To evaluate at −3 the function specified by

x
AV IA−−−−−−→ AV IA(x) = +21.03x2 − 32.67x+ 71.07

i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

AV IA−−−−−−→ AV IA(x)
∣∣∣
x←−3

= +21.03x2 − 32.67x+ 71.07
∣∣∣
x←−3

which gives

−3 AV IA−−−−−−→ AV IA(−3) = +21.03(−3)2 − 32.67(−3) + 71.07︸ ︷︷ ︸
output specifying code

ii. We execute the output-specifying code into an output number :
= +189.26⊕+98.01⊕+71.07︸ ︷︷ ︸

output number at −3

= +358.34︸ ︷︷ ︸
output number at −3

256 Chapter 12. Quadratic Functions: Local Analysis

which gives the input-output pair

(−3 , +358.34)︸ ︷︷ ︸
output number at −3

3. However, as already discussed in ?? ?? and as has already been the
case with monomial functions and affine functions, instead of getting the
output number returned by a quadratic function at a given input, we will
usually want all the outputs returned by the quadratic function for inputs
near that given input. So, instead of getting the single input-output pair at
the given input, we will get the local input-output rule with which to get all
the input-output pairs near the given input.

2 Output near ∞
As already discussed in ?? ??, in order to input a neighborhood of ∞, we
will declare that “x is near ∞” but write only x after that. This, again, is
extremely dangerous as it is easy to forget that what we write may be true
only because x has been declared to be near ∞.

1. We will execute the output-specifying code, namely ax2 + bx+ c, into
an output jet, that is with the terms in descending order of sizes, which,
since here x is large, means that here the powers of x must be in descending
order of exponents. We will then have the local input-output rule near ∞:

x near ∞ QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = Powers of x in descending order of exponents︸ ︷︷ ︸
output jet near ∞

EXAMPLE 12.4. Given the function specified by the global input-output
rule

x
RIBA−−−−−−→ RIBA(x) = −61.03− 82.47x+ 45.03x2

To get the output jet near ∞, we first need to get the order of sizes.
i. −61.03 is bounded
ii. −82.47 is bounded and x is large. So, since bounded · large = large,
−82.47 · x is large
iii. +45.03 is bounded and x is large. So, since bounded · large = large,
+45.03 · x is large too. But large · large is larger in size than large so
+45.03 · x2 is even larger than −82.47 · x
So, in the output jet near∞, +45.03x2 must come first, −82.47x comes second
and −61.03 comes third

2. Output near ∞ 257

Then, we can write the local input-output rule near ∞:
x near ∞ RIBA−−−−−−→ RIBA(x) = +45.03x2− 82.47x− 61.03︸ ︷︷ ︸

output jet near ∞

2. So, we will use:

PROCEDURE 12.2 To evaluate near ∞ the function specified
by x

QUADRAT IC−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

i. Declare that x is near ∞ :

x
∣∣∣
x near ∞

QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x)
∣∣∣
x near ∞

= ax2 + bx+ c
∣∣∣
x near ∞

which gives:

x near ∞ QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into an output jet:
= [a] x2 ⊕ [b] x ⊕ [c]︸ ︷︷ ︸

output jet near ∞
which gives the local input-output rule near ∞:
x near ∞ QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = [a] x2 ⊕ [b] x ⊕ [c]︸ ︷︷ ︸

output jet near ∞
(The output jet in the local input-output rule near ∞ looks the same
as the output-specifying code in the given global input-output rule but
that is only because here the output-specifying code happened to be
written in descending order of exponents.)

DEMO 12.2 To evaluate near ∞ the function specified by

x
KINA−−−−−−−→ KINA(x) = −61.03 + 51.32x2 − 82.47x

i. We declare that x is near ∞ :

x
∣∣∣
x near∞

KINA−−−−−−→ KINA(x)
∣∣∣
x near∞

= −61.03 + 51.32x2 − 82.47x
∣∣∣
x near∞

which gives:

x near ∞ NINA−−−−−−→ KINA(x) = −61.03 + 51.32 x 2 − 82.47 x︸ ︷︷ ︸
output-specifying code

258 Chapter 12. Quadratic Functions: Local Analysis

addition formula ii. We execute the output-specifying code into an output jet:
= [+51.32] x2 ⊕ [−82.47] x ⊕ [−61.03]

which gives the local input-output rule near ∞ :

x near ∞ KINA−−−−−−→ KINA(x) = [+51.32] x2 ⊕ [−82.47] x ⊕ [−61.03]︸ ︷︷ ︸
output jet near ∞

(The output jet in the local input-output rule near ∞ does not look the same
as the output-specifying code in the global input-output rule because here the
output-specifying code happened not to be in descending order of exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 12.1 Approximate output near ∞ . For quadratic
functions, what contributes most to the output near ∞ is the highest
degree term in the output jet near ∞:

x near ∞ QUADRAT IC−−−−−−−−−−−−→ QUADRATIC(x) = [a]x2 + [...]

EXAMPLE 12.5. Given the function specified by the global input-output
rule

x
KINA−−−−−−−→ KINA(x) = −61.03 + 51.32x2 − 82.47x

near ∞ we will often just use the approximation
x near ∞ KINA−−−−−−→ KINA(x) = [+51.32] x2 ⊕ [...]

3 Output near x0

We now deal with the output of the neighborhood of some given bounded
input x0.

1. In order to input a neighborhood of a given input x0 we will declare
that x← x0 ⊕ h that is that x is to be replaced by x0 ⊕ h. As a result, we
will have to compute (x0 ⊕ h)2 for which we will have to use an addition
formula from algebra, namely THEOREM ??? on page .

2. We can then execute the input-output specifying phrase into an output
jet that is with the terms in descending order of sizes which here, since h

3. Output near x0 259

output jet near x0is small, means that the powers of h will have to be in ascending order
of exponents. We will then have the local input-output rule near the given
input:

x0 ⊕ h
QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 ⊕ h) = Powers of h in ascending order of exponents︸ ︷︷ ︸

output jet near ∞

We will therefore use:
PROCEDURE 12.3 To evaluate near x0 the function specified

by x
QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

i. Declare that x is near x0: (So x is to be replaced by x0 + h .)

x
∣∣∣
x←x0+h

QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x)
∣∣∣
x←x0+h

= ax2 + bx+ c
∣∣∣
x←x0+h

which gives:

x0 + h
QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = a(x0 + h)2 + b(x0 + h) + c︸ ︷︷ ︸

output-specifying code

ii. Execute the output-specifying code into an output jet:
= a

(
x2

0 + 2x0h+ h2
)

+ b (x0 + h) + c

= ax2
0 ⊕ 2ax0 h⊕ a h2

⊕ bx0 ⊕ b h

⊕ c

= [ax2
0 + bx0 + c]⊕ [2ax0 + b]h⊕ [a]h2︸ ︷︷ ︸

output jet near x0

which gives the local input-output rule near x0:
x0 + h

QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = [ax2
0 + bx0 + c]⊕ [2ax0 + b]h⊕ [a]h2︸ ︷︷ ︸

output jet near x0

DEMO 12.3 To evaluate near −3 the function specified by

x
ARNA−−−−−−→ ARNA(x) = −32.67x+ 71.07 + 81.26x2

i. We declare that x is near −3 : (So x is to be replaced by −3 + h .)

x
∣∣∣
x←−3+h

ARNA−−−−−−→ ARNA(x)
∣∣∣
x←−3+h

= −32.67x+ 71.07 + 81.26x2
∣∣∣
x←−3+h

260 Chapter 12. Quadratic Functions: Local Analysis

which gives

−3 + h
ARNA−−−−−−→ ARNA(−3 + h) = −32.67(−3 + h) + 71.07 + 81.26(−3 + h)2︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code into an output jet:
= −32.67(−3 + h) + 71.07 + 81.26

(
(−3)2 + 2(−3)h+ h2)

= −32.67(−3)− 32.67h
+ 71.07
+ 81.26(−3)2 + 81.26(2)(−3)h+ 81.26h2

= +98.01 ⊕ −32.67 h
⊕ +71.07
⊕ +731.34 ⊕ −487.56 h⊕ +81.26 h2

= [+98.01 + 71.07 + 731.34]⊕ [−32.67− 487.56]h⊕ [+81.26]h2

= [+900.42]⊕ [−519.63]h⊕ [+81.26]h2︸ ︷︷ ︸
output jet near −3

which gives the local input-output rule near −3 :

−3 + h
ARNA−−−−−−→ ARNA(−3 + h) = [+900.42]⊕ [−519.63]h⊕ [+81.26]h2︸ ︷︷ ︸

output jet near −3

3. When all we want is a feature-sign, though, the above procedure is
very inefficient and we will then use the following procedure based directly
on the fact that a quadratic function is the addition of:
• a square function , (See ?? on ??)
• a linear function , (See ?? on ??.)
• a constant function . (See ?? on ??.)

that is:
x

QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = bx2︸︷︷︸
square

⊕ cx︸︷︷︸
linear

⊕ d︸︷︷︸
constant

We declare that x is near x0 that is that x must be replaced by x0 + h:

x
QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = b (x0 + h)2︸ ︷︷ ︸

square

⊕ c (x0 + h)︸ ︷︷ ︸
linear

⊕ d︸︷︷︸
constant

The output of the local input-output rule near x0 will have to be a jet:

x0 + h
QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = []⊕ []h⊕ []h2

4. Local graphs 261

and we want to be able to get any one of the coefficients of the output jet
without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.
This requires us to have the addition formula at our finger tips:
a.

(x0 + h)2 = x2
0 + 2x0h+ h2 (See ?? on page 403)

More precisely,

i. If we want the coefficient of h0 in the output jet:
• The square function contributes bx2

0

• The linear function contributes cx0

• The constant function contributes d

so we have:
x0 + h

QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = [bx2
0 + cx0 + d]⊕ []h⊕ []h2

ii. If we want the coefficient of h1 in the output jet:
• The square function contributes 2bx0

• The linear function contributes c
• The constant function contributes nothing

so we have:
x0 + h

QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = []⊕ [2bx0 + c]h⊕ []h2

iii. If we want the coefficient of h2 in the output jet:
• The square function contributes c

• The linear function contributes nothing
• The constant function contributes nothing

so we have:
x0 + h

QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = []⊕ []h⊕ [c]h2

4 Local graphs

Just the way we get the plot point at a given bounded input from the output
number at that input, we get the local graph near any given input, be it
bounded or infinity, from the output jet near that input.

262 Chapter 12. Quadratic Functions: Local Analysis

PROCEDURE 12.4 To graph near ∞ the function specified
by x

QUADRAT IC−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

1. Get the local input-output rule near ∞ using ?? on ??:
x near ∞ QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = [a] x2 ⊕ [b] x ⊕ [c]︸ ︷︷ ︸

output jet near ∞
2. Get the local graph near ∞ of each term:

a. For the quadratic term, graph near ∞ the monomial function
x→ [a]x2 (See ?? on ??.)

b. For the linear term, graph near ∞ the monomial function x→
[b]x (See ?? on ??.)

c. For the constant term, graph near ∞ the monomial function
x→ [c](See ?? on ??.)
3. Get the local graph near ∞ of QUADRATIC by adding to the
local graph of the quadratic term the local graph of the linear term
and the local graph of the constant term.(See chapter 9)

DEMO 12.4 To graph near ∞ the function specified by

x
KINA−−−−−−−→ KINA(x) = −61.03 + 51.32x2 − 82.47x

1. We get the local input-output rule near ∞: (See Demo 12.2 on page 257)

x near ∞ KINA−−−−−−−→ KINA(x) = [+51.32]x2 + [−82.47]x+ [−61.03]︸ ︷︷ ︸
output jet near ∞

2. We get the local graph near ∞ of each term:

4. Local graphs 263

a. For the graph of the quadratic
term, we graph the monomial
function x→ [+51.32]x2 near ∞
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

Offscreen

0

Screen

Quadratic term near ∞

b. For the graph of the linear
term, we graph the monomial
function x→ [−82.47]x near ∞
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

Screen

Linear term near ∞

Offscreen

0

c. For the graph of the constant
term, we graph the monomial
function x→ [−61.03] near ∞
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen
–61.03

Offscreen

Constant term near ∞

3. We get the local graph near ∞ of KINA by adding to the local graph of
the quadratic term the local graph of the linear term and the local graph of the
constant term. (See Demo 6.24 on page 175)

264 Chapter 12. Quadratic Functions: Local Analysis

–∞ +∞

Outputs

–∞
Inputs

+∞

0
–61.03

Offscreen

Local graph near ∞

Screen

PROCEDURE 12.5 To graph near x0 the function specified

by x
QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

1. Get the local input-output rule near x0 using ?? on ??:
x0 + h

QUADRAT IC−−−−−−−−−→ QUADRATIC(x0 + h) = [ax2
0 + bx0 + c]⊕ [2ax0 + b]h⊕ [a]h2︸ ︷︷ ︸

output jet near x0

2. Get the local graphs near 0 of each term:
a. For the constant term, graph near 0 the monomial function

x→ [ax2
0 + bx0 + c]. (See ?? on ??.)

b. For the linear term, graph near 0 the monomial function
x→ [2ax0 + b]x. (See ?? on ??.)

c. For the quadratic term, graph near 0 the monomial function
x→ [a]x2. (See ?? on ??.)
3. Get the local graph near x0 of QUADRATIC by adding to the
local graph of the constant term the local graph of the linear term,
the local graph of the quadratic term.

DEMO 12.5 To graph near −3 the function specified by

x
ARNA−−−−−−→ ARNA(x) = −32.67x+ 71.07 + 81.26x2

1. We get the local input-output rule near −3. (See Demo 12.3 on page 259):

−3 + h
ARNA−−−−−−→ ARNA(−3 + h) = [+900.42]⊕ [−519.63]h⊕ [+81.26]h2︸ ︷︷ ︸

output jet near −3

2. We get the local graph near −3 of each term:

4. Local graphs 265

a. For the constant term, we
graph near 0 the monomial function
x→ [+900.428]. (See Demo 6.24
on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Constant term
near

Offscreen

–3 0

–3

+169.08

b. For the linear term, we graph
near 0 the monomial function
x→ [−519.63]x (See Demo 6.24
on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Linear term
near –3

–3 0
c. For the quadratic term, we

graph near 0 the monomial function
x→ [+81.26]x2 : (See Demo 6.24
on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Quadratic
term near –3

–3 0
3. We get the local graph near −3 of ARNA by adding to the local graph of
the constant term the local graph of the linear term and the local graph of the
quadratic term. (See Demo 6.24 on page 175)

266 Chapter 12. Quadratic Functions: Local Analysis

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen

–3 0

+900.428

Local graph
near –3

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near
x0, can be read from the local graph and so we already know how to proceed:

i. Get the local input-output rule near the given input (See ?? on ??
when the given input is ∞ or ?? on ?? when the given input is x0.)

ii. Get the local graph from the local input-output rule (See ?? on ??.)
iii. Get the feature-sign from the local graph. (See ?? ??.)

However, things are in fact much simpler: Given an input, be it ∞ or a
bounded input x0, to get a required feature-sign near that given input, we
look for the term in the output jet near that input that

i. Has the required feature.

and

ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output
jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a quadratic
function, the first term in the output jet near ∞ is both the largest-in-size
and a regular monomial so that it has all three features:

5. Local Feature-signs 267

PROCEDURE 12.6 To get the feature-signs near ∞ of the
function specified by x

QUADRAT IC−−−−−−−−−−−→ QUADRATIC(x) =
ax2 + bx+ c

i. Get the approximate local input-output rule near ∞:
x near ∞ QUADRAT IC−−−−−−−−−−−−→ QUADRATIC(x) = [a]x2 ⊕ [b]x⊕ [c]︸ ︷︷ ︸

output jet near ∞

= [a]x2 ⊕ [...]︸ ︷︷ ︸
approximate output jet near ∞

ii. Then, in the approximate output jet near ∞:
• Get the Height-sign, the Slope-sign and the Concavity-sign all

from the quadratic term [a]x2 because the next terms, [b]x and
[c] are too small to matter . (Not to mention the fact that a linear
term has no concavity and a constant term has neither concavity
nor slope.)

TEMO 12.1 L et CELIA be the function specified by

x
CELIA−−−−−−−−→ CELIA(x) = −2x2 + 63x− 155

Get Height-sign near ∞.

i. We get the local input-output rule near ∞:

x near ∞ CELIA−−−−−−−−→ CELIA(x) = −2x2 + 63x− 155

= [− 2]x2 ⊕ [+ 63]x⊕ [− 155]︸ ︷︷ ︸
output jet near ∞

ii. We get Height-sign from the quadratic term [−2]x2 because the linear term
[+ 63]x and the constant term [− 155] are too small to matter .
iii. Since the quadratic coefficient [− 2] is negative, we get that Height-sign
CELIA near ∞ = 〈−,−〉. (Seen from ∞.)

TEMO 12.2 L et PETER be the function specified by the global input-output
rule

x
DIET ER−−−−−−−−−→ DIETER(x) = +3.03x2 − 81.67x+ 46.92

Get Slope-signs near ∞.

268 Chapter 12. Quadratic Functions: Local Analysis

critical for the Height
critical for the Slope i. We get the local input-output rule near ∞:

x near ∞ DIET ER−−−−−−−−−→ DIETER(x) = +3.03x2 − 81.67x+ 46.92

= [+ 3.03]x2 ⊕ [− 81.67]x⊕ [+ 46.92]︸ ︷︷ ︸
output jet near ∞

ii. We get Slope-sign from the quadratic term [+ 3.03]x2 because the linear
term [− 81.67] is too small to matter and the constant term has no slope.
Since the linear coefficient +3 is positive, we get that Slope-sign DIETER near
∞ = 〈�,�〉. (Seen from ∞.)

2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it
gives the Height-sign. However, the first term usually has neither Slope nor
Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change
the Height-sign as given by the first term but it is usually the largest-in-
size term that can give the Slope-sign. However, the second term has no
Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change
the Height-sign given by the first term and the Slope-sign given by the second
term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term
in the output jet - keeping in mind that the exceptional monomial functions
do not have all the features.
However, near a bounded input, the given bounded input may turn out to
be critical for the local feature:
i. If the constant term in the output jet is 0, then the term which gives the
Height-sign can be either the linear term or even the quadratic term if the
linear term is 0. The bounded input is then said to be critical for the
Height.
ii. If the linear term in the output jet is 0, then the term which gives the
Slope-sign is the quadratic term. The bounded input is then said to be
critical for the Slope.
So, we usually need to compute only one coefficient in the output jet. But
if the given bounded input turns out to be critical for that feature, then we
need to compute the next coefficient: So we use

5. Local Feature-signs 269

PROCEDURE 12.7 To get the feature-signs near x0 of the

function specified by x
QUADRAT IC−−−−−−−−−→ QUADRATIC(x) = ax2 +

bx+ c

i. Get the local input-output rule near x0:
x0 + h

QUADRAT IC−−−−−−−−−−−−→ QUADRATIC(x0 + h) = a(x0 + h)2 + b(x0 + h) + c

= a
(
x2

0 + 2x0h+ h2
)

+ b (x0 + h) + c

= [ax2
0 + bx0 + c]⊕ [2ax0 + b]h⊕ [a]h2︸ ︷︷ ︸

output jet near x0

ii. Then, in the output jet near x0:
• Get the Height-sign from the constant term [ax2

0 + bx0 + c] (The
linear term and the quadratic term are too small to matter .)
If the constant coefficient is 0, get the Height-sign from the linear
term [2ax0 + b]h. (The quadratic term is too small to matter .)
If the linear coefficient is 0, get the Height-sign from the quadratic
term [a]h2.
• Since the constant term has no slope, get the Slope-sign from the
linear term [2ax0 + b]h.
If the linear coefficient is 0, get the Slope-sign from the quadratic
term [a]h2

• Since both the constant term and the linear term have no concav-
ity, we get Concavity-sign from the quadratic term..

TEMO 12.3 L et ARNA be the function specified by the global input-output
rule

x
ARNA−−−−−−−→ ARNA(x) = −32.67x+ 71.07 + 81.26x2

Get the feature-signs near −3.

i. We get the local input-output rule near −3 as in Demo 12.3 on page 259:

−3 + h
ARNA−−−−−−−→ ARNA(−2 + h) = −32.67(−3 + h) + 71.07 + 81.26(−3 + h)2︸ ︷︷ ︸

output specifying code

= [+900.428]⊕ [−519.63]h⊕ [+81.26]h2︸ ︷︷ ︸
output jet near −3

ii. Then, from the jet:
• Since the constant term [+900.428] is positive, we get that Height-sign
ARNA near −3 = 〈+, +〉.

270 Chapter 12. Quadratic Functions: Local Analysis

• Since the linear term [−519.63]h is negative. we get that Slope-sign
ARNA near −3 = 〈�,�〉

• Since the quadratic term [+81.26]h2 is positive, we get that Concavity-
sign ARNA near −3 = 〈∪,∪〉

Chapter 13

Quadratic Functions: Global
Analysis

The Essential Question, 272 • Concavity-sign, 274 • Slope-sign,
275 • Extremum, 276 • 0-Concavity Location, 277 • 0-Slope Location,
277 • Extremum Location, 278 • 0-Height Location, 279 .

=======Begin WORK ZONE=======
The “style” of this chapter is going to be very different from the “style”

of the other chapters because we want to take the occasion to give the
reader an idea of what happens when a research mathematician is facing
a “new problem”, that is a problem that no one else has solved before so
that s/he cannot just look somewhere or ask someone “how to do it”. So, in
this chapter, instead of showing how to determine the global behavior of a
quadratic function x q−−→ q(x) = ax2 + bx + c, we will pretend that this is
a “research problem”.

The first thing we do is to think about the problem itself: What do we
mean by “global behavior”? Exactly what are we after? The idea is to see
what a precise statement of the problem might suggest.

One answer might be that “we want to know everything there is to know
about a quadratic function”. But that is still much too vague to give us any
hint as to what to do. Another answer might be “We want to see how the
global graph of x q−−→ q(x) = ax2 + bx + c looks?” This is already much
better because it specifies the function we want to know about—even if the
coefficients a, b, c remain to be specified later. But we really should say what
we mean by “global graph”, in particular what we want the global graph to

271

272 Chapter 13. Quadratic Functions: Global Analysis

show as opposed to what we don’t expect the global graph to show.
On the other hand, we care about the global graph only inasmuch as it

makes information “graphic” and it is really the information itself that we
are after. So, what might this information be that we want? Exactly as
with power functions, we will want to know about 0-feature inputs, namely:
• 0-height inputs,
• 0-slope inputs,
• 0-concavity inputs
and about feature-sign change inputs, namely
• height-sign change inputs,
• slope-sign change inputs,
• concavity-sign change inputs.
There still remains a question about what we want to know about these
inputs. Do we want to know about:
• The existence or non-existence of these inputs,
or
• The location of these inputs—assuming they exist.
Let us say we want to know everything (But now, as opposed to before, we
know exactly what “everything” covers.).

So, now that we know exactly what we want, what do we do to get it?
First, though, let us review the equipment we have available:
•
•
•

=======End WORK ZONE=======
In the case of quadratic functions, we will still be able to solve some

global problems exactly but since everything begins to be computationally
more complicated, we will deal with only a few types of global problems.

1 The Essential Question

As usual, the first thing we do is to find out if the offscreen graph of a
quadratic function consists of just the local graph near∞ or if it also includes
the local graph near one or more ∞-height inputs.
In other words, given the quadratic function QUADRATICa,b,c, that is the
function specified by the global input-output rule

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = a2x+ bx+ c

we ask the Essential Question:

1. The Essential Question 273

• Do all bounded inputs have bounded outputs
or
• Are there bounded inputs that have ∞-height, that is are there inputs
whose nearby inputs have large outputs?

Now, given a bounded input x, we have that:
• since a is bounded, ax2 is also bounded
• since b is bounded, bx is also bounded
• c is bounded
and so, altogether, we have that ax2 +bx+c is bounded and that the answer
to the Essential Question is:

THEOREM 13.1 Bounded Height Under a quadratic functions, all
bounded inputs have bounded outputs.

and therefore that

THEOREM 13.2 Offscreen Graph The offscreen graph of a
quadratic function consists of just the local graph near ∞.

EXISTENCE THEOREMS

The notable inputs are those
• whose existence is forced by the offscreen graph which, by the Bounded
Height Theorem for quadratic functions, consists of only the local graph
near ∞.
• whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only
way a feature can change sign is near an input where the feature is 0. Thus,
with quadratic functions, the feature-change inputs will also be 0-feature
inputs.

None of the theorems, though, will indicate where the notable inputs
are. The Location Theorems will be dealt with in the last part of the
chapter.

274 Chapter 13. Quadratic Functions: Global Analysis

2 Concavity-sign

Given the quadratic function QUADRATICa,b,c, that is the function spec-
ified by the global input-output rule

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = a2x+ bx+ c

recall that when x is near ∞ the Concavity-sign Near ∞ Theorem for
quadratic functions says that:
• When a is + , Concavity-Sign|x near ∞ = (∪,∪)
• When a is − , Concavity-Sign|x near ∞ = (∩,∩)

1. Since the concavity does not changes sign as x goes through ∞ from
the left side of ∞ to the right side of ∞, the concavity does not have to
change sign as x goes across the screen from the left side of ∞ to the right
side of ∞ so there does not have to be a bounded Concavity-sign change
input:

EXAMPLE 13.1. Given a quadratic function whose offscreen graph is
Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Off screen space

∞

Mercator view Magellan view
there is no need for a bounded concavity-sign change input, xConcavity-sign change
and therefore we can have

Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Off screen space

∞

Mercator view Magellan view

2. In fact, not only does there not have to be a bounded concavity-sign
change input, there cannot be a bounded concavity-sign change input since
the local square coefficient is equal to the global square coefficient a and the
concavity must therefore be the same everywhere:

3. Slope-sign 275

global concavity
THEOREM 13.3 Concavity-sign Change Non-Existence A
quadratic function has no bounded Concavity-sign change input.

3. Another consequence of the fact that the local concavity does not
depend on x0, and is thus the same everywhere, is that it is a feature of the
functionQUADRATICa,b,c itself and so that the functionQUADRATICa,b,c
has a global concavity specified by the global square coefficient a.

4. Moreover, the concavity cannot be equal to 0 somewhere because the
concavity is equal to a everywhere. So, we also have:

THEOREM 13.4 0-Concavity Input Non-Existence A quadratic
function has no bounded 0-concavity input.

3 Slope-sign

Given the quadratic function QUADRATICa,b,c, that is the function spec-
ified by the global input-output rule

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = a2x+ bx+ c

recall that when x is near ∞ the Slope-sign Near ∞ Theorem for
quadratic functions says that:
• When a is + , Slope-Sign|x near ∞ = (�,�)
• When a is − , Slope-Sign|x near ∞ = (�,�)

1. Since the slope changes sign as x goes from the left side of ∞ to the
right side of ∞ across ∞ , the slope has also to change sign as x goes from
the left side of ∞ to the right side of ∞ across the screen. In other words,
there has to be a bounded slope-sign change input.

EXAMPLE 13.2. Given a quadratic function whose offscreen graph is
Output
Ruler

Input
Ruler

Screen

Output
Ruler

Input
Ruler

Screen

∞ ∞

Mercator view Magellan view
there has to be a bounded slope-sign change input to make up.

So we have

276 Chapter 13. Quadratic Functions: Global Analysis

THEOREM 13.5 Slope-sign Change Existence A quadratic func-
tion must have at least one bounded Slope-sign change input.

2. On the other hand, a quadratic function can have at most one 0-slope
input because, if it had more, it would have to have 0-concavity inputs in-
between the 0-slope inputs which a quadratic function cannot have. So we
have

THEOREM 13.6 0-Slope Existence A quadratic function has
exactly one slope-sign change input and it is a 0-slope input:
xSlope-sign change = x0-slope

4 Extremum

From the optimization viewpoint, a quadratic function has an extreme input,
that is an bounded input whose output is larger (or smaller) than the output
of nearby inputs

EXAMPLE 13.3. Given a quadratic function whose offscreen graph is
Output
Ruler

Input Ruler

Screen

∞

Mercator view Magellan view

and since quadratic function cannot have an ∞-height input, we cannot have

Output Ruler

Input
Ruler+∞–∞

+∞

–∞

x∞-height

Screen

∞

Mercator view Magellan view

5. 0-Concavity Location 277

and therefore there has to be at least one in-
put, xmax, whose output is maximum.
But since we
cannot have a
Concavity-sign
change input
as in

Output
Ruler

Input
Ruler

Screen

xmax

Locally
maximum
outputs

xmax

we must have
Output
Ruler

Input
Ruler

Screen

xmax

Maximum
output

THEOREM 13.7 Extremum Existence A quadratic function has
a single extremum input

5 0-Concavity Location

6 0-Slope Location

Given a quadratic function, the global problem of locating an input where
the local slope is 0 is still fairly simple.

More precisely, given the quadratic function QUADRATICa,b,c, that is
the function specified by the global input-output rule

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

since the slope near x0 is the local linear coefficient 2ax0 + b, in order to find
the input(s) where the local slope is 0, we just need to solve the equation

2ax+ b = 0

which is an affine equation that we solve by reducing it to a basic equation:

2ax+ b −b = 0 -b
2ax = −b
2ax
2a = −b2a

x = −b2a
So, we have:

278 Chapter 13. Quadratic Functions: Global Analysis

THEOREM 13.8 0-slope Location For any quadratic function
QUADRATICa,b,c,

x0−slope = −b2a

In fact, we also have:

THEOREM 13.9 Global Slope-sign Given a quadratic function
QUADRATICa,b,c,
• When a is positive,

Slope-sign QUADRATIC|Everywhere<−b
2a

= (�,�)

Slope-sign QUADRATIC|−b
2a

= (�,�)

Slope-sign QUADRATIC|Everywhere>−b
2a

= (�,�)
• When a is negative,

Slope-sign QUADRATIC|Everywhere<−b
2a

= (�,�)

Slope-sign QUADRATIC|−b
2a

= (�,�)

Slope-sign QUADRATIC|Everywhere>−b
2a

= (�,�)

The case is easily made by testing the corresponding inequations near ∞.

7 Extremum Location

From the Extremum Existence Theorem, we know that
xextremum = x0-slope

and so we have that

xextremum = −b2a
We now want to compute the extremum output which is the output for
x0-slope:

QUADRATIC(x0-slope) = ax2
0-slope + bx0-slope + c

= a

(−b
2a

)2
+ b

(−b
2a

)
+ c

= a

(
(−b)2

(2a)2

)
+ b

(−b
2a

)
+ c

8. 0-Height Location 279

quadratic equation
= a

(
b2

4a2

)
+ b

(−b
2a

)
+ c

= ab2

4a2 + b

(−b
2a

)
+ c

=
a/b2

4a/a + b

(−b
2a

)
+ c

= b2

4a + b

(−b
2a

)
+ c

= b2

4a + − 2· b2

2· 2a
+ c

= b2

4a + −2b2

4a + c

= −b
2

4a + c

= −b
2

4a + 4a· c
4a

= −b
2 + 4ac
4a

8 0-Height Location

Given a quadratic function, the global problem of locating a given local
height is the problem of locating the input(s), if any, whose output is equal
to the given height.

More precisely, given the quadratic function QUADRATICa,b,c, that is
the function specified by the global input-output rule

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

and given the local height H0, what we are looking for are the input(s), if
any, whose output is equal to H0, that is:

x
QUADRAT IC−−−−−−−−−−−−−−→ QUADRATIC(x) = H0

In other words, we must solve the equation
ax2 + bx+ c = H0

This is called a quadratic equation. Since we are looking for the 0-height
inputs, we let H0 be 0 and we will want to solve the equation

ax2 + bx+ c = 0

280 Chapter 13. Quadratic Functions: Global Analysis

1. Solving a quadratic equation is quite a bit more complicated than
solving an affine equation because we cannot reduce a quadratic equation to
a basic equation the way we reduce an affine equation to a basic equation.
The reason is that affine equations have two terms and the = sign has two
sides so that we could separate the terms by having an x-term on the left
side of the = sign and a constant term on the right side of the = sign which
gave us a basic equation.
However, we cannot separate the terms in a quadratic equation because the
output QUADRATIC(x) has three terms while the = sign has only two
sides.
This, though, may have something to do with the fact that inputs are
counted from the 0 on the ruler which can be anywhere in relation to the
global graph of the function, rather than from an input which is meaningful
for the global graph of that function.
What we will do then is to try to use, instead of the inputs themselves, the
location of the inputs relative to an input that is meaningful for the function
at hand and the obvious thing is to try is x0-slope and so we will try to use:

u = x− x0-slope

so that
x = x0-slope + u

and therefore, instead of using the global input-output rule
x

QUADRAT IC−−−−−−−−−−→ QUADRATIC(x) = ax2 + bx+ c

we will use the global input-ouput rule
x|x←x0-slope+u

QUADRAT IC−−−−−−−−−−→ QUADRATIC(x) |x←x0-slope+u = ax2 + bx+ c
∣∣∣
x←x0-slope+u

that is
u

QUADRAT IC(x0-slope)
−−−−−−−−−−−−−−−→ QUADRATIC(x0-slope + u)

= [a]u2 + [2ax0-slope + b]u+ [ax2
0-slope + bx0-slope + c]

By the way, note that we will continue to count the outputs from the 0 on
the output ruler. (Some people don’t and prefer to count the outputs from
QUADRATIC(x0-slope).)

2. But since x0-slope = −b
2a , this reduces to

u
QUADRAT IC(x0-slope)
−−−−−−−−−−−−−−−→ QUADRATIC(x0-slope + u)

= [a]u2 + [0]u+ [ax2
0-slope + bx0-slope + c]

that is to only two terms

= [a]u2 + [ax2
0-slope + bx0-slope + c]

8. 0-Height Location 281

and the equation we want to solve, then, is

[a]u2 + [ax2
0-slope + bx0-slope + c] = H0

that is
[a]u2 = H0 − [ax2

0-slope + bx0-slope + c]
that is

u2 =
H0 − [ax2

0-slope + bx0-slope + c]
a

in which everything on the right-hand side is known so that we have separated
the known from the unknown.

3. Since we are trying to locate the 0-height inputs, we let H0 = 0.
In that case, the equation reduces to

u2 =
−[ax2

0-slope + bx0-slope + c]
a

= −QUADRATIC(xextremum)
a

and, using the Extremum Location Theorem,

=
−−DiscriminantQUADRAT IC

4a

a

= DiscriminantQUADRAT IC

4a2
Altogether then, instead of the original equation

ax2 + bx+ c = 0
we have the rather nice (nicer?) equation

u2 = DiscriminantQUADRAT IC

4a2
4. Now, of course, whether or not we can solve depends on whether or

not the right hand side is positive and since the denominator is a square,
and therefore always positive, whether or not we can solve depends only on
the sign of DiscQUADRAT IC (hence the name “discriminant”):

I If DiscQUADRAT IC is negative, the equation has no solution,
I If DiscQUADRAT IC is 0, the equation has one solution, namely 0,
I If DiscQUADRAT IC is positive, the equation has two solutions, namely

• u = −
√

DiscQUADRAT IC

2a

• u = +
√

DiscQUADRAT IC

2a

282 Chapter 13. Quadratic Functions: Global Analysis

de-locate This, of course, is hardly surprising inasmuch as the discriminant is inti-
mately tied with the extremum output and thus this theorem fits very well
with the 0-height Existence Theorem.

5. It remains only to de-locate, that is to return to the input x. For
that, we need only use the fact that

u = x− x0-slope

to get

• x− x0-slope = −
√

DiscQUADRAT IC

2a

• x− x0-slope = +
√

DiscQUADRAT IC

2a

that is

• x = x0-slope −
√

DiscQUADRAT IC

2a

• x = x0-slope +
√

DiscQUADRAT IC

2a

and thus the celebrated “quadratic formula”:

• x = x0-slope −
√

b2−4ac
2a

• x = x0-slope +
√

b2−4ac
2a

which, by the way, shows that, when they exist, the two 0-height inputs are
symmetrical with respect to x0-slope

6. Altogether, then, we have

THEOREM 13.10 0-height Location For any quadratic function
QUADRATICa,b,d,
I If DiscQUADRAT IC is negative, QUADRATIC has no 0-height in-

put,
I If DiscQUADRAT IC is 0, QUADRATIC has one 0-height input,

namely −b
2a ,

I If DiscQUADRAT IC is positive, QUADRATIC has two solutions,
namely
• −b

2a −
√

b2−4ac
2a

• −b
2a +

√
b2−4ac

2a

7. Finally, here are a couple of examples.

8. 0-Height Location 283

EXAMPLE 13.4. To find the 0-height inputs of the quadratic function
specified by the global input-output rule

x
Rick−−−−−→ Rick(x) = +4x2 − 24x+ 7

we can proceed as follows:
i. Either we remember that x0−slope = −b

2a so that we get x0−slope = +12
2(+4) =

+3, or, if worse comes to worst, we look for the 0-slope input by localizing at
an undisclosed input x0 and then setting the coefficient of u equal to 0 to get
x0−slope.
ii. Then, we get the u-equation by setting x = x0−slope + u, that is, here, by
setting x = +3 + u:
+3 + u

Rick−−−−−→ Rick(x)|when x=+3+u = +4x2 − 24x+ 7
∣∣∣
when x=+3+u

= +4 [+3 + u]2 − 24 [+3 + u] + 7

= +4
[
+9 + 6u+ u2

]
− 24 [+3 + u] + 7

= +36 + 24u+ 4u2 − 72− 24u+ 7
= −29 + 4u2

iii. We now solve the u-equation
−29 + 4u2 = 0

+4u2 = +29

u2 = +29
+4

u2 = +7.25
and so we have:

I u0−output = +
√

+7.25 = +2.69 + [...]
and
I u0−output = −

√
+7.25 = −2.69 + [...]

and therefore
I x0−output = +3 + 2.693 + [...] = +5.693 + [...]

and
I x0−output = +3− 2.693 + [...] = +0.307 + [...]

Alternatively, if we remember the 0-height Theorem, then we can proceed
by first computing the discriminant and

284 Chapter 13. Quadratic Functions: Global Analysis

EXAMPLE 13.5. We look at the same equation but assume that we
remember the 0-height Theorem

x
Rick−−−−−→ Rick(x) = +4x2 − 24x+ 7

that is:
Discriminant Rick = (−24)2 − 4(+4)(+7)

= +576− 112
= +464

And since the discriminant is positive, we have

x0−output = x0−slope +
√
Discriminant

2a

= +24
2(+4) +

√
+464

2(+4)

= +24
+8 + 21.541 + [...]

+8

= 45.541 + [...]
+8

= +5.693 + [...]
and similarly

x0−output = x0−slope −
√
Discriminant

2a

= +24
2(+4) −

√
+464

2(+4)

= +24
+8 −

21.541 + [...]
+8

= 2.460 + [...]
+8

= +0.307 + [...]
Either way, the reader should check that, indeed,

+5.693 Rick−−−−−→ 0 + [...]
and

+0.307 Rick−−−−−→ 0 + [...]

8. As a consequence of the 0-height Location Theorem, we have:

8. 0-Height Location 285

THEOREM 13.11 Global Height-sign For any quadratic function
QUADRATICa,b,c, Height-sign QUADRATIC = (Sign a,Sign a)
everywhere except, when DiscQUADRAT IC is positive, between
the two x0-height inputs where Height-sign QUADRATIC =
(−Sign a,−Sign a)

As a result, when looking for the inputs for which the output has a given
sign, we have two approaches:
i. We can solve the associate equation, one way or the other, and then test
each one of the sections determined by the 0-height input(s), if any.

EXAMPLE 13.6. To solve the inequation −3x2 + tx − 11 < 0, we can
begin by looking for its boundary inputs by solving the associated equation
−3x2 + tx− 11 = 0 and then test the resulting intervals.

ii. We can use the Global Height-sign Theorem.

=========OK SO FAR=========

(1) The difficulty is that there are two cases to deal with:
when a>0, concavity is u, the graph bottoms out and so there is a

smallest bounded output when a<0, concavity is n, the graph culminates
and so there is a largest bounded output

and that we want to cover them both in one single statement.
So, we use the term "extreme bounded output" to cover both cases and

we can now say that the extreme bounded output is the output for x0−slope.
(regardless of the sign of a.)

(2) Yesterday, using qualitative global graphs, we agreed that: if the sign
of the extreme bounded output is the same as the height-sign near infinity,
there can be no 0-height input. if the sign of the extreme bounded output
is the opposite of the height-sign near infinity, there will be two 0-height
inputs.

But the height-sign near infinity is the sign of the coefficient a so this
becomes: if the sign of the extreme bounded output is the same as the sign
of the coefficient a, there can be no 0-height input. if the sign of the extreme
bounded output is the opposite of the sign of the coefficient a, there will be

286 Chapter 13. Quadratic Functions: Global Analysis

two 0-height inputs.
We also found that the extreme output is the output for x0 − slope =

-b/2a and we computed that the extreme output is equal to [−b2 + 4ac]/4a
As I recall, this is where we left off.
(3) Since the number b2 − 4ac is what is called the discriminant of the

function, we have that the extreme output = -Discriminant/4a
And now we are ready for the kill. The weapon will be that: Two

numbers have the same sign if they multiply to + Two numbers have opposite
signs if they multiply to -

(4) So our agreement above can now be restated as: if the extreme
bounded output and the coefficient a multiply to +, there can be no 0-
height input. if the extreme bounded output and the coefficient a multiply
to -, there will be two 0-height inputs.

that is: if Sign of -Discriminant/4a * a = +, there can be no 0-height
input. if Sign of -Discriminant/4a * a = -, there will be two 0-height inputs.

that is, after canceling the coefficient a if Sign of -Discriminant = +,
there can be no 0-height input. if Sign of -Discriminant = -, there will be
two 0-height inputs.

that is, since Sign of -Discriminant is the opposite of Sign of Discriminant
if Sign of Discriminant = -, there can be no 0-height input. if Sign of
Discriminant = +, there will be two 0-height inputs.

Which is the qualitative part of the 0-height Theorem FORQUADRATIC
FUNCTIONS.

(The quantitative part of the 0-height Theorem FOR QUADRATIC
FUNCTIONS is that the 0-height inputs—when they exist—are at a dis-
tance of ÃDisc/2afromx0 − slope.)

Quadratic␣function
cubic␣coefficient
quadratic␣coefficient
linear␣coefficient
constant␣coefficient

Chapter 14

Cubic Functions: Local
Analysis

Output at x0, 289 • Output near ∞, 290 • Output near x0, 292 • Local
graphs, 296 • Local Feature-signs, 300 • Local Graph Near ∞, 304 .

Quadratic functions are specified by global input-output rules like the
generic global input-output rule:

x
CUBIC−−−−−−−−−−→ CUBIC(x) = ax+3 ⊕ bx+2 ⊕ cx+1 ⊕ dx0︸ ︷︷ ︸

output-specifying code

which we usually write
= ax3 + bx2 + cx+ d︸ ︷︷ ︸

output-specifying code

where a, called the cubic coefficient, b, called the quadratic coefficient,
c, called the linear coefficient, and d, called the constant coefficient,
are the bounded numbers that specify the function CUBIC.

EXAMPLE 14.1. The cubic function TINA specified by the cubic coef-
ficient +72.55, the quadratic coefficient −23.04, the linear coefficient −17.39
and the constant coefficient +5.84 is the function specified by the global input-
output rule
x

RINA−−−−−−−−−→ TINA(x) = −72.55︸ ︷︷ ︸
cubic coeff.

x3 −23.04︸ ︷︷ ︸
quadratic coeff.

x2 −17.39︸ ︷︷ ︸
linear coeff.

x +5.84︸ ︷︷ ︸
constant coeff.

It is worth noting again that

287

288 Chapter 14. Cubic Functions: Local Analysis

term
cubic term
quadratic term
linear term
constant term
quadratic␣part

NOTE 14.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 14.2. The function specified by the global input-output rule
x

DIDI−−−−−−−−→ DIDI(x) = −12.06x3 + 21.03x2 − 31.39x+ 5.34
could equally well be specified by the global input-output rule

x
DIDI−−−−−−−−→ DIDI(x) = +5.34 + 21.03x2 − 31.39x− 12.06x3

or by the global input-output rule
x

DIDI−−−−−−−−→ DIDI(x) = −31.39x+ 5.34− 12.06x3 + 21.03x2

We now introduce some standard terminology to help us describe very
precisely what we will be doing. The output-specifying code of the affine
function specified by

x
AF F INE−−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d︸ ︷︷ ︸

output-specifying code
consists of four terms:
• ax3 which is called the cubic term.
• bx2 which is called the quadratic term.
• cx which is called the linear term.
• d which is called the constant term,
and there is of course also
• bx2 + cx+ d which is called the quadratic part

EXAMPLE 14.3. The output-specifying code of the function specified by
the global input-output rule
x

T INA−−−−−−−−→ TINA(x) = −71.41︸ ︷︷ ︸
cubic coeff.

x3 −23.04︸ ︷︷ ︸
quadratic coeff.

x2 −31.39︸ ︷︷ ︸
linear coeff.

x +5.84︸ ︷︷ ︸
constant coeff.

consists of four terms:
= −71.41x3︸ ︷︷ ︸

cubic term

−23.04x2︸ ︷︷ ︸
quadratic term

−31.39x︸ ︷︷ ︸
linear term

+5.34︸ ︷︷ ︸
constant term

LANGUAGE 14.1 Whether we look upon d as the constant coefficient,
that is as the coefficient of x0 in the constant term dx0 or as the constant
term dx0 itself with the power x0 “going without saying” will be clear
from the context.

1. Output at x0 289

1 Output at x0

Remember from section 1 that x0 is a generic given input, that is that x0 is
a bounded input that has been given but whose identity remains undisclosed
for the time being.

PROCEDURE 14.1 To evaluate at x0 the function specified
by x

CUBIC−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

i. Declare that x is to be replaced by x0

x
∣∣∣
x←x0

CUBIC−−−−−−−→ CUBIC(x)
∣∣∣
x←x0

= ax3 + bx2 + cx+ d
∣∣∣
x←x0

which gives:
x0

CUBIC−−−−−−−→ CUBIC(x0) = ax0
3 + bx0

2 + cx0 + d︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into an output number :
= ax3

0 + bx2
0 + cx0 + d

which gives the input-output pair(
x0,ax3

0 + bx2
0 + cx0 + d

)

DEMO 14.1 To evaluate at −3 the function specified by

x
ARIA−−−−−−→ ARIA(x) = +17.52x3 + 21.03x2 − 32.67x+ 71.07

i. We declare that x is to be replaced by −3

x
∣∣∣
x←−3

ARIA−−−−−−→ ARIA(x)
∣∣∣
x←−3

= +17.52x3 + 21.03x2 − 32.67x+ 71.07
∣∣∣
x←−3

which gives

−3 ARIA−−−−−−→ ARIA(−3) = +17.52(−3)
3

+ 21.03(−3)2 − 32.67(−3) + 71.07︸ ︷︷ ︸
output specifying code

ii. We execute the output-specifying code into an output number :
= −473.04⊕+189.26⊕+98.01⊕+71.07
= −114.7

which gives the input-output pair

(−3,−114.7)

290 Chapter 14. Cubic Functions: Local Analysis

However, as already discussed in ?? ?? and as has already been the case
withmonomial functions, affine functions and quadratic functions, instead of
getting the output number returned by a quadratic function at a given input,
we will usually want all the outputs returned by the quadratic function for
inputs near that given input. So, instead of getting the single input-output
pair at the given input, we will get the local input-output rule with which
to get all the input-output pairs near the given input.

2 Output near ∞

As already discussed in ?? ?? and in section 2 Output near ∞, in order to
input a neighborhood of ∞, we will declare that “x is near ∞” but write
only x after that. This, again, is extremely dangerous as it is easy to forget
that what we write may be true only because x has been declared to be
near ∞.

1. We will execute the output-specifying code, namely ax3 +bx2 +cx+d,
into an output jet, that is with the terms in descending order of sizes, which,
since here x is large, means that here the powers of x must be in descending
order of exponents. We will then have the local input-output rule near ∞:

x near ∞ CUBIC−−−−−−−→ CUBIC(x) = Powers of x in descending order of exponents︸ ︷︷ ︸
output jet near ∞

EXAMPLE 14.4. Given the function specified by the global input-output
rule

x
T IBA−−−−−−→ TIBA(x) = −61.03 + 37.81x3 − 82.47x+ 45.03x2

To get the output jet near ∞, we first need to get the order of sizes.
i. −61.03 is bounded
ii. −82.47 is bounded and x is large. So, since bounded · large = large,
−82.47 · x is large
iii. +45.03 is bounded and x is large. So, since bounded · large = large,
+45.03 · x is large too. But large · large is larger in size than large so
+45.03 · x2 is even larger than −82.47 · x
iv. +37.81 is bounded and x is large. So, since bounded · large = large,
+37.81 · x is large too. But large · large · large is larger in size than
large · large so +37.81 · x3 is even larger than +45.03 · x2

So, in the output jet near ∞, +37.81x3 must come first, +45.03x2 must come
second, −82.47x comes third and −61.03 comes fourth

2. Output near ∞ 291

Then, we get the local input-output rule near ∞:
x near ∞ RIBA−−−−−−→ TIBA(x) = +37.81x3 + 45.03x2− 82.47x− 61.03︸ ︷︷ ︸

output jet near ∞

2. Altogether, then:

PROCEDURE 14.2 To evaluate near ∞ the function specified
by x

CUBIC−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

i. Declare that x is near ∞
x
∣∣∣
x near ∞

CUBIC−−−−−−−→ CUBIC(x)
∣∣∣
x near ∞

= ax3 + bx2 + cx+ d
∣∣∣
x near ∞

which gives:
x near ∞ CUBIC−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d︸ ︷︷ ︸

output-specifying code

ii. Execute the output-specifying code into a jet near ∞
= [a] x3 ⊕ [a] x2 ⊕ [b] x ⊕ [c]︸ ︷︷ ︸

output jet near ∞
which gives the local input-output rule near ∞:
x near ∞ CUBIC−−−−−−−→ CUBIC(x) = [a] x3 ⊕ [a] x2 ⊕ [b] x ⊕ [c]︸ ︷︷ ︸

output jet near ∞
(Here the jet near∞ looks the same as the given global input-output
rule but that is only because the output-specifying code happened to
be written in descending order of exponents.)

DEMO 14.2 To evaluate near ∞ the function specified by the global input-
output rule

x
DINA−−−−−−−→ DINA(x) = −61.03 + 37.81x3 + 51.32x2 − 82.47x

i. We declare that x is near ∞

x
∣∣∣
x near∞

DINA−−−−−−→ DINA(x)
∣∣∣
x near∞

= −61.03 + 37.81x3 + 51.32x2 − 82.47x
∣∣∣
x near∞

which gives:

x near ∞ DINA−−−−−−→ DINA(x) = −61.03 + 37.81 x 3 + 51.32 x 2 − 82.47 x︸ ︷︷ ︸
output-specifying code

292 Chapter 14. Cubic Functions: Local Analysis

ii. We execute the output-specifying code into a jet near ∞:
= [+37.81] x3 ⊕ [+51.32] x2 ⊕ [−82.47] x ⊕ [−61.03]

which gives the local input-output rule near ∞:

x near ∞ DINA−−−−−−→ DINA(x) = [+37.81] x3 ⊕ [+51.32] x2 ⊕ [−82.47] x ⊕ [−61.03]︸ ︷︷ ︸
output jet near ∞

(Here the jet near ∞ does not look the same as the global input-output rule
because the output-specifying code happened not to be in descending order of
exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 14.1 Approximate output near ∞ . For cubic func-
tions, the term in the jet that contributes most to the output near∞
is the highest degree term in the output jet near ∞:

x near ∞ CUBIC−−−−−−−−→ CUBIC(x) = [a]x3 + [...]

EXAMPLE 14.5. Given the function specified by the global input-output
rule

x
DINA−−−−−−−→ DINA(x) = −61.03 + 37.81x3 + 51.32x2 − 82.47x

near ∞ we will often just use the approximation
x near ∞ KINA−−−−−−→ KINA(x) = [+37.81] x3 ⊕ [...]

3 Output near x0

We now deal with the output of the neighborhood of some given bounded
input x0.

1. In order to input a neighborhood of a given input x0 we will declare
that x← x0 ⊕ h that is that x is to be replaced by x0 ⊕ h. As a result, we
will have to compute (x0 ⊕ h)2 for which we will have to use an addition
formula from
textscalgebra, namely ?? in ?? on page ??.

3. Output near x0 293

jet near x02. We can then execute the input-output specifying phrase into a jet
that is with the terms in descending order of sizes which here, since h is
small, means that the powers of h will have to be in ascending order of
exponents. We will then have the local input-output rule near the given
input:

x0 ⊕ h
CUBIC−−−−−→ CUBIC(x0 ⊕ h) = Powers of h in ascending order of exponents︸ ︷︷ ︸

output jet near ∞

We will therefore use:

PROCEDURE 14.3 To evaluate near x0 the function specified
by x

CUBIC−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

i. Declare that x is to be replaced by x0 + h

x
∣∣∣
x←x0+h

CUBIC−−−−−−−→ CUBIC(x)
∣∣∣
x←x0+h

= ax3 + bx2 + cx+ d
∣∣∣
x←x0+h

which gives:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = a(x0 + h)3 + b(x0 + h)2 + c(x0 + h) + d︸ ︷︷ ︸
output-specifying code

ii. Execute the output-specifying code into a jet near x0:
= a

(
x3

0 + 3x2
0h+ 3x0h

2 + h3
)

+ b
(
x2

0 + 2x0h+ h2
)

+ c (x0 + h) + d

= ax3
0 ⊕ 3ax2

0 h⊕ 3ax0 h
2 ⊕ a h3

⊕ bx2
0 ⊕ 2bx0 h⊕ b h2

⊕ cx0 ⊕ c h

⊕ d

= [ax3
0 + bx2

0 + cx0 + d]⊕ [3ax2
0 + 2bx0 + c]h⊕ [3ax0 + b]h2 ⊕ [a]h3︸ ︷︷ ︸

output jet near x0

which gives the local input-output rule near x0:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h)

= [ax3
0 + bx2

0 + cx0 + d]⊕ [3ax2
0 + 2bx0 + c]h⊕ [3ax0 + b]h2 ⊕ [a]h3︸ ︷︷ ︸

output jet near x0

294 Chapter 14. Cubic Functions: Local Analysis

DEMO 14.3 To evaluate near −3 the function specified by

x
ARBA−−−−−−→ ARBA(x) = −32.67x− 31.18x3 + 71.07 + 81.26x2

i. We declare that x is to be replaced by −3 + h

x
∣∣∣
x←−3+h

ARBA−−−−−−→ ARBA(x)
∣∣∣
x←−3+h

= −32.67x− 31.18x3 + 71.07 + 81.26x2
∣∣∣
x←−3+h

which gives

−3 + h
ARBA−−−−−−→ ARBA(−3 + h) = −32.67(−3 + h)− 31.18(−3 + h)3 + 71.07 + 81.26(−3 + h)2︸ ︷︷ ︸

output specifying code

ii. We execute the output-specifying code into a jet near −3 :

= −32.67(−3 + h)− 31.18
(
(−3)3 + 3(−3)2h+ 3(−3)h2 + h3)+ 71.07 + 81.26

(
(−3)2 + 2(−3)h+ h2)

= −32.67(−3)− 32.67h
− 31.18(−3)3 − 31.18 · 3(−3)2h− 31.18 · 3(−3)h2 − 31.18h3

+ 71.07
+ 81.26(−3)2 + 81.26 · 2(−3)h+ 81.26h2

= +98.01 ⊕ −32.67 h
⊕ +841.86 ⊕ −841.86 h⊕ +280.62 h2 ⊕ −31.18 h3

⊕ +71.07
⊕ +731.34 ⊕ −487.56 h ⊕ +81.26 h2

= [+98.01 + 841.86 + 71.07 + 731.34]
⊕ [−32.67− 841.86− 487.56]h
⊕ [+280.62 + 81.26]h2

⊕ [−31.18]h3

= [+1742.28]⊕ [−1362.09]h⊕ [+361.88]h2 ⊕ [+81.26]h3︸ ︷︷ ︸
output jet near −3

which gives the local input-output rule near −3:

−3 + h
ARNA−−−−−−→ ARBA(−3 + h) = [+1742.28]⊕ [−1362.09]h⊕ [+361.88]h2 ⊕ [+81.26]h3︸ ︷︷ ︸

output jet near −3

3. When all we want is a feature-sign, though, the above procedure is
very inefficient and we will then use the following procedure based directly

3. Output near x0 295

on the fact that a cubic function is the addition of:
• a cube function , (See ?? on ??)
• a square function , (See ?? on ??)
• a linear function , (See ?? on ??.)
• a constant function . (See ?? on ??.)

that is:
x

CUBIC−−−−−−−→ CUBIC(x) = ax3︸︷︷︸
cube

⊕ bx2︸︷︷︸
square

⊕ cx︸︷︷︸
linear

⊕ d︸︷︷︸
constant

We declare that x is near x0 that is that x must be replaced by x0 + h:
x

CUBIC−−−−−−−→ CUBIC(x) = a (x0 + h)3︸ ︷︷ ︸
cube

⊕ b (x0 + h)2︸ ︷︷ ︸
square

⊕ c (x0 + h)︸ ︷︷ ︸
linear

⊕ d︸︷︷︸
constant

The output of the local input-output rule near x0 will have to be a jet:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = []⊕ []h⊕ []h2 ⊕ []h3

and we want to be able to get any one of the coefficients of the output jet
without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.
This requires us to have the addition formulas at our finger tips:
a.

(x0 + h)2 = x2
0 + 2x0h+ h2 (See ?? on page 403)

b.
(x0 + h)3 = x3

0 + 3x2
0h+ 3x0h

2 + h3 (See ?? on ??)

More precisely,

i. If we want the coefficient of h0 in the output jet:
• The cube function contributes ax3

0

• The square function contributes bx2
0

• The linear function contributes cx0

• The constant function contributes d

so we have:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = [ax3
0 + bx2

0 + cx0 + d]⊕ []h⊕ []h2 ⊕ []h3

ii. If we want the coefficient of h1 in the output jet:
• The cube function contributes 3bx2

0

• The square function contributes 2bx0

296 Chapter 14. Cubic Functions: Local Analysis

• The linear function contributes c
• The constant function contributes nothing

so we have:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = []⊕ [3bx2
0 + 2bx0 + c]h⊕ []h2 ⊕ []h3

iii. If we want the coefficient of h2 in the output jet:
• The cube function contributes 3bx0

• The square function contributes c

• The linear function contributes nothing
• The constant function contributes nothing

so we have:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = []⊕ []h⊕ [3bx0 + c]h2 ⊕ []h3

iv. If we want the coefficient of h3 in the output jet:
• The cube function contributes a
• The square function contributes nothing
• The linear function contributes nothing
• The constant function contributes nothing

so we have:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = []⊕ []h⊕ []h2 ⊕ [a]h3

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input,
we get the local graph near any input, be it bounded or infinity, from the jet
near that input.

PROCEDURE 14.4 To graph near ∞ the function specified
by x

CUBIC−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

1. Get the output jet near ∞:
x near ∞ CUBIC−−−−−−−→ CUBIC(x) = [a] x3 ⊕ [b] x2 ⊕ [c] x ⊕ [d]︸ ︷︷ ︸

output jet near ∞
(See ?? on ??.)
2. Get the local graphs:

a. Of the cubic term by graphing near ∞ the monomial function
x→ [a]x3 using ?? ?? on ??.

b. Of the quadratic term by graphing near ∞ the monomial func-

4. Local graphs 297

tion x→ [a]x2 using ?? ?? on ??.
c. Of the linear term by graphing near ∞ the monomial function

x→ [b]x using ?? ?? on ??.
d. Of the constant term by graphing near ∞ the monomial func-

tion x→ [c] using ?? ?? on ??.
3. Get the local graph near∞ of CUBIC using chapter 9 by adding-
on to the local graph of the cubic term the local graph of the quadratic
term, the local graph of the the local graph of, and the local graph of
the constant term.

DEMO 14.4 To graph near ∞ the function specified by the global input-
output rule

x
DINA−−−−−−−→ DINA(x) = −61.03 + 37.81x3 + 51.32x2 − 82.47x

1. We get the output jet near ∞: (See Demo 14.2 on page 291)

x near ∞ DINA−−−−−−−→ DINA(x) = [+37.81] x3 ⊕ [+51.32] x2 ⊕ [−82.47] x ⊕ [−61.03]︸ ︷︷ ︸
output jet near ∞

2. Get the local graph near ∞ of each term:
a. We get the graph of the cubic

term by graphing the monomial
function x→ [+37.81]x3 near ∞
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞
Offscreen

0

Screen

Cubic term near ∞

b. We get the graph of the
quadratic term by graphing the
monomial function
x→ [+51.32]x2 near ∞ (See
Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

Offscreen

0

Screen

Quadratic term near ∞

298 Chapter 14. Cubic Functions: Local Analysis

c. We get the graph of the linear
term by graphing the monomial
function x→ [−82.47]x near ∞
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

Screen

Linear term near ∞

Offscreen

0

d. We get the graph of the
constant term by graphing the
monomial function x→ [−61.03]
near ∞ (See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen
–61.03

Offscreen

Constant term near ∞

3. We get the local graph near ∞ of DINA by adding-on to the graph of the
quadratic term the graph of the linear term and the graph of the constant term.
(See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0
–61.03

Offscreen

Local graph near ∞

Screen

PROCEDURE 14.5 To graph near x0 the function specified
by x

CUBIC−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

1. Get the local input-output rule near x0 of CUBIC using ?? ?? on
??
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h)

= [ax3
0 + bx2

0 + cx0 + d]⊕ [3ax2
0 + 2bx0 + c]h⊕ [3ax0 + b]h2 ⊕ [a]h3︸ ︷︷ ︸

output jet near x0

2. Get the local graphs:
a. Of the constant term by graphing near 0 the monomial func-

4. Local graphs 299

tion x→ [ax3
0 + bx2

0 + cx0 + d]
b. Of the linear term by graphing near 0 the monomial function

x→ [3ax2
0 + 2bx0 + c]x

c. Of the quadratic term by graphing near 0 the monomial func-
tion x→ [3ax0 + b]x2

d. Of the cubic term by graphing near 0 the monomial function
x→ [a]x3

3. Get the local graph of CUBIC near x0 by adding to the local
graph of the constant term, the local graph of the linear term, the
local graph of the quadratic term, the local graph of the cubic term.

DEMO 14.5 To graph near −3 the function specified by

x
ARBA−−−−−−→ ARBA(x) = −32.67x− 31.18x3 + 71.07 + 81.26x2

1. We get the local input-output rule near −3 of ARBA (See Demo 14.3 on
page 294):

−3 + h
ARNA−−−−−−→ ARBA(−3 + h) = [+1742.28]⊕ [−1362.09]h⊕ [+361.88]h2 ⊕ [+81.26]h3︸ ︷︷ ︸

output jet near −3

2. We get the local graphs
a. We get the graph of the

constant term near −3 by graphing
the monomial function
x→ [+1742.28].
: (See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Constant term
near

Offscreen

–3 0

–3

+169.08

b. We get the graph of the linear
term near −3 by graphing the
monomial function
x→ [−1362.09]x (See Demo 6.24
on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Linear term
near –3

–3 0

300 Chapter 14. Cubic Functions: Local Analysis

c. We get the graph of the
quadratic term near −3 by graphing
the monomial function
x→ [+361.88]x2 : (See
Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Quadratic
term near –3

–3 0

d. We get the graph of the cubic
term near −3 by graphing the
monomial function
x→ [+81.26]x3 : (See Demo 6.24
on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen
Cubic term
near –3

–3 0
3. We get the local graph near −3 of ARBA by adding to the local graph of the
constant term the local graph of the linear term, the local graph of the quadratic
term, and the local graph of the cubic term. (See Demo 6.24 on page 175)

–∞ +∞

Outputs

–∞
Inputs

+∞

0

Screen

Offscreen

–3 0

+900.428

Local graph
near –3

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near
x0, can be read from the local graph and so we could proceed as follows:

i. Get the local input-output rule near the given input (See ?? on ??
when the given input is ∞ or ?? on ?? when the given input is x0.)

ii. Get the local graph from the local input-output rule (See ?? on ??.)
iii. Get the feature-sign from the local graph. (See ?? ??.)
However, things are in fact much simpler: Given an input, be it ∞ or a

bounded input x0, to get a required feature-sign near that given input, we

5. Local Feature-signs 301

look for the term in the output jet near that input that
i. Has the required feature.

and
ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output
jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a cubic
function, the first term in the output jet near ∞ is both the largest-in-size
and a regular monomial so that it has all three features:

PROCEDURE 14.6 To get the feature-signs near ∞ of the
function specified by x CUBIC−−−−−−−→ CUBIC(x) = ax3 +bx2 +cx+d

i. Get the approximate local input-output rule near ∞:
x near ∞ CUBIC−−−−−−−−→ CUBIC(x) = [a]x3 ⊕ [b]x2 ⊕ [c]x⊕ [d]︸ ︷︷ ︸

output jet near ∞

= [a]x3 ⊕ [...]︸ ︷︷ ︸
approximate output jet near ∞

ii. Then, in the approximate output jet near ∞:
• Get the Height-sign, the Slope-sign and the Concavity-sign all

from the cubic term [a]x3 because the next terms, [b]x2, [c]x
and [d] are too small to matter . (Not to mention the fact that
a linear term has no concavity and a constant term has neither
concavity nor slope.)

DEMO 14.6
To get the Height-sign near ∞ of the function specified by

x
DELIA−−−−−−−−→ DELIA(x) = +12x3 − 2x2 + 63x− 155

.

i. We get the local input-output rule near ∞ :

x near ∞ DELIA−−−−−−−−→ DELIA(x) = +12x3 − 2x2 + 63x− 155

= [+ 12]x3 ⊕ [− 2]x2 ⊕ [+ 63]x⊕ [− 155]︸ ︷︷ ︸
output jet near ∞

ii. We get Height-sign from the cubic term [+ 12]x3. (The quadratic term
[−2]x2, the linear term [+63]x and the constant term [−155] are too small

302 Chapter 14. Cubic Functions: Local Analysis

to matter)
iii. Since the cubic coefficient [+ 12] is positive, we get that Height-sign
DELIA near ∞ = 〈+,−〉. (Seen from ∞.)

DEMO 14.7
Get the slope-sign near ∞ of the function specified by the global input-output
rule

x
DET ER−−−−−−−−−→ DETER(x) = −0.45x3 + 3.03x2 − 81.67x+ 46.92

i. We get the local input-output rule near ∞ :

x near ∞ DET ER−−−−−−−−−→ DETER(x) = −045x3 + 3.03x2 − 81.67x+ 46.92

= [− 0.45]x3 ⊕ [+ 3.03]x2 ⊕ [− 81.67]x⊕ [+ 46.92]︸ ︷︷ ︸
output jet near ∞

ii. We get Slope-sign from the cubic term [− 0.45]x3. (The quadratic term
[+ 3.03]x2, the linear term [− 81.67]x and the constant term [+ 46.92] are
too small to matter.)
Since the cubic coefficient −0.45 is negative, we get that Slope-sign DETER
near ∞ = 〈�,�〉. (Seen from ∞.)

2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it
gives the Height-sign. However, the first term usually has neither Slope nor
Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change
the Height-sign as given by the first term but it is usually the largest-in-
size term that can give the Slope-sign. However, the second term has no
Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change
the Height-sign given by the first term and the Slope-sign given by the second
term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term
in the output jet - keeping in mind that the exceptional monomial functions
do not have all the features.
However, near a bounded input, the given bounded input may turn out to
be critical for the local feature:
i. If the constant term in the output jet is 0, then the term which gives the
Height-sign can be either the linear term or the quadratic term if the linear
term is 0 or even the cubic term if the quadratic term turns out to be 0 too.
The bounded input is then again said to be critical for the Height.

5. Local Feature-signs 303

critical for the Concavityii. If the linear term in the output jet is 0, then the term which gives the
Slope-sign is the quadratic term or the cubic term is the quadratic term turns
out to be 0 too. The bounded input is then said to be critical for the Slope.
iii. If the quadratic term in the output jet is 0, then the term which gives
the Concavity-sign is the cubic term. The bounded input is then said to be
critical for the Concavity.
So, we usually need to compute only one coefficient in the output jet. But
if the given bounded input turns out to be critical for that feature, then we
need to compute the next coefficient: So we use

PROCEDURE 14.7 To get the feature-signs near x0 of the
function specified by x CUBIC−−−−−−−→ CUBIC(x) = ax3 +bx2 +cx+d

i. Get the local input-output rule near x0:
x0 + h

CUBIC−−−−−→ CUBIC(x0 + h) = a(x0 + h)3 + b(x0 + h)2 + c(x0 + h) + d

= a
(
x3

0 + 3x2
0h+ 3x0h

2 + h3
)

+ b
(
x2

0 + 2x0h+ h2
)

+ c (x0 + h) + d

= [ax3
0 + bx2

0 + cx0 + d]⊕ [3ax2
0 + 2bx0 + c]h⊕ [3ax0 + b]h2 ⊕ [a]h3︸ ︷︷ ︸

output jet near x0

ii. Then, in the output jet near x0:
• Get the Height-sign from the constant term [ax3

0 + bx2
0 + cx0 +d].

(The linear term, the quadratic term and the cubic term are too
small to matter .)
If the constant coefficient is 0, get the Height-sign from the linear
term [3ax2

0 + 2bx0 + c]h. (The quadratic term and the cubic term
are too small to matter.)
If the linear coefficient is 0 too, get the Height-sign from the
quadratic term [3ax0 + b]h2. (The quadratic term and the cu-
bic term are too small to matter.)
If the quadratic coefficient is 0 too, get the Height-sign from the
cubic term [a]h3. (The quadratic term and the cubic term are too
small to matter.)
• Since the constant term has no slope, get the Slope-sign from the
linear term [3ax2

0 +2bx0 +c]h. (The quadratic term and the cubic
term are too small to matter.)
If the linear coefficient is 0, get the Slope-sign from the quadratic
term [3ax0 + b]h2. (The cubic term is too small to matter.)
If the quadratic coefficient is 0 too, get the Slope-sign from the
cubic term [a]h3.

304 Chapter 14. Cubic Functions: Local Analysis

• Since both the constant term and the linear term have no con-
cavity, get Concavity-sign from the quadratic term [3ax0 + b]h2.
(The cubic term is too small to matter.)
If the quadratic coefficient is 0, get the Slope-sign from the cubic
term [a]h3.

DEMO 14.8
To get the feature signs near −3 of the function specified by the global input-
output rule

x
ARBA−−−−−−−→ ARBA(x) = −32.67x+ 71.07 + 81.26x2

i. We get the local input-output rule near −3 (See Demo 14.3 on page 294):

−3 + h
ARBA−−−−−−−→ ARBA(−2 + h) = −32.67(−3 + h) + 71.07 + 81.26(−3 + h)2︸ ︷︷ ︸

output specifying code

= [+900.428]⊕ [−519.63]h⊕ [+81.26]h2︸ ︷︷ ︸
output jet near −3

ii. Then, from the output jet:
• Since the constant coefficient [+900.428] is positive, we get that Height-

sign ARBA near −3 = 〈+, +〉.
• Since the linear coefficient [−519.63]h is negative. we get that Slope-sign
ARBA near −3 = 〈�,�〉

• Since the quadratic coefficient [+81.26]h2 is positive, we get that
Concavity-sign ARBA near −3 = 〈∪,∪〉

THEOREM 14.2 Approximation Near ∞

6 Local Graph Near Infinity

THEOREM 14.3 Height-sign Near ∞

THEOREM 14.4 Slope-sign Near ∞

6. Local Graph Near ∞ 305

THEOREM 14.5 Concavity-sign Near ∞

THEOREM 14.6 Local Input-Output Rule

THEOREM 14.7 Height-sign Near x0

THEOREM 14.8 Slope-sign Near x0

THEOREM 14.9 Concavity-sign Near x0 Given the function
CUBICa, b, c, d
•When Local square coefficient of CUBIC(x0) = +,

Concavity-signCUBIC |near x0
= (∪,∪)

•When Local square coefficient of CUBIC(x0) = −,
Concavity-signCUBIC |near x0

= (∩,∩)
•When Local square coefficient of CUBIC(x0) = 0,

,Concavity-signCUBIC |near x0
depends on

the sign of the local cube coefficient of CUBIC(x0)

306 Chapter 14. Cubic Functions: Local Analysis

Chapter 15

Cubic Functions: Global
Analysis

Global Graph, 307 • Concavity-sign, 308 • Slope-sign, 310 • Extremum,
311 • Height-sign, 312 • 0-Concavity Location, 314 • 0-Slope Location,
315 • Extremum Location, 317 • 0-Height Location, 319 .

In the case of cubic functions, we will be able to solve exactly only a very
few global problems because everything begins to be truly computationally
complicated.

1 Global Graph

As always, we use
PROCEDURE 15.1 Essential graph of a function specified by
x

CUBIC−−−−−−−→ CUBIC(x) = ax3 + bx2 + cx+ d

i. Graph the function near ∞, (See ?? on ??.)
ii. Ask the Essential Question:

• Do all bounded inputs have bounded outputs
or
• Are there bounded inputs whose nearby inputs have un-
bounded outputs? (∞-height inputs.)

307

308 Chapter 15. Cubic Functions: Global Analysis

essential-feature input
iii. Use the local input-output rule near x0 to get further information.
(See ?? on ??.)

But, given a bounded input x0, we have that:
• a being bounded, ax3

0 is also bounded
• b being bounded, bx2

0 is also bounded
• c being bounded, cx0 is also bounded
• and d being bounded
altogether, we have that ax3

0 + bx0x
2 + cx0 + d is bounded and that the

answer to the Essential Question is:

THEOREM 15.1 Bounded Height Under a cubic functions, all
bounded inputs have bounded outputs.

and therefore

THEOREM 15.2 Offscreen Graph The offscreen graph of a cubic
function consists of just the local graph near ∞.

We now deal in detail with the third step.

EXISTENCE THEOREMS

Since cubic functions have no bounded ∞-height input, the only way a
feature can change sign near a bounded input is when the feature is 0 near
the bounded input. In particular, essential 0-feature inputs are bounded
inputs
• with a 0 feature,
• whose existence is forced by the offscreen graph—which, in the case of
cubic functions consists, by theorem 15.2, of only the local graph near ∞.

None of the following theorems, though, will indicate where the 0-feature
inputs inputs are located. The Location Theorems will be dealt with in
the last part of the chapter.

2 Concavity-sign

Given the function specified by the global input-output rule
x

CUBIC−−−−−−−−−−→ CUBIC(x) = ax3 + b2x+ cx+ d

2. Concavity-sign 309

recall that when x is near ∞ the Concavity-sign Near ∞ Theorem for
cubic functions says that:
• When a is + , Concavity-Sign|x near ∞ = (∪,∩)
• When a is − , Concavity-Sign|x near ∞ = (∩,∪)

1. Since the concavity changes sign as x goes from the left side of ∞
to the right side of ∞ across ∞ , the concavity also has to change sign as
x goes from the left side of ∞ to the right side of ∞ across the screen. In
other words, there has to be a bounded concavity-sign change input.

EXAMPLE 15.1. Given a cubic function whose offscreen graph is
Output
Ruler

Input Ruler

Screen

Outlying Space

Mercator view Magellan view
there has therefore to be a bounded concavity-sign change input,
xconcavity sign-change. But since there cannot be a bounded ∞-height input,
we cannot have

Output Ruler

Input
Ruler

+∞–∞

+∞

–∞

Screen

Offscreen space

∞

Mercator view Magellan view
and therefore we must have at least

Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Offscreen space

Forced Concavity-sign changex

∞

Mercator view Magellan view

So, based on the off-screen graph, we have

310 Chapter 15. Cubic Functions: Global Analysis

THEOREM 15.3 Concavity sign-change A cubic function must
have at least one bounded concavity sign-change input.

2. On the other hand, based on the off-screen graph, a cubic function
could have any odd number of 0-concavity inputs. Based on the general local
input-output rule, we will see that a cubic function can have at most one
0-concavity input. But, at this point, all we know for sure is

THEOREM 15.4 0-Concavity Existence A cubic functions must

have at least one concavity-sign change input:
xconcavity sign-change = x0-concavity

3 Slope-sign

Given the cubic function CUBICa,b,c,d, that is the function specified by the
global input-output rule

x
CUBIC−−−−−−−−−−→ CUBIC(x) = ax3 + b2x+ cx+ d

recall that when x is near ∞ the Slope-sign Near ∞ Theorem for cubic
functions says that:
• When a is + , Slope-Sign|x near ∞ = (�,�)
• When a is − , Slope-Sign|x near ∞ = (�,�)

1. Since the slope does not changes sign as x goes through ∞ from the
left side of ∞ to the right side of ∞, the slope does not have to change sign
as x goes across the screen from the left side of ∞ to the right side of ∞ so
there does not have to be a bounded slope-sign change input:

EXAMPLE 15.2. Given a cubic function whose offscreen graph is
Output
Ruler

Input Ruler

Screen

Outlying Space

Mercator view Magellan view
there is no need for a bounded slope-sign change input, xSlope-sign change and
therefore we can have

4. Extremum 311

Output
Ruler

Input Ruler

Screen

Outlying Space

Mercator view Magellan view

2. On the other hand, based on just graphic considerations, a cubic
function could have any number of 0-slope inputs. Based on input-output
rule considerations, we will see that a cubic function can have only zero, one
or two 0-slope inputs. But, at this point, all we know for sure is

THEOREM 15.5 Slope-Sign Change Existence A cubic function
need not have a Slope-sign change input.

And thus also

THEOREM 15.6 0-Slope ExistenceA cubic function need not have
a 0-Slope input.

4 Extremum

From the optimization viewpoint, the most immediately striking feature
of an affine function is the absence of a forced extreme input, that is of
a bounded input whose output is either larger than the output of nearby
inputs or smaller than the output of nearby inputs. On the other hand, at
this point we cannot prove that there is no extreme input.

EXAMPLE 15.3. Given a cubic function with the offscreen graph:
Output Ruler

Input
Ruler

+∞–∞

+∞

–∞

Screen

Offscreen space

312 Chapter 15. Cubic Functions: Global Analysis

Since there can be no∞-height input, we cannot have, for instance, either one
of the following

x∞-height

Output
Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Local
minimum
output

Local
maximum
output

x∞-height

Input
Ruler+∞–∞

Screen

Output
Ruler
+∞

–∞

Local
minimum
output

On the other hand, there is nothing
to prevent a fluctuation such as:

Input
Ruler+∞–∞

Screen

xmaxxmin

Output
Ruler
+∞

–∞

Local
maximum
output

Local
minimum
output

But no extremum input is forced : Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Offscreen space

So, we have

THEOREM 15.7 Extremum Existence A cubic function has no
forced extremum input

5 Height-sign

Given the cubic function CUBICa,b,c,d, that is the function specified by the
global input-output rule

x
CUBIC−−−−−−−−−−→ CUBIC(x) = ax3 + b2x+ cx+ d

recall that when x is near∞ the Height-sign Near ∞ Theorem for cubic
functions says that:
• When a is + , Height-Sign|x near ∞ = (+,−)
• When a is − , Height-Sign|x near ∞ = (−, +)

5. Height-sign 313

1. Since the height changes sign as x goes from the left side of ∞ to the
right side of ∞ across ∞ , the height has also to change sign as x goes from
the left side of ∞ to the right side of ∞ across the screen. In other words,
there has to be a bounded height-sign change input.

EXAMPLE 15.4. Given a cubic function whose offscreen graph is
Output
Ruler

Input Ruler

Screen

Outlying Space

Mercator view Magellan view
there has therefore to be a height-sign change input But since there cannot be
a bounded ∞-height input, we cannot have

Output Ruler

Input
Ruler

+∞–∞

+∞

–∞

Screen

Offscreen space

∞

Mercator view Magellan view
and therefore we must have

Output Ruler

Input
Ruler+∞–∞

+∞

–∞

Screen

Offscreen space

Forced 0-Heightx

0 ∞

0

Mercator view Magellan view

2. Moreover, because there is no bounded ∞-height input where the height
could change sign, xheight-sign change has to be a bounded input where the
height is 0. As a result, we have that

314 Chapter 15. Cubic Functions: Global Analysis

THEOREM 15.8 Height-Sign Change Existence A cubic func-
tions must have a Height-sign change input and

xHeight-sign change = x0-height

LOCATION THEOREMS

Previously, we only established the existence of certain essential bounded
inputs of cubic functions and this investigation was based on graphic con-
siderations. Here we will investigate the location of the essential bounded
inputs and this investigation will be based on the generic local input-output
rule.

6 0-Concavity Location

Given a cubic function, the global problem of locating an input where the
local concavity is 0 is still fairly simple.

More precisely, given a cubic function CUBICa,b,c,d, that is the cubic
function specified by the global input-output rule

x
CUBIC−−−−−−−−−−→ CUBIC(x) = ax3 + b2x+ cx+ d

since the concavity near x0 is the local square coefficient 3ax0 + b, in order
to find the input(s) where the local concavity is 0, we need to solve the affine
equation

3ax+ b = 0
by reducing it to a basic equation:

3ax+ b −b = 0 −b
3ax = −b
3ax
3a

= −b
3a

x = −b3a
So, we have:

THEOREM 15.9 0-slope Location For any cubic function
CUBICa,b,c,d,

7. 0-Slope Location 315

x0−concavity = −b3a

In fact, we also have:

THEOREM 15.10 Global Concavity-sign Given a cubic function
CUBICa,b,c,d,
• When a is positive,

Concavity-sign CUBIC|Everywhere<−b
3a

= (∩,∩)

Concavity-sign CUBIC|−b
3a

= (∩,∪)

Concavity-sign CUBIC|Everywhere>−b
3a

= (∪,∪)
• When a is negative,

Concavity-sign CUBIC|Everywhere<−b
3a

= (∪,∪)

Concavity-sign CUBIC|−b
3a

= (∪,∩)

Concavity-sign CUBIC|Everywhere>−b
3a

= (∩,∩)

The case is easily made by testing near∞ the intervals for the corresponding
inequations.

7 0-Slope Location

In the case of affine functions and of quadratic functions, we were able to
prove that there was no shape difference with the principal term near ∞ by
showing that there could be no fluctuation:
• In the case of affine functions we were able to prove that there was no
shape difference with dilation functions
• In the case of quadratic functions we were able to prove that there was
no shape difference with square functions.

More precisely, given the cubic function CUBICa,b,c,d, that is the function
specified by the global input-output rule

x
CUBIC−−−−−−−−−−→ CUBIC(x) = ax3 + b2x+ cx+ d

since the slope near x0 is the local linear coefficient 3ax2 + 2bx+ c, in order
to find the input(s) where the local slope is 0, we need to solve the quadratic
equation

3ax2 + 2bx+ c

316 Chapter 15. Cubic Functions: Global Analysis

which we have seen we cannot solve by reduction to a basic equation and for
which we will have to use the 0-Height Theorem for quadratic functions,
keeping in mind, though, that
• For a as it appears in 0-Height Theorem for quadratic functions, we
have to substitute the squaring coefficient of 3ax2 + 2bx+ c, namely 3a,
• For b as it appears in 0-Height Theorem for quadratic functions, we

have to substitute the linear coefficient of 3ax2 + 2bx+ c namely 2b,
• For c as it appears in 0-Height Theorem for quadratic functions, we
have to substitute the constant coefficient of 3ax2 + 2bx+ c namely c.
1. It will be convenient, keeping in mind the above substitutions, first

to compute

x0−slope for [3ax2+2bx+c] = − 2b
2 · 3a

= − 2b
6a

= − b

3a
= x0−concavity for CUBIC

2. Then, still keeping in mind the above substitutions, we compute the
discriminant of 3ax2 + 2bx+ c:

Discriminant[3ax2 + 2bx+ c] = (2b)2 − 4(3a)(c)
= 4b2 − 12ac

3. Then we have:
• When Discriminant [3ax2 +2bx+c] = 4b2−12ac < 0, the local linear co-
efficient of CUBIC, [3ax2 +2bx+c], has no 0-height input and therefore
CUBIC has no 0-slope input.
• When Discriminant [3ax2 + 2bx + c] = 4b2 − 12ac = 0, the local linear

coefficient of CUBIC, [3ax2 + 2bx + c], has one 0-height input and
therefore CUBIC has one 0-slope input, namely

I x0−slope for CUBIC = x0−height for [3ax2+2bx+c] = − b
3a ,

• When Discriminant [3ax2 + 2bx + c] = 4b2 − 12ac > 0, the local linear
coefficient of CUBIC, [3ax2 + 2bx + c], has two 0-height inputs and
therefore CUBIC has two 0-slope inputs., namely:

I x0−slope for CUBIC = x0−height for [3ax2+2bx+c] = − b
3a+

√
4b2−12ac

2a
and

I x0−slope for CUBIC = x0−height for [3ax2+2bx+c] = − b
3a−

√
4b2−12ac

2a

In terms of the function CUBIC, this gives us:

8. Extremum Location 317

Shape type O
Shape type ITHEOREM 15.11 0-slope Location Given the cubic function

CUBICa,b,c,d, when
•Disc. [3ax2 + 2bx + c] = 4b2 − 12ac < 0, CUBIC has no 0-Slope

input
•Disc. [3ax2 + 2bx + c] = 4b2 − 12ac = 0, CUBIC has one 0-Slope
input
•Disc. [3ax2 + 2bx + c] = 4b2 − 12ac > 0,CUBIC has two 0-Slope

inputs

8 Extremum Location

The 0-slope inputs are the only ones which can be extremum inputs. So,
there will therefore be three types of cubic functions according to the number
of 0-slopes inputs:

1. When Discriminant [3ax2 +2bx+c] = 4b2−12ac < 0 so that CUBIC
has no 0-Slope input, there can be no extremum input and we will say that
this type of cubic is of Shape type 0.

EXAMPLE 15.5.
Output
Ruler

Input
Ruler

Screen

x0-concavity

Outlying Space
+

–

Output
Ruler

Input
Ruler

Screen

x0-concavity

Outlying Space+

–

Cube coefficient positive Cube coefficient negative

Since cubic function of Shape type O have no 0-Slope input, their shape is
not like that of cubing functions.

2. When Discriminant [3ax2 +2bx+c] = 4b2−12ac = 0 so that CUBIC
has one 0-Slope input, there will still be no extremum input and we will say
that this type of cubic is of Shape type I.

EXAMPLE 15.6.

318 Chapter 15. Cubic Functions: Global Analysis

Shape type II
Output
Ruler

Input
Ruler

Screen

x0-slope = x0-concavity

Outlying Space +

–

Output
Ruler

Input
Ruler

Screen

x0-slope = x0-concavity

Offscreen Space
+

–

Cube coefficient positive Cube coefficient negative

Since cubic function of Shape type I do have one 0-Slope input, their shape
is very much like that of cubing functions.

3. When Discriminant [3ax2 +2bx+c] = 4b2−12ac > 0 so that CUBIC
has two 0-Slope input, there will be one minimum input and one maximum
input and we will say that this type of cubic is of Shape type II.

EXAMPLE 15.7.
Output
Ruler

Input
Ruler

Screen

x
0-concavity

Outlying Space +

–
x
0-slope

x
0-slope

Output
Ruler

Input
Ruler

Screen

x
0-concavity

Outlying Space
+

–

x
0-slope

x
0-slope

Cube coefficient positive Cube coefficient negative

We can thus state:

THEOREM 15.12 Extremum Location Given the cubic function
CUBICa,b,c,d, when
•Discriminant [3ax2 + 2bx + c] = 4b2 − 12ac < 0, CUBIC has no

locally extremum input.
•Discriminant [3ax2 +2bx+c] = 4b2−12ac = 0, CUBIC has one lo-

cally minimum-maximum input or one locally maximum-minimum
input.
•Discriminant [3ax2 + 2bx+ c] = 4b2 − 12ac > 0, CUBIC has both

9. 0-Height Location 319

I xlocally minimum-output,
I xlocally maximum-output,

9 0-Height Location

The location of 0-height inputs in the case of a cubic function is usually not
easy.

1. So far, the situation has been as follows:
i. The number of 0-height inputs for affine functions is always one,
ii. The number of 0-height inputs for quadratic functions is already more
complicated in that, depending on the sign of the extreme-output compared
with the sign of the outputs for inputs near ∞, it can be none, one or two.

It follows from the Extremum Location Theorem that

iii. The number of 0-height inputs for cubic functions depends
a. On the Shape type of the cubic function,
b. In the case of Shape type II, on the sign of the extremum outputs

relative to the sign of the cubing coefficient

EXAMPLE 15.8. The cubic function specified by the global graph

0

x0-output

Output
Ruler

Input
Ruler

Screen

Offscreen Space
is of Shape Type O (No 0-slope
input) and always has a single 0-
height input.

EXAMPLE 15.9. The cubic function specified by the global graphs are all
of the same shape of Type II and the number of 0-height inputs depends on
how high the graph is in relation to the 0-output level line.

320 Chapter 15. Cubic Functions: Global Analysis

x0-output

0

Output
Ruler

Input
Ruler

Screen

Offscreen Space

Output
Ruler

Input
Ruler

Screen

x0-output

0

x0-output

Offscreen Space

x0-output

0

x0-output
x0-output

Output
Ruler

Input
Ruler

Screen

Offscreen Space

2. The obstruction to computing the solutions that we encountered when
trying to solve quadratic equations, namely that there was one more term
than an equation has sides is even worse here since we have four terms and
an equation still has only two sides. See ?? on ??

Rational␣function

Chapter 16

Rational Degree & Algebra
Reviews

Rational Degree, 321 • Graphic Difficulties, 323 .

Rational functions are functions whose global input-output rule is of
the form

x
RAT−−−−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)
where POLYNum(x) and POLYDen(x) stand for two positive-exponent poly-
nomial expressions.

EXAMPLE 16.1. The function whose global input-output rule is

x
T AB−−−−−−−−→ TAB(x) = −3x2 + 4x− 7

−5x4 − 8
is a rational function in which:
• POLYNum(x) is −3x2 + 4x− 7
• POLYDen(x) is −5x4 − 8

1 Rational Degree

Because the upper degree of polynomial functions is what we used to sort
polynomial functions into different types, we now try to extend the idea of

321

322 Chapter 16. Rational Degree & Algebra Reviews

rational degree
regular rational function

upper degree to the case of rational functions in the hope that this will also
help us sort rational functions into different types.

Given a rational function whose global input-output rule is

x
RAT−−−−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)
the rational degree of this rational function is the upper degree of POLYNum(x)
minus the upper degree of POLYDen(x):

Rat.Deg. of POLYNum(x)
POLYDen(x) = UppDeg. of POLYNum(x)−UppDeg. of POLYDen(x)

Thus, the rational degree of a rational function can well be negative.

NOTE 16.1
The rational degree is to rational function very much what the size is
to arithmetic fractions in “school arithmetic” which distinguishes frac-
tions according to the size of the numerator compared to the size of the
denominator even though, by now, the distinctions are only an inconse-
quential remnant of history..
What happened is that, historically, the earliest arithmetic fractions were
“unit fractions” , that is reciprocals of whole numbers such as one half,
one third, one quarter, etc. Later came “Egyptian fractions”, that is
combinations of (distinct) unit fractions, such as one third and one fifth
and one eleventh, etc. A much later development were the “proper frac-
tions”, also called "vulgar fractions", such as two thirds, three fifths etc.
Later still, came “improper fractions” such as five thirds, seven halves,
etc. And finally “mixed numbers”, such as three and two sevenths. To-
day, none of these distinctions matters inasmuch as we treat all fractions
in the same manner.
However, while these “school arithmetic” distinctions are based on the
size of the numerator versus the size of the denominator and make no
real differences in the way we handle arithmetic fractions, in the case of
rational functions, the above distinction based on the upper degree of
the numerator versus the upper degree of the denominator will make a
difference—even though no major one—in the way we will handle rational
functions of different types.

In fact, by analogy with what we did with power functions, we will say
that
• Rational functions whose rational degree is either > 1 or < 0, are regular
rational functions,

2. Graphic Difficulties 323

exceptional rational
function

• Rational functions whose rational degree is either = 0 or = 1, are ex-
ceptional rational functions.

EXAMPLE 16.2. Find the rational degree of the function DOUGH whose
global input-output rule is

x
DOUGH−−−−−−→ DOUGH(x) = +1x4 − 6x3 + 8x2 + 6x− 9

x2 − 5x+ 6
Since the rational degree is given by

Rat.Deg. of POLYNum(x)
POLYDen(x) = UppDeg. of POLYNum(x)− UppDeg. of POLYDen(x)

and since, here,
• POLYNum(x) = +1x4 − 6x3 + 8x2 + 6x− 9
• POLYDen(x) = +1x2 − 5x+ 6
we get from the definition of the upper degree of a polynomial that:

UppDeg. of + 1x4 − 6x3 + 8x2 + 6x− 9 = Exponent of Highest Term
= Exponent of + 1x4

= 4
UppDeg. of + 1x2 − 5x+ 6 = Exponent of Highest Term

= Exponent of + 1x2

= 2
so that the rational degree of the rational function DOUGH is:

Rat.Deg. of +1x4 − 6x3 + 8x2 + 6x− 9
+1x2 − 5x+ 6 = Exponent of + 1x4 − Exponent of + 1x2

= 4− 2
= 2

so that DOUGH is an example of a rational function of degree > 1 and
therefore of a regular rational function.

2 Graphic Difficulties

Finally, when there is one or more ∞-height bounded input(s), beginners
often encounter difficulties when trying to interpolate smoothly the outlying
graph of a rational function.

The difficulties are caused by the fact that, when we draw the local
graph near ∞ and the local graphs near the ∞-height inputs from the local

324 Chapter 16. Rational Degree & Algebra Reviews

input-output rules, we are only concerned with drawing the local graphs
themselves from the local input-output rules. In particular, when we draw
the local graph near ∞ and the local graphs near the ∞-height inputs,
we want to bend them enough to show the concavity but we often end up
bending them too much to interpolate them.

But then, what often happens as a result is that, when we want to
interpolate, the local graphs may not line up well enough for us to interpolate
them (smoothly).

EXAMPLE 16.3.
Given the rational function whose
offscreen graph was drawn so as to
show the concavity.

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

Here is what can happens when we
attempt to interpolate

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

Of course, this is absolutely impos-
sible since, according to this global
graph, there would be inputs, such
as x0, with more than one output,
y1, y2, . . . :

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

x0

y1

y3

y2

2. Graphic Difficulties 325

But if we unbend the local graphs
just a bit as in

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

we have no trouble interpolating:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

The way to avoid this difficulty is not to wait until we have to interpolate
but to catch any problem as we draw the local graphs by mentally extending
the local graphs slightly into the transitions.

EXAMPLE 16.4.
Given the rational function whose
offscreen graph was drawn do as to
show the concavity

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

we can already see by extending the
local graphs just a little bit into the
transitions that this will cause a lot
of trouble when we try to interpo-
late the local graph:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

326 Chapter 16. Rational Degree & Algebra Reviews

So, here, we bend the local graph
near ∞ a little bit more and we un-
bend the local graphs near the ∞-
height inputs a little bit:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

We check again by extending the lo-
cal graphs just a little bit into the
transitions:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

and indeed now we have no trouble
interpolating:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

extract

Chapter 17

Rational Functions: Local
Analysis Near ∞

Local I-O Rule Near ∞, 327 • Height-sign Near ∞, 330 • Slope-sign Near
∞, 332 • Concavity-sign Near ∞, 335 • Local Graph Near ∞, 339 .

To do local analysis we work in a neighborhood of some given input
and thus count inputs from the given input since it is the center of the
neighborhood. When the given input is ∞, counting from ∞ means setting
x← large and computing with powers of large in descending order of sizes.

Recall that the principal term near ∞ of a given polynomial function
POLY is simply its highest power term which is therefore easy to extract
from the global input-output rule. The approximate input-output rule near
∞ of POLY is then of the form
x|x near ∞

P OLY−−−−−−−→ POLY (x)|x near ∞ = Highest Term POLY + [...]
However, the complication here is that to get the principal part near∞ of a
rational function we must approximate the two polynomial and divide—or
the other way round—and the result need not be a polynomial but can also
be a negative-exponent power function and the main issue will be whether
to do the approximation before or after the division.

1 Local Input-Output Rule Near ∞
Given a rational function RAT , we look for the function whose input-output
rule will be simpler than the input-output rule of RAT but whose local graph
near ∞ will be qualitatively the same as the local graph near ∞ of RAT .

327

328 Chapter 17. Rational Functions: Local Analysis Near ∞

More precisely, given a rational function RAT specified by the global
input-output rule

x
RAT−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)
what we will want then is an approximation for the output of the local
input-output rule near ∞

x|x near ∞
RAT−−−−−→ RAT (x)|x near ∞ = POLYNum(x)

POLYDen(x)

∣∣∣∣
x near ∞from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is ∞, we localize both
• POLYNum(x)

and
• POLYDen(x)

by writing them in descending order of exponents.

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

2. Depending on the circumstances, we will take one of the following
two routes to extract what controls the wanted feature:
� The short route to Princ.TERM RAT (x) |x near ∞, that is:

i. We approximate both POLYNum(x)|x near ∞ and POLYDen(x)|x near ∞
to their principal term—that is to just their highest size term—
which, since x is near ∞, is their highest exponent term:

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

i. Approximate

i. Approximate

x near ∞

x near ∞

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

ii. In order to divide Princ.TERMNum(x)

∣∣∣
x near ∞

, that is the prin-

cipal term near∞ of the numerator ofRAT by Princ.TERMDen(x)

∣∣∣
x near ∞

,
that is the principal term near ∞ of the denominator of RAT we
use monomial division

ax+m

bx+n
= a

b
x+m	+n where +m	+n can turn out positive, negative or 0

Princ.TERM RAT (x)
∣∣∣
x near ∞

=
Princ.TERMNum(x)

∣∣∣
x near ∞

Princ.TERMDen(x)
∣∣∣
x near ∞

=
coef. Princ.TERMNum(x)

∣∣∣
x near ∞

coef. Princ.TERMDen(x)
∣∣∣
x near ∞

· xUppDeg.P OLYNum(x)−UppDeg.P OLYDen(x)

1. Local I-O Rule Near ∞ 329

=
coef. Princ.TERMNum(x)

∣∣∣
x near ∞

coef. Princ.TERMDen(x)
∣∣∣
x near ∞

· xRatDeg.RAT (x)

The resulting monomial is Princ.TERMRAT (x)
∣∣∣
x near ∞

, that is
the principal term of the rational function RAT near ∞:

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

i. Approximate

i. Approximate

x near ∞

x near ∞

x near ∞

Localize near ∞

Localize near ∞

ii. D
ivid

e

Princ.TERM RAT(x) + [...]

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

� The long route to Princ.PART RAT (x) |x near ∞:
i. In order to divide POLYNum(x)|x near ∞ by POLYDen(x)|x near ∞,
we set up the division as a long division, that is POLYDen(x)|x near ∞
dividing into POLYNum(x)|x near ∞:

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

POLYNum (x)POLYDen (x)
x near ∞x near ∞

Localize near ∞

Localize near ∞

i. D
ivid

e

ii. We approximate by stopping the long division as soon as we have
the principal part that has the feature(s) we want:

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

POLYNum (x)POLYDen (x)
x near ∞x near ∞

i. D
ivid

e

ii. Approximate Princ.PART RAT(x) + [...]
x near ∞

3. Which route we will take in each particular case will depend both on
the wanted feature(s) near ∞ and on the rational degree of RAT and so we
will now look separately at how we get Height-sign|x near ∞, Slope-sign|x near ∞
and Concavity-sign|x near ∞

330 Chapter 17. Rational Functions: Local Analysis Near ∞

LOCAL ANALYSIS NEAR ∞

When the wanted features are to be found near ∞, the rational degree
of the rational function tells us up front whether or not the short route will
allow us to extract the term that controls the wanted feature.

2 Height-sign Near ∞

No matter what the rational degree of the given rational function RAT ,
Princ.TERM RAT (x) |x near ∞ will give us Height-sign|x near ∞ because,
no matter what its exponent, any power function has Height-sign|x near ∞.
So, no matter what the rational degree of RAT , to extract the term responsi-
ble for Height-sign|x near ∞ we can take the short route to Princ.TERM RAT (x) |x near ∞:

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

i. Approximate

i. Approximate

x near ∞

x near ∞

x near ∞

Localize near ∞

Localize near ∞

ii. D
ivid

e

x near ∞

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

Princ.TERM RAT(x) + [...]

EXAMPLE 17.1. Given the rational function DOUGH specified by the
global input-output rule

x
DOUGH−−−−−−→ DOUGH(x) = +12x5 − 6x3 + 8x2 + 6x− 9

−3x2 − 5x+ 6
find Height-sign DOUGH|x near ∞.
a. We localize both the numerator and the denominator near ∞—which
amounts only to making sure that the terms are in descending order of ex-
ponents.

Localize near ∞

Localize near ∞

+12x5–6x3+8x2+6x–9

–3x2–5x+6

+12x5–6x3+8x2+6x–9

–3x2–5x+6

b. Inasmuch as Princ.TERM DOUGH(x) |x near ∞ has Height no matter
what the degree, in order to extract the term that controls Height-sign|x near ∞
we take the short route to Princ.TERM DOUGH(x) |x near ∞:

i. We approximate

2. Height-sign Near ∞ 331

i. Approximate

i. Approximate

Localize near ∞

Localize near ∞

+12x5–6x3+8x2+6x–9

–3x2–5x+6

+12x5–6x3+8x2+6x–9

–3x2–5x+6

+12x5 + [...]

–3x2 + [...]

that is we approximate
• the numerator +12x5−6x3 +8x2 +6x−9 to its principal term, −12x5

• the denominator −3x2 − 5x+ 6 to its principal term, −3x2

ii. And then we divide:
i. Approximate

i. Approximate

Localize near ∞

Localize near ∞

+12x5–6x3+8x2+6x–9

–3x2–5x+6

+12x5–6x3+8x2+6x–9

–3x2–5x+6

ii. D
ivid

e

+12x5 + [...]

–3x2 + [...]

– x3 + [...]12
3

where
+12x5

−3x2 = +12 · x · x · x · x · x
−3 · x · x

= −12
3 x

5−2

The more usual way to write all this is something as follows:

x|x near ∞
DOUGH−−−−−−→ DOUGH(x)|x near ∞ = +12x5 − 6x3 + 8x2 + 6x− 9

−3x2 − 5x+ 6

∣∣∣∣∣
x near ∞

=
+12x5 − 6x3 + 8x2 + 6x− 9

∣∣
x near ∞

−3x2 − 5x+ 6|x near ∞

= +12x5 − 6x3 + 8x2 + 6x− 9
−3x2 − 5x+ 6

= +12x5 + [...]
−3x2 + [...]

= −12
3 x

5−2 + [...]

Whatever we write, the principat term of DOUGH near ∞ is −12
3 x

3 and it
gives

Height-sign DOUGH|x near ∞ = (−, +)

332 Chapter 17. Rational Functions: Local Analysis Near ∞

EXAMPLE 17.2. Given the function PAC specified by the global input-
output rule

x
P AC−−−−−−−−→ PAC(x) = −12x3 + 7x+ 4

+4x5 − 6x4 − 17x2 − 2x+ 10
find Height-sign PAC|x near ∞.
Inasmuch as Princ.TERM PAC(x) |x near ∞ has Height no matter what the
degree, in order to extract the term that controls Height-sign|x near ∞ we take
the short route to Princ.TERM DOUGH(x) |x near ∞:

x|x near ∞
P AC−−−−−−−−→ PAC(x)|x near ∞ = −12x3 + 7x+ 4

+4x5 − 6x4 − 17x2 − 2x+ 10

∣∣∣∣∣
x near ∞

=
−12x3 + 7x+ 4

∣∣
x near ∞

+4x5 − 6x4 − 17x2 − 2x+ 10|x near ∞

= −12x+3 + [...]
+4x+5 + [...]

= −12
+4 x

+3	+5 + [...]

= −3x−2 + [...]
and we get that

Height-sign PAC|x near ∞ = (−,−)

3 Slope-sign Near ∞

In the case of Slope-sign RAT |x near ∞, there are two cases depending on
the rational degree of the given rational function:
� If the rational functionRAT is either:

– A regular rational function, that is of rational degree > 1 or < 0
or
– An exceptional rational function of rational degree = 1,
that is not an exceptional rational function of rational degree = 0, then
Princ. TERM RAT (x)

∣∣∣
x near ∞

will be a power function that will have
Slope near∞ and so in order to extract the term that controls Slope-sign|x near ∞
we take the short route to Princ. TERM RAT (x)

∣∣∣
x near ∞

:

3. Slope-sign Near ∞ 333

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

i. Approximate

i. Approximate

x near ∞

x near ∞

x near ∞

Localize near ∞

Localize near ∞
ii. D

ivid
e

x near ∞

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

Princ.TERM RAT(x) + [...]

EXAMPLE 17.3. Given the rational function SOUTH specified by the
global input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = −3x2 − 5x+ 6

+12x4 − 6x3 + 8x2 + 6x− 9
find Slope-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH
a. We have

x|x near ∞
SOUT H−−−−−−→ SOUTH(x)|x near ∞ = −3x2 − 5x+ 6

+12x5 − 6x3 + 8x2 + 6x− 9

∣∣∣∣∣
x near ∞

=
−3x2 − 5x+ 6

∣∣
x near ∞

+12x5 − 6x3 + 8x2 + 6x− 9|x near ∞
We now proceed with the two steps:

Approximate

Approximate

D
ivide

+12x5–6x3+8x2+6x-9

–3x2–5x+6 –3x2 + [...]

+12x5 + [...]

– x–3 + [...]1
4

b. The more usual presentation is:

x|x near ∞
SOUT H−−−−−−→ SOUTH(x)|x near ∞ = −3x2 − 5x+ 6

+12x5 − 6x3 + 8x2 + 6x− 9

∣∣∣∣∣
x near ∞

=
−3x2 − 5x+ 6

∣∣
x near ∞

+12x5 − 6x3 + 8x2 + 6x− 9|x near ∞

334 Chapter 17. Rational Functions: Local Analysis Near ∞

We approximate −3x2 − 5x+ 6
∣∣
x near ∞ and

+12x5 − 6x3 + 8x2 + 6x− 9
∣∣
x near ∞

=
−3x2 + [...]
+12x5 + [...]

and then we divide:

= −3
+12x

2−5 + [...]

= −1
4x
−3 + [...]

c. Since the degree of the power function

x
P OW ER−−−−−−−→ POWER(x) = −1

4x
−3

which approximates SOUTH near∞ is < 0, the power function POWER
has all three features, concavity , slope and height. (This was of course to
be expected from the fact that the rational degree of SOUTH is < 0.)
ii. We get

Slope-sign of SOUTH near ∞ = (�,�)

� If the rational function RAT is an exceptional rational function whose ra-
tional degree = 0, then Princ.TERM RAT (x) |x near ∞ will be an excep-
tional power function with exponent = 0 and Princ.TERM RAT (x) |x near ∞
will not have Slope and so in order to extract the term that controls
Slope-sign|x near ∞ we will have to take the long route to a Princ.PART RAT (x) |x near ∞
that has Slope:

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

POLYNum (x)POLYDen (x)
x near ∞x near ∞

i. D
ivid

e

ii. Approximate

x near ∞

Princ.PART RAT(x) + [...]
x near ∞

4. Concavity-sign Near ∞ 335

4 Concavity-sign Near ∞

In the case of Concavity-sign RAT |x near ∞, there are two cases depending
on the rational degree of the given rational function.
� If the rational function RAT is a regular rational function, that is if the

rational degree ofRAT is either> 1 or< 0, then Princ. TERM RAT (x) |x near ∞
will be a regular power function, that is a power function whose exponent
is either> 1 or< 0 and then, in either case, Princ. TERM RAT (x) |x near ∞
will have Concavity and so in order to extract the term that controls
Concavity-sign|x near ∞ we take the short route to Princ.TERMDen(x) |x near ∞:

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

i. Approximate

i. Approximate

x near ∞

x near ∞

x near ∞

Localize near ∞

Localize near ∞

ii. D
ivid

e

x near ∞

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

Princ.TERM RAT(x) + [...]

EXAMPLE 17.4. Given the rational function SOUTH specified by the
global input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = −3x2 − 5x+ 6

+12x4 − 6x3 + 8x2 + 6x− 9
find Concavity-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH
a. We have

x|x near ∞
SOUT H−−−−−−→ SOUTH(x)|x near ∞ = −3x2 − 5x+ 6

+12x5 − 6x3 + 8x2 + 6x− 9

∣∣∣∣∣
x near ∞

=
−3x2 − 5x+ 6

∣∣
x near ∞

+12x5 − 6x3 + 8x2 + 6x− 9|x near ∞
We now proceed with the two steps:

Approximate

Approximate

D
ivide

+12x5–6x3+8x2+6x-9

–3x2–5x+6 –3x2 + [...]

+12x5 + [...]

– x–3 + [...]1
4

336 Chapter 17. Rational Functions: Local Analysis Near ∞

b. The more usual presentation is:

x|x near ∞
SOUT H−−−−−−→ SOUTH(x)|x near ∞ = −3x2 − 5x+ 6

+12x5 − 6x3 + 8x2 + 6x− 9

∣∣∣∣∣
x near ∞

=
−3x2 − 5x+ 6

∣∣
x near ∞

+12x5 − 6x3 + 8x2 + 6x− 9|x near ∞

We approximate −3x2 − 5x+ 6
∣∣
x near ∞ and

+12x5 − 6x3 + 8x2 + 6x− 9
∣∣
x near ∞

=
−3x2 + [...]
+12x5 + [...]

and then we divide:

= −3
+12x

2−5 + [...]

= −1
4x
−3 + [...]

c. Since the degree of the power function

x
P OW ER−−−−−−−→ POWER(x) = −1

4x
−3

which approximates SOUTH near∞ is < 0, the power function POWER
has all three features, concavity , slope and height. (This was of course to
be expected from the fact that the rational degree of SOUTH is < 0.)
ii. We get

Concavity-sign of SOUTH near ∞ = (∩,∩)

� If the rational function RAT is an exceptional rational function that is if
the rational degree ofRAT is either = 1 or = 0 then Princ.TERM RAT (x) |x near ∞
will be an exceptional power function with exponent either = 1 or = 0
(Chapter 7) and in both cases Princ.TERM RAT (x) |x near ∞ will not
have Concavity and in order extract the term that controls Concavity-sign|x near ∞
we will have to take the long route to a Princ.PART RAT (x) |x near ∞
that does have Concavity.

4. Concavity-sign Near ∞ 337

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near ∞

x near ∞

POLYNum (x)POLYDen (x)
x near ∞x near ∞

i. D
ivid

e

ii. Approximate

x near ∞

Princ.PART RAT(x) + [...]
x near ∞

EXAMPLE 17.5. Given the rational function BATH specified by the
global input-output rule

x
BAT H−−−−−→ BATH(x) = +x3 − 5x2 + x+ 6

+x2 − 4x+ 3
find Concavity-sign BATH|x near ∞.
a. The localization step is to localize both the numerator and the denom-
inator near ∞—which amounts only to making sure that the terms are in
descending order of exponents.

Localize near ∞

Localize near ∞
+x3–5x2+x+9

+x2–4x+3

+x3–5x2+x+9

+x2–4x+3 x near ∞

x near ∞

b. Since Princ. TERM BATH(x) |x near ∞ has no Concavity , the extrac-
tion step to get Concavity-sign BATH|x near ∞ must take the long route
to a Princ. PART BATH(x) |x near ∞ that has Concavity :

i. We set up the division as a long division:
+x2 − 4x+ 3 dividing into +x3 − 5x2 + x+ 9.

Localize near ∞

Localize near ∞
+x3–5x2+x+9

+x2–4x+3

+x3–5x2+x+9

+x2–4x+3

i. Approximate

i. Approximate

+x3 + [...]

+x2 + [...]

+x + [...]

ii. D
ivid

e

i. D
ivid

e

+x2–4x+3 +x3 –5x2 +x +9

x near +∞

x near +∞

ii. We approximate by stopping the long division as soon as we have the

338 Chapter 17. Rational Functions: Local Analysis Near ∞

principal part of the quotient that has Concavity :
Localize near ∞

Localize near ∞
+x3–5x2+x+9

+x2–4x+3

+x3–5x2+x+9

+x2–4x+3

i. Approximate

i. Approximate

+x3 + [...]

+x2 + [...]

+x + [...]

ii. D
ivid

e

i. D
ivid

e

+x2–4x+3 +x3 –5x2 +x +9

ii. Approximate

+x3 –4x2 +3x
0x3 –x2 –2x +9

 –x2 +4x –3

0x2 –6x +12

x near +∞

x near +∞

x –1 –6x–1+ [...]

that is we stop with −6x−1 since it is the term responsible for Concavity .
The more usual way to write all this is:

x|x near ∞
BAT H−−−−−→ BATH(x)|x near ∞ = +x3 − 5x2 + x+ 9

+x2 − 4x+ 3

∣∣∣∣∣
x near ∞

=
+x3 − 5x2 + x+ 9

∣∣
x near ∞

+x2 − 4x+ 3|x near ∞

= +x3 − 5x2 + x+ 9
+x2 − 4x+ 3

and then we divide (in the latin manner):

+x2 −4x +3
+x −1 −6x−1 +[...])
+x3 −5x2 +x +9
+x3 −4x2 +3x
0x3 −x2 −2x +9

−x2 +4x −3
0x2 −6x +12

Whichever way we write it, Princ. PART BATH(x) |x near ∞ = +x− 1−
6x−1 and its third term, −6x−1, gives

Concavity-sign BATH|x near ∞ = (∩,∪)

5. Local Graph Near ∞ 339

5 Local Graph Near ∞

In order to get the local graph near∞, we need a local input-output rule that
gives us the concavity-signÑand therefore the slope-sign and the height-sign.

So, the route we must take in order to get the local graph near ∞ is the
route that will get us the concavity-sign near ∞.

EXAMPLE 17.6. Given the rational function SOUTH whose global input-
output rule is

x
SOUT H−−−−−−→ SOUTH(x) = −3x2 − 5x+ 6

+12x4 − 6x3 + 8x2 + 6x− 9
find its local graph near ∞.
i. We get the local input-output rule near ∞ as in EXAMPLE 1.
We have:

x|x near ∞
SOUT H−−−−−−→ SOUTH(x)|x near ∞ = −3x2 − 5x+ 6

+12x5 − 6x3 + 8x2 + 6x− 9

∣∣∣∣∣
x near ∞

=
−3x2 − 5x+ 6

∣∣
x near ∞

+12x5 − 6x3 + 8x2 + 6x− 9|x near ∞
We approximate separately the numerator and the denominator :

= −3x2 + [...]
+12x5 + [...]

We divide the approximations:

= −3
+12x

2−5 + [...]

= −1
4x
−3 + [...]

ii. Since the degree of the power function

x
P OW ER−−−−−−−→ POWER(x) = −1

4x
−3

is < 0, the power function POWER is regular and has both concavity and
slope. So, the local graph of the power function POWER near ∞ will be
approximately the graph near ∞ of the rational function SOUTH.
The local graph near ∞ of the rational function SOUTH is therefore:

340 Chapter 17. Rational Functions: Local Analysis Near ∞

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

Screen

0

EXAMPLE 17.7. Given the rational function DOUGH whose global input-
output rule is

x
DOUGH−−−−−−→ DOUGH(x) = +12x4 − 6x3 + 8x2 + 6x− 9

−3x2 − 5x+ 6
find its local graph near ∞.
i. We get the local input-output rule near ∞.
We have:

x|x near ∞
DOUGH−−−−−−→ DOUGH(x)|x near ∞ = +12x5 − 6x3 + 8x2 + 6x− 9

−3x2 − 5x+ 6

∣∣∣∣∣
x near ∞

=
+12x5 − 6x3 + 8x2 + 6x− 9

∣∣
x near ∞

−3x2 − 5x+ 6|x near ∞
We approximate separately the numerator and the denominator :

= +12x5 + [...]
−3x4 + [...]

We divide the approximations:

= −+12
−3 x

5−2 + [...]

= −4x+3 + [...]
ii. Since the degree of the power function

x
P OW ER−−−−−−−→ POWER(x) = −4x+3

is > 1, the power function POWER is regular and has both concavity and
slope. So, the local graph of the power function POWER near ∞ will be
approximately the graph near ∞ of the rational function DOUGH.
The local graph near ∞ of the rational function DOUGH is therefore:

5. Local Graph Near ∞ 341

EXAMPLE 17.8. Given the rational function BATH specified by the global
input-output rule

x
BAT H−−−−−→ BATH(x) = +x3 + x2 − 5x+ 6

+x2 − 4x+ +3
as in EXAMPLE 1, find the local graph near ∞.
i. We get the local input-output rule near ∞ that gives all three features as
we did in EXAMPLE 1:
x|x near ∞

BAT H−−−−−→ BATH(x)|x near ∞ = +x+ 5 + 27x−1 + [...]
ii. So the local graph near ∞ of the function BATH is

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞
Screen

+5

342 Chapter 17. Rational Functions: Local Analysis Near ∞

Chapter 18

Rational Functions: Local
Analysis Near x0

Local I-O Rule Near x0, 344 • Height-sign Near x0, 346 • Slope-sign Near
x0, 349 • Concavity-sign Near x0, 350 • Local Graph Near x0, 351 .

Doing local analysis means working in a neighborhood of some given
input and thus counting inputs from the given input since it is the center
of the neighborhood. When the given input is x0, we localize at x0, that is
we set x = x0 + h where h is small and we compute with powers of h in
descending order of sizes.

EXAMPLE 18.1. Given the input +2, then the location of the number
+2.3 relative to +2 is +0.3:

343

344 Chapter 18. Rational Functions: Local Analysis Near x0

Screen

(

)

Outputs

Inputs
(

Output level band

Offscreen

(

Sided
Graph Place

Input level band

+2

+∞–∞

Neighborhood of +2

Neighborhood of ∞

Recall that the principal part near x0 of a given polynomial function
POLY is the local quadratic part

x|x near x0

P OLY−−−−−−−→ POLY (x)|x near x0
= []+ []h+ []h2 + [...]

However, the complication here is that to get the principal part near x0 of a
rational function we must approximate the two polynomial and divide—or
the other way round—and the result need not be a polynomial but can also
be a negative-exponent power function and the main issue will be whether
to do the approximation before or after the division.

1 Local Input-Output Rule Near x0

Given a rational function RAT , we look for the function whose input-output
rule will be simpler than the input-output rule of RAT but whose local graph
near x0 will be qualitatively the same as the local graph near x0 of RAT .

More precisely, given a rational function RAT specified by the global
input-output rule

x
RAT−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)
what we will want then is an approximation for the output of the local

1. Local I-O Rule Near x0 345

input-output rule near x0

x|x near x0

RAT−−−−−→ RAT (x)|x near x0
= POLYNum(x)

POLYDen(x)

∣∣∣∣
x near x0

from which to extract whatever controls the wanted feature.
1. Since the center of the neighborhood is x0, we localize both
• POLYNum(x)

and
• POLYDen(x)

by letting x← x0 +h and writing the terms in ascending order of exponents.
POLYNum(x)

POLYDen(x)

Localize near x0

Localize near x0

POLYNum(x)

POLYDen(x)
x near x0

x near x0

2. Depending on the circumstances, we will take one of the following
two routes to extract what controls the wanted feature:
� The short route to Princ.TERM RAT (x) |x near x0

, that is:
i. We approximate both POLYNum(x)|x near x0

and POLYDen(x)|x near x0
to their principal term—that is to just their lowest size term—which,
since x is near ∞, is their lowest exponent term:

POLYNum(x)

POLYDen(x)

Localize near ∞

Localize near ∞

POLYNum(x)

POLYDen(x)
x near x0

x near x0

i. Approximate

i. Approximate

x near x0

x near x0

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

ii. In order to divide Princ.TERMNum(x)

∣∣∣
x near x0

, that is the prin-

cipal term near x0 of the numerator ofRAT by Princ.TERMDen(x)

∣∣∣
x near x0

,
that is the principal term near x0 of the denominator of RAT we
use monomial division

ah+m

bh+n
= a

b
h+m	+n where +m	+n can turn out positive, negative or 0

The resulting monomial is Princ.TERMRAT (x)
∣∣∣
x near x0

, that is
the principal term of the rational function RAT near x0.

POLYNum(x)

POLYDen(x)

POLYNum(x)

POLYDen(x)
x near x0

x near x0

i. Approximate

i. Approximate

x near x0

x near x0

x near x0

Localize near ∞

Localize near ∞

ii. D
ivid

e

Princ.TERM RAT(x) + [...]

Princ.TERMNum(x) + [...]

Princ.TERMDen(x) + [...]

346 Chapter 18. Rational Functions: Local Analysis Near x0

However, Princ.TERMRAT (x)
∣∣∣
x near x0

is useful only in four cases:
– When it is a constant term and what we want is the Height-sign,
– When it is a linear term and what we want is the Height-sign

or the Slope-sign,
– When it is a square term,
– When it is a negative-exponent term.

� The long route to Princ.PART RAT (x) |x near x0
:

i. In order to divide POLYNum(x)|x near x0
by POLYDen(x)|x near x0

,
we set up the division as a long division, that is POLYDen(x)|x near x0
dividing into POLYNum(x)|x near x0

and since these are polynomials
in h, in order to be in order of descending sizes, they must be in
order of ascending exponents.
ii. We approximate by stopping the long division as soon as we have
the principal part that has the feature(s) we want:
iii. The difficulty will be that we will have to approximate at two
different stages:
– While we localize both the numerator and the denominator,
– When we divide the approximate localization of the numerator

by the approximate localization of the denominator
So, we will have to make sure that the approximations in the lo-
calizations of the numerator and the denominator do not interfere
with the approximation in the division, that is that, as we divide, we
do not want to bump into a [...] coming from having approximated
the numerator and the denominator too much, that is before we can
extract from the division the term that controls the wanted feature.

3. Which route we will take in each particular case will depend both on
the wanted feature(s) near x0 and so we will now look separately at how we
get Height-sign|x near ∞, Slope-sign|x near x0

and Concavity-sign|x near x0

LOCAL ANALYSIS NEAR x0

When the wanted features are to be found near x0, the rational degree of
the rational function does not tell us which of the short route or the long
route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near x0

If all we want is the Height-sign, then we can always go the short route.

2. Height-sign Near x0 347

EXAMPLE 18.2. Let SOUTH be the function specified by the global
input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15
Find the height-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2

h
SOUT H+2−−−−−−−−→ SOUTH(+2 + h) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15

∣∣∣∣∣
x←+2+h

=
x2 + 5x+ 6

∣∣
x←+2+h

x4 − x3 − 10x2 + x− 15|x←+2+h

= (+2 + h)2 + 5(+2 + h) + 6
(+2 + h)4 − (+2 + h)3 − 10(+2 + h)2 + (+2 + h)− 15

ii. Since we want the local input-output rule that will give us the height-sign,
we try to approximate before we divide:

=
[(+2)2 + 5 · (+2) + 6]+ [...]

[(+2)4 − (+2)3 − 10(+2)2 + 2− 15]+ [...]

=
[+ 4 + 10 + 6]+ [...]

[+ 16− 8− 40 + 2− 15]+ [...]

= +20 + [...]
−45 + [...]

= −20
45 + [...]

and since the approximate local input-output rule near +2 is

h
SOUT H+2−−−−−−−−→ SOUTH(+2 + h) = −20

45 + [...]
and the local input-output rule includes the term that gives the Height-sign
near +2

−20
45

we have:
Height-sign SOUTH near + 2 = (−.−)

348 Chapter 18. Rational Functions: Local Analysis Near x0

EXAMPLE 18.3. Let SOUTH be the function specified by the global
input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15
Find the height-sign of SOUTH near −3
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near −3

h
SOUT H−3−−−−−−−−→ SOUTH(−3 + h) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15

∣∣∣∣∣
x←−3+h

=
x2 + 5x+ 6

∣∣
x←−3+h

x4 − x3 − 10x2 + x− 15|x←−3+h

= (−3 + h)2 + 5(−3 + h) + 6
(−3 + h)4 − (−3 + h)3 − 10(−3 + h)2 + (−3 + h)− 15

ii. Since we want the local input-output rule that will give us the height-sign,
we try to approximate to the constant terms:

=
[(−3)2 + 5 · (−3) + 6]+ [...]

[(−3)4 − (−3)3 − 10(−3)2 − 3− 15]+ [...]

=
[+ 9− 15 + 6]+ [...]

[+ 81 + 27− 90− 3− 15]+ [...]

=
[0]+ [...]

[0]+ [...]
We cannot divide as we could get

= any size

iii. We therefore must approximate the localizations at least to h

=
[0]+ [2 · (−3) + 5]h+ [...]

[0]+ [+ 4(−3)3 − 3(−3)2 − 10 · 2(−3) + 1]h+ [...]

=
[− 6 + 5]h+ [...]

[− 108− 27 + 60 + 1]h+ [...]

=
[− 1]h+ [...]

[− 74]h+ [...]

3. Slope-sign Near x0 349

= −h+ [...]
−74h+ [...]

We divide

= + 1
74 + [...]

and since the approximate local input-output rule near −3 is

h
SOUT H−3−−−−−−−−→ SOUTH(−3 + h) = + 1

74 + [...]
and the local input-output rule includes the term that gives the Height-sign
near −3

+ 1
74

we have:
Height-sign SOUTH near − 3 = (+, +)

3 Slope-sign Near x0

EXAMPLE 18.4. Let SOUTH be the function specified by the global
input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15
find the slope-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2 and since we want the approximate local input-output rule
for the slope-sign, we will approximate to h:

+2 + h
SOUT H−−−−−−→ SOUTH(+2 + h) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15

∣∣∣∣∣
x←+2+h

=
x2 + 5x+ 6

∣∣
x←+2+h

x4 − x3 − 10x2 + x− 15|x←+2+h

= (+2 + h)2 + 5(+2 + h) + 6
(+2 + h)4 − (+2 + h)3 − 10(+2 + h)2 + (+2 + h)− 15

=
[(+2)2 + 5 · (+2) + 6]+ [2(+2) + 5]h+ [...]

[(+2)4 − (+2)3 − 10 · (+2)2 + (+2)− 15]+ [4(+2)3 − 3(+2)2 − 10 · 2(+2) + 1]h+ [...]

350 Chapter 18. Rational Functions: Local Analysis Near x0

=
[+ 20]+ [+ 9]h+ [...]

[− 45]+ [− 19]h+ [...]
ii. We set up the division with

[−45] + [−19]h+ [...] dividing into [+20] + [+9]h+ [...]
that is:

−45 −19h +[...]
−20

45 − [9·45]−[19·20]
452 h +[...])

+20 +9h +[...]
+20 +19·20

45 h +[...]
0 + [9·45]−[19·20]

45 h +[...]
And since [9 · 45]− [19 · 20] = 405− 380 = +25, the approximate local input-
output rule near +2 is:

h
SOUT H+2−−−−−−−−→ SOUTH(+2 + h) = −20

45 −
25
452h+ [...]

and the term that gives the slope-sign near +2 is

− 25
452h

so that
Slope-sign SOUTH near + 2 = (�.�)

4 Concavity-sign Near x0

EXAMPLE 18.5. Let SOUTH be the function specified by the global
input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15
find the concavity-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2 and since we want the approximate local input-output rule
for the slope-sign, we will approximate to h2:

+2 + h
SOUT H−−−−−−→ SOUTH(+2 + h) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15

∣∣∣∣∣
x←+2+h

=
x2 + 5x+ 6

∣∣
x←+2+h

x4 − x3 − 10x2 + x− 15|x←+2+h

5. Local Graph Near x0 351

= (+2 + h)2 + 5(+2 + h) + 6
(+2 + h)4 − (+2 + h)3 − 10(+2 + h)2 + (+2 + h)− 15

=
[(+2)2 + 5 · (+2) + 6]+ [2(+2) + 5]h+ [1]h2

[(+2)4 − (+2)3 − 10 · (+2)2 + (+2)− 15]+ [4(+2)3 − 3(+2)2 − 10 · 2(+2) + 1]h+ [6(+2)2 − 3(+2)− 10]h2 + [...]

=
[+ 20]+ [+ 9]h+ [1]h2

[− 45]+ [− 19]h+ [8]h2 + [...]
ii. We set up the division with

−45 +−19h+ 8h2 + [...] dividing into +20 + 9h+ h2

but carry it out latin style (that is, we write the result of the multiplication as
it comes out instead of the opposite of the result.)

−45−19h+8h2 +[...]

−20
45 − [9·45]−[19·20]

452 h −
[

+45[45−8·20]−19[[9·45]−[19·20]]
453

]
h2 +[...])

+20 +9h +h2

+20 +19·20
45 h −8·20

45 h
2 +[...]

0 + [9·45]−[19·20]
45 h +45−8·20

45 h2 +[...]
+ [9·45]−[19·20]

452 h +19 [9·45]−[19·20]
452 h2 +[...]

+0h +
[

+45[45−8·20]−19[[9·45]−[19·20]]
452

]
h2 +[...]

And since +45[45−8·20]−19[[9·45]−[19·20]]
452 = −2401

452 , the local input-output rule
near +2 is:
h

SOUT H+2−−−−−−−−→ SOUTH(+2 + h) = −20
45 −

25
452h−

2401
452 h

2 + [...]
and the term that gives the concavity-sign near +2 is

−2401
452 h

2

so that
Concavity-sign SOUTH near + 2 = (∩,∩)

5 Local Graph Near x0

EXAMPLE 18.6. Let SOUTH be the function specified by the global
input-output rule

x
SOUT H−−−−−−→ SOUTH(x) = x2 + 5x+ 6

x4 − x3 − 10x2 + x− 15

352 Chapter 18. Rational Functions: Local Analysis Near x0

find the local graph of SOUTH near +2
Since, in order to get the local graph near +2 we need all three features near
+2, height-sign, slope-sign and concavity-sign, we need to get the approximate
local input-output rule as we did in the previous example:

h
SOUT H+2−−−−−−−−→ SOUTH(+2 + h) = −20

45 −
25
452h−

2401
452 h

2 + [...]
from which we get:

+2

–

)(

Output
Ruler

Input
Ruler

Screen

20
45

Chapter 19

Rational Functions: Global
Analysis

The Essential Question, 353 • Locating ∞-Height Inputs, 354 • Offscreen
Graph, 359 • Feature-sign Change Inputs, 361 • Global Graph,
362 • Locating 0-Height Inputs, 363 .

Contrary to what we were able to do with polynomial functions, with ra-
tional functions we will not be able to establish global theorems. Of course,
we did not really establish global theorems for all polynomial functions ei-
ther but only for polynomial functions of a given degree, 0, 1, 2 and 3. But,
in the case of rational functions, even the rational degree will not separate
rational functions into kinds that we can establish global theorems for inas-
much as even rational functions with a given rational degree can be very
diverse.

So, what we will do here is to focus on how to get global information
about any given rational function.

1 The Essential Question

Given a rational function, as with any function, the offscreen graph will
consist:
• certainly of the local graph near∞. This is because, as soon as the input
is large, the graph point is going to be left or right of the screen and
therefore offscreen regardless of the size of the output,

353

354 Chapter 19. Rational Functions: Global Analysis

• possibly of the local graph(s) near certain bounded input(s). This is be-
cause, in case the outputs for inputs near certain bounded inputs are
large, the graph points will then be above or below the screen and there-
fore offscreen even though the inputs are bounded.

So, as always, we will need to ascertain whether
• There might be bounded inputs for which nearby inputs will have a large
output ,

or, as was the case with all polynomial functions,
• The outputs for any bounded input are themselves necessarily bounded
In other words, in order to get the offscreen graph, we must begin by asking
the Essential Question:

• Do all bounded inputs have bounded outputs
or
• Is there one (or more) bounded input which is an ∞-
height input, that is, a bounded input whose nearby
inputs have unbounded outputs?

And, indeed, we will find that there are two kinds of rational functions:
• rational functions that do have ∞-height input(s)
• rational function that do not have any ∞-height input as was the case
with power functions and polynomial functions.

2 Locating ∞-Height Inputs

However, given a rational function, not only will we need to know whether
or not there exists ∞-height input(s), if there are any, we will also have
to locate the ∞-height inputs, if any, because we will need to get the local
graph near these ∞-height input(s). More precisely:

1. Given a rational function RAT specified by a global input-output rule

x
RAT−−−−−−−−→ RAT (x) = NUMERATORRAT (x)

DENOMINATORRAT (x)
we want to find whether or not there can be a bounded input x0 such that
the outputs for nearby inputs, x0 + h, are large. In other words, we want to
know if there can be x0 such that

h
RAT−−−−−−−−→ RAT (x)|x←x0+h = large

2. Locating ∞-Height Inputs 355

But we have

RAT (x)|x←x0+h = NUMERATORRAT (x)
DENOMINATORRAT (x)

∣∣∣∣
x←x0+h

=
NUMERATORRAT (x)|x←x0+h

DENOMINATORRAT (x)|x←x0+h

= NUMERATORRAT (x0 + h)
DENOMINATORRAT (x0 + h)

So, what we want to know is if there can be an x0 for which
NUMERATORRAT (x0 + h)

DENOMINATORRAT (x0 + h) = large

2. Since it is a fraction that we want to be large, we will use the Divi-
sion Size Theorem from Chapter 2:

THEOREM 2 (Division Size)
large

large
= any size

large

medium
= large large

small
= large

medium

large
= small

medium

medium
= medium

medium

small
= large

small

large
= small

small

medium
= small

small

small
= any size

There are thus two ways that a fraction can be large:
• When the numerator is large
• When the denominator is small

In each case, though, we need to make sure of the other side of the fraction.
So, rather than look at the size of both the numerator and the denominator
at the same time, we will look separately at:
• The first row, that is when the numerator of the fraction is large

large
large

= any size
large

medium
=large

large
small

=large

medium

large
= small

medium

medium
= medium

medium

small
=large

small

large
= small

small

medium
= small

small

small
= any size

because in that case all we will then have to do is to make sure that the
denominator is not large too.

• The last column, that is when the denominator of the fraction is small.

356 Chapter 19. Rational Functions: Global Analysis

possible ∞-height input large

large
= any size

large

medium
=large large

small
=large

medium

large
= small

medium

medium
= medium

medium

small
=large

small

large
= small

small

medium
= small

small

small
= any size

because in that case all we will then have to do is to make sure that the
numerator is not small too.
3. We now deal with NUMERAT ORRAT (x0+h)

DENOMINAT ORRAT (x0+h) , looking separately at
the numerator and the denominator:
• Since the numerator , NUMERATORRAT (x0 + h), is the output of a
polynomial function, namely

x
NUMERAT ORRAT−−−−−−−−−−−−−−−−−→ NUMERATORRAT (x)

and since we have seen that the only way the outputs of a polynomial
function can be large is when the inputs are themselves large, there is
no way that NUMERATORRAT (x0 +h)) could be large for inputs that
are bounded. So there is no way that the output of RAT could be large
for bounded inputs that make the numerator large and we need not look
any further.
• Since the denominator , DENOMINATORRAT (x0 + h), is the output

of the polynomial function

x
DENOMINAT ORRAT−−−−−−−−−−−−−−−−−−−−→ DENOMINATORRAT (x)

and since we have seen that polynomial functions can have small outputs
if they have 0-height inputs and the inputs are near the 0-height inputs,
DENOMINATORRAT (x0+h) can be small for certain bounded inputs
and thus so can NUMERAT ORRAT (x0+h)

DENOMINAT ORRAT (x0+h) . However, we will then have
to make sure that NUMERATORRAT (x0 + h), is not small too near
these bounded inputs, that is we will have to make sure that x0 does not
turn out to be a 0-height input for NUMERATORRAT as well as for
DENOMINATORRAT so as not to be in the case:

small

small
= any size

We will thus refer to a 0-height input for DENOMINATORRAT as
only a possible∞-height input for RAT

Altogether, then, we have:

2. Locating ∞-Height Inputs 357

THEOREM 19.1 Possible ∞-height Input The 0-height inputs of
the denominator of a rational function, if any, are the only possible
∞-height inputs for the rational function.

4. However, this happens to be one of these very rare situations in
which there is “an easier way”: After we have located the 0-height in-
puts for DENOMINATORRAT , instead of first making sure that they
are not also 0-height inputs for NUMERATORRAT , we will gamble and
just get the local input-output rule near each one of the 0-height inputs for
DENOMINATORRAT . Then,
• If the local input-ouput rule turns out to start with a negative-exponent
power function, then we will have determined that x0 is an ∞-height
input for RAT and the payoff will be that we will now get the local
graph near x0 for free.
• If the local input-ouput rule turns out not to start with a negative-
exponent power function, then we will have determined that x0 is not
a ∞-height input for RAT after all and our loss will be that we will
probably have no further use for the local input-output rule.

Overall, then, we will use the following two steps:

Step i. Locate the 0-height inputs for the denominator ,
DENOMINATORRAT (x), by solving the equation

DENOMINATORRAT (x) = 0
Step ii. Compute the local input-output rule near each one
of the 0-height inputs for the denominator , if any.

The advantage is that we need not even refer to the Division Size Theo-
rem: once we have a possible ∞-height input, we just get the local input-
output rule near that possible ∞-height input, “for the better or for the
worse”.

EXAMPLE 19.1. Let COUGH be the function specified by the global
input-output rule

x
COUGH−−−−−−→ COUGH(x) = x4 − x3 − 10x2 + x− 15

x2 + 5x+ 6
locate the ∞-height input(s) of COUGH, if any.
Step i. The possible ∞-height input(s) of COUGH are the 0-height input(s)
of DENOMINATORCOUGH(x), that is the solution(s), if any, of the equa-

358 Chapter 19. Rational Functions: Global Analysis

tion
x2 + 5x+ 6 = 0

In general, solving an equation may or may not possible but in this case, the
equation is a quadratic one and we have learned how to do this in Chapter
12. One way or the other, we find that there are two solutions:

−3,−2
which are the possible ∞-height inputs of the rational function COUGH.
Step ii. We compute the local input-output rules near −3 and near −2:
• Near −3:

h
COUGH near −3−−−−−−−−−−→ COUGH(−3 + h) = x4 − x3 − 10x2 + x− 15

x2 + 5x+ 6

∣∣∣∣∣
x←−3+h

=
x4 − x3 − 10x2 + x− 15

∣∣
x←−3+h

x2 + 5x+ 6|x←−3+h

= (−3 + h)4 − (−3 + h)3 − 10(−3 + h)2 + (−3 + h)− 15
(−3 + h)2 + 5(−3 + h) + 6

We try to approximate to the constant terms:

= (−3)4 + [...]− (−3)3 + [...]− 10(−3)2 + [...]− 3 + [...]− 15
(−3)2 + [...] + 5(−3) + [...] + 6

= +81 + 27− 90− 3− 15 + [...]
+9− 15 + 6 + [...]

= 0 + [...]
0 + [...]

= [...]
[...]

= any size

So we must go back and try to approximate to the linear terms, ignoring
the constant terms since we just saw that they add up to 0 both in the
numerator and the denominator:

= 4(−3)3h+ [...]− 3(−3)2h+ [...]− 10 · 2(−3)h+ [...] + h

2 · (−3)h+ [...] + 5h

= −108h+ [...]− 27h+ [...] + 60h+ [...] + h

−6h+ [...] + 5h

= −74h+ [...]
−h+ [...]

= +74 + [...]

3. Offscreen Graph 359

so that −3 is not an ∞-heigth input
• Near −2:

h
COUGH near −2−−−−−−−−−−→ COUGH(−2 + h) = x4 − x3 − 10x2 + x− 15

x2 + 5x+ 6

∣∣∣∣∣
x←−2+h

=
x4 − x3 − 10x2 + x− 15

∣∣
x←−2+h

x2 + 5x+ 6|x←−2+h

= (−2 + h)4 − (−2 + h)3 − 10(−2 + h)2 + (−2 + h)− 15
(−2 + h)2 + 5(−2 + h) + 6

We try to approximate to the constant terms:

= (−2)4 + [...]− (−2)3 + [...]− 10(−2)2 + [...]− 2 + [...]− 15
(−2)2 + [...] + 5(−2) + [...] + 6

= +16 + 8− 40− 2− 15 + [...]
+4− 10 + 6 + [...]

= −33 + [...]
0 + [...]

= −33
[...]

= large

So −2 is an ∞-height input for COUGH and we need only find exactly
how small [...] is to get the local input-output rule near −2

= −33 + [...]
2 · (−2)h+ [...] + 5h

= −33 + [...]
h+ [...]

= −33h−1 + [...]

3 Offscreen Graph

Once the Essential Question has been answered, and if we do not already
have the local input-output rule near each one of the ∞-height inputs, we
need to get them and the corresponding local graphs so that we can then
join them smoothly to get the offscreen graph.

Altogether, given a rational function RAT the procedure to obtain the
offscreen graph is therefore:

360 Chapter 19. Rational Functions: Global Analysis

i. Get the approximate input-output rule near ∞ and the local graph
near ∞

ii. Answer the Essential Question and locate the ∞ input(s), if any,

iii. Find the local input-output rule and then the local graphs near each
∞-height inputs

EXAMPLE 19.2. Let MARA be the function specified by the global
input-output rule

x
MARA−−−−−→MARA(x) = x− 15

x2 + 5x+ 7
Find the offscreen graph.
i. We get the local approximation near ∞:

Near ∞, x MARA−−−−−→MARA(x) = x+ [...]
x2 + [...]

= +x−1 + [...]
and the local graph near ∞ of MARA is

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

ii. We locate the ∞-height inputs, if any. The possible ∞-height input(s) of
MARA are the 0-height input(s) of DENOMINATORMARA(x), that is the
solution(s), if any, of the equation

x2 + 5x+ 7 = 0
In general, solving an equation may or may not possible but in this case, the
equation is a quadratic one and we have learned how to do this in Chapter
12. One way or the other, we find that there are no solution. So, the function
MARA has no ∞-height input.
iii. The offscreen graph therefore consists of only the local graph near ∞.

4. Feature-sign Change Inputs 361

4 Feature-sign Change Inputs

Given a rational function, in order to get the feature-sign change input(s), if
any, we need only get the outlying graph and then we proceed as in Chapter
3 so we need only give an example.

EXAMPLE 19.3. Let MARA be the function specified by the global
input-output rule

x
MARA−−−−−→MARA(x) = x− 15

x2 + 5x+ 7
Find the feature-sign change inputs of MARA, if any.
i. We find the offscreen graph of MARA as in the preceding example:

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

ii. We mark the features of the offscreen graph:

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

iii. Therefore:
• there must be at least one height-sign change input,
• there does not have to be a slope-sign change input
• there must be at least one concavity-sign change input,

362 Chapter 19. Rational Functions: Global Analysis

5 Global Graph

Given a rational function, in order to get the essential global graph, we need
only get the outlying graph and then we join smoothly so we need only give
an example.

EXAMPLE 19.4. Let MARA be the function specified by the global
input-output rule

x
MARA−−−−−→MARA(x) = x− 15

x2 + 5x+ 7
Find the feature-sign change inputs of MARA, if any.
i. We find the offscreen graph of MARA as in the preceding example:

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

ii. We join smoothly the offscreen graph:

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

iii. Observe that, in fact,
• there must be at least one height-sign change input,
• there must be at least two slope-sign change inputs
• there must be at least three concavity-sign change input,

6. Locating 0-Height Inputs 363

Input
Ruler

Screen

Output
Ruler

Offscreen Space

0

6 Locating 0-Height Inputs

Locating the 0-height inputs of a given rational function is pretty much the
mirror image of what we did to locate its ∞-height inputs. More precisely:

1. Given a rational function RAT specified by a global input-output rule

x
RAT−−−−−−−−→ RAT (x) = NUMERATORRAT (x)

DENOMINATORRAT (x)
we want to find whether or not there can be a bounded input x0 such that
the outputs for nearby inputs, x0 + h, are small. In other words, we want
to know if there can be x0 such that

h
RAT−−−−−−−−→ RAT (x)|x←x0+h = small

But we have

RAT (x)|x←x0+h = NUMERATORRAT (x)
DENOMINATORRAT (x)

∣∣∣∣
x←x0+h

=
NUMERATORRAT (x)|x←x0+h

DENOMINATORRAT (x)|x←x0+h

= NUMERATORRAT (x0 + h)
DENOMINATORRAT (x0 + h)

So, what we want to know is if there can be an x0 for which
NUMERATORRAT (x0 + h)

DENOMINATORRAT (x0 + h) = small

2. Since it is a fraction that we want to be small, we will use the Divi-
sion Size Theorem from Chapter 2:

THEOREM 2 (Division Size)

364 Chapter 19. Rational Functions: Global Analysis

large

large
= any size

large

medium
= large large

small
= large

medium

large
= small medium

medium
= medium

medium

small
= large

small

large
= small small

medium
= small small

small
= any size

There are thus two ways that a fraction can be small:

• When the numerator is small
• When the denominator is large

In each case, though, we need to make sure of the other side of the fraction.
So, rather than look at the size of both the numerator and the denominator
at the same time, we will look separately at:
• The third row, that is when the numerator of the fraction is small

large

large
= any size

large

medium
= large large

small
= large

medium

large
= small

medium

medium
= medium

medium

small
= large

small
large

= small small
medium

= small small
small

= any size

because in that case all we will then have to do is to make sure that the
denominator is not small too.
• The first column, that is when the denominator of the fraction is large.

large

large
= any size

large

medium
= large large

small
= large

medium

large
= small medium

medium
= medium

medium

small
= large

small

large
= small small

medium
= small small

small
= any size

because in that case all we will then have to do is to make sure that the
numerator is not large too.
3. We now deal with NUMERAT ORRAT (x0+h)

DENOMINAT ORRAT (x0+h) , looking separately at
the numerator and the denominator:
• Since the numerator , NUMERATORRAT (x0 + h), is the output of a
polynomial function, namely

x
NUMERAT ORRAT−−−−−−−−−−−−−−−−−→ NUMERATORRAT (x)

6. Locating 0-Height Inputs 365

0-height inputand since we have seen that polynomial functions can have small outputs
if they have 0-height inputs and the inputs are near the 0-height inputs,
NUMERATORRAT (x0 + h) can be small for certain bounded inputs
and thus so can NUMERAT ORRAT (x0+h)

DENOMINAT ORRAT (x0+h) . However, we will then have
to make sure that DENOMINATORRAT (x0+h), is not small too near
these bounded inputs, that is we will have to make sure that x0 does not
turn out to be a 0-height input for DENOMINATORRAT as well as
for NUMERATORRAT so as not to be in the case:

small

small
= any size

We will thus refer to a 0-height input for NUMERATORRAT as only a
possible 0-height input for RAT .

• Since the denominator , DENOMINATORRAT (x0 + h), is the output
of a polynomial function, namely

x
DENOMINAT ORRAT−−−−−−−−−−−−−−−−−−−−→ DENOMINATORRAT (x)

and since we have seen that the only way the outputs of a polynomial
function can be large is when the inputs are themselves large, there is
no way that DENOMINATORRAT (x0 + h)) could be large for inputs
that are bounded. So there is no way that the output of RAT could be
small for bounded inputs that make the denominator large and we need
not look any further.

Altogether, then, we have:

THEOREM 19.2 Possible 0-height Input The 0-height inputs of
the numerator of a rational function, if any, are the only possible
0-height inputs for the rational function.

4. However, this happens to be one of these very rare situations in
which there is “an easier way”: After we have located the 0-height in-
puts for NUMERATORRAT , instead of first making sure that they are
not also 0-height inputs for DENOMINATORRAT , we will gamble and
just get the local input-output rule near each one of the 0-height inputs for
NUMERATORRAT . Then,
• If the local input-ouput rule turns out to start with a positive-exponent
power function, then we will have determined that x0 is a 0-height input
for RAT and the payoff will be that we will now get the local graph near
x0 for free.

• If the local input-ouput rule turns out to start with a 0-exponent power

366 Chapter 19. Rational Functions: Global Analysis

function or a negative-exponent power function, then we will have deter-
mined that x0 is not a 0-height input for RAT after all and our loss will
be that we will probably have no further use for the local input-output
rule.

Overall, then, we will use the following two steps:
Step i. Locate the 0-height inputs for the numerator ,
NUMERATORRAT (x), by solving the equation

NUMERATORRAT (x) = 0
Step ii. Compute the local input-output rule near each one
of the 0-height inputs for the numerator , if any.

The advantage is that we need not even refer to the Division Size The-
orem: once we have a possible 0-height input, we just get the local input-
output rule near that possible 0-height input, “for the better or for the
worse”.

EXAMPLE 19.5. Let TARA be the function specified by the global input-
output rule

x
T ARA−−−−−→ TARA(x) = x3 − 8

x2 + 3x− 10
locate the 0-height input(s) if any.
Step i. The possible 0-height input(s) of TARA are the 0-height input(s) of
NUMERATORT ARA(x), that is the solution(s), if any, of the equation

x3 − 8 = 0
In general, solving an equation may or may not possible and in this case, the
equation is a cubic one. Still, here it is a very incomplete one and we can
see that the solution is +2 which is the possible 0-height input of the rational
function TARA.
Step ii. We compute the local input-output rule near +2.

h
T ARA near −3−−−−−−−−−→ TARA(+2 + h) = x3 − 8

x2 + 3x− 10

∣∣∣∣∣
x←+2+h

=
x3 − 8

∣∣
x←+2+h

x2 + 3x− 10|x←+2+h

= (+2 + h)3 − 8
(+2 + h)2 + 3(+2 + h)− 10

We try to approximate to the constant terms:

= (+2)3 + [...]− 8
(+2)2 + [...] + 3(+2) + [...]− 10

6. Locating 0-Height Inputs 367

= +8− 8 + [...]
+4 + 6− 10 + [...]

= 0 + [...]
0 + [...] = [...]

[...] = any size

So we must go back and approximate to the linear terms, ignoring the constant
terms since we just saw that they add up to 0 both in the numerator and the
denominator:

= 3(+2)2h+ [...]
2(+2)h+ [...] + 3h

= +12h+ [...]
+4h+ [...] + 3h = +12h+ [...]

+7h+ [...]

= +12
7 + [...]

and, since +12
7 6= 0, +2 is not an 0-heigth input for TARA.

368 Chapter 19. Rational Functions: Global Analysis

Epilogue

Looking Back, 369 • Looking Ahead, 371 • Reciprocity Between 0 and ∞,
372 • The Family of Power Functions, 385 • The bigger the size of the
exponent the boxier the graph, 387 • Local Quantitative Comparisons,
389 • Global Quantitative Comparisons, 392 • Dimension n = 2:
(x0 + h)2 (Squares), 403.

Where to from here on?
• Derived functions
• Functions defined equationally
• Matters of size e.g. the bigger the size of the exponent, the boxier the

graph
Check that reciprocity has been moved correctly to Chapter 7

1 Looking Back

Until now, the global graph of each new kind of function was qualitatively
very different as we moved from one kind of functions to the next.

1. In the case of the power functions, we found that the qualitative
features of the global graphs of
i. regular positive-exponent power functions,
ii. negative-exponent power functions,
iii. exceptional power functions, that is

- 0-exponent power functions
- 1-exponent power functions

were very different but the differences among power functions of any partic-
ular type were not really that great in that, from the point of view of the
shape of the global graph, there were really only four types of regular power
functions (depending on the sign and the parity of the exponent) and only

369

370 Chapter 19. Rational Functions: Global Analysis

two types of exceptional power functions (depending on the parity of the
exponent).

2. In the case of the polynomial functions, we found that the qualitative
features of the global graphs changed a lot when we moved from one degree
to the next:
i. The global graph of a constant function (Degree 0)

- has no height-sign change input, (same height everywhere)
- has no slope,
- has no concavity,

ii. The global graph of an affine function (Degree 1)
- always has exactly one height-sign change input,
- has no slope-sign change input, (same slope everywhere)
- has no concavity,

iii. The global graph of a quadratic function (Degree 2)
- may or may not have height-sign change input(s),
- always has exactly one slope-change input,
- has no concavity-sign change input, (same concavity everywhere)

iv. The global graph of a cubic function (Degree 3)
- has at least one height-sign change inputs,
- may or may not have slope-change input(s),
- has exactly one concavity-sign change input,

As for the qualitative differences among the global graphs of polynomial
functions of a same degree, they are not great—but growing along with the
degree.
i. The difference among constant functions is the height of the global graph.
ii. The differences among affine functions are the height and the slope of

the global graph.
iii. The differences among quadratic functions are the height, the slope and

the concavity of the global graph.
iv. The differences among cubic functions are not only the height, the slope

and the concavity of the global graph but also whether or not there is a
bounded fluctuation.

Thus, in terms of content organization, the degree of polynomial functions
was a very powerful organizer if only because this allowed us introduce the
features, height, slope, concavity, one at a time.

The emphasis throughout will be to convince ourselves of the need to
proceed very systematically while keeping our eyes open so as to take ad-
vantage of whatever might make our life easier and not to do anything that
we do not absolutely have to do.

2. Looking Ahead 371

2 Looking Ahead

We will now say a few words about the way rational functions will be dealt
with in the rest of this text.

1. While, so far, we have had a very transparent content organization,
in contrast, in the case of rational functions, the rational degree will not
be such a powerful organizer because the four different types of rational
functions will not be markedly different.
Still, in each one of the next four chapters, we will investigate a given type
of rational function but this will be mostly in order not to upset the reader
with too much variety from the get go. However, we will not be able to
develop much of a theory for each type and we will mostly go about gath-
ering experience investigating rational functions without paying too much
attention to the type of rational function being dealt with, taking things as
they come.
On the other hand, the differences among rational functions of any given
type of rational degree, will be quite significant because of the possible ∞-
height inputs.
Thus, the other side of the coin will be that, while, until now, once we had
a theory of a kind of function, the investigation of this kind of functions
quickly became a bit boring in that we knew what the overall global graph
was going to look like, in the case of rational functions, there will be a much
more interesting diversity.

2. Before anything else, it should be stressed that in the investigations
of any given rational function we will follow essentially the exact same ap-
proaches that we used in the investigation of any given power function and
of any given polynomial function: We will thus

i. get its local graph near ∞,
ii. get the answer to the ESSENTIAL QUESTION and find the ∞-height in-

put(s), if any. (This will involve solving an equation.)
iii. get the local graph near the ∞-height inputs, if any.
iv. get the global graph by interpolating the local graph near ∞ and

the local graphs near the ∞-height inputs, if any.

3. As happened each time we investigated a new kind of function, finding
the local rule near bounded inputs—and therefore near∞-height input(s)—
will require a new algebra tool.

4. As with any function, rational or otherwise, what we will actually do
will depend of course on what information we need to find and there are

372 Chapter 19. Rational Functions: Global Analysis

reciprocal function going to be two main kinds of questions:
a. Local questions, that is, for instance:
• Find the local concavity-sign near a given input,
• Find the local slope-sign near a given input,
• Find the local height-sign near a given input,
• Find the local graph near a given input,

The given input can of course be any input, that is ∞ or any given bounded
input, for instance an ∞-height input, a concavity-sign change input, a
slope-sign change input, a height-sign change input or any ordinary input
whatsoever.
b. Global questions, that is, for instance
• Find the concavity-sign change input(s), if any
• Find the slope-sign change input(s), if any
• Find the height-sign change input(s), if any
• Find where the output has a given concavity-sign
• Find where the output has a given slope-sign
• Find where the output has a given height-sign
• Find the global graph

In the case of global questions, it will usually be better to start by get-
ting the bounded graph and then to get the required information from the
bounded graph. But then of course, since the bounded graph is really only
the essential bounded graph, that is the graph that is interpolated from the
outlying graph, the global information that we will get will only be about
the essential features that is the features forced onto the bounded graph by
the outlying graph.

The curious reader will obviously have at least three questions:
i. How do the various power functions compare among each other?
ii. What of polynomial functions of degree higher than 3?
iii. What of Laurent polynomial functions?
In the “overview”, we will discuss the several manners in which regu-

lar positive-power functions, negative-power functions and exceptional-power
functions all fit together. This will require discussing the size of slope.

3 Reciprocity Between 0 and ∞

We will now investigate the relationship between 0 and ∞

1. Reciprocal Function The reciprocal function is the power
function with exponent −1 and coefficient +1, that is the function whose

3. Reciprocity Between 0 and ∞ 373

reciprocalglobal input-output rule is

x
RECIP ROCAL−−−−−−−−−−−−−−−→ RECIPROCAL(x) = (+1)x−1

= + 1
x

so that the output is the reciprocal of the input (hence the name).
1. The first thing about the reciprocal function is that it is typical of

negative-exponent power functions in terms of what it does to the size of
the output:

+large RECIP ROCAL−−−−−−−−−−−−−−−→ RECIPROCAL(large) = +small

−large RECIP ROCAL−−−−−−−−−−−−−−−→ RECIPROCAL(large) = −small

and

+small RECIP ROCAL−−−−−−−−−−−−−−−→ RECIPROCAL(small) = +large

−small RECIP ROCAL−−−−−−−−−−−−−−−→ RECIPROCAL(small) = −large

2. More generally, the global graph of the reciprocal function is:
• Mercator picture:

Output
Ruler

Input Ruler

Screen

• Magellan picture:

374 Chapter 19. Rational Functions: Global Analysis

family
prototypical

0-
in

pu
t l

ev
el

0-output level
0+0–

+∞–∞

3. Although quite different from the identity function, the reciprocal
functions does play a role in the family of all power functions that is quite
similar in some respects to the role played by the identity function

For instance, because the size of the exponent in both cases is 1, they are
both the “first” of their kind.

However, that is not very important because:

• The identity function is not prototypical of the other power functions
because the identity function is a linear function and has no concavity.

EXAMPLE 19.6. The identity function lack concavity while all regular
power function have concavity.

• The reciprocal function is prototypical of the other negative power func-
tions in many ways.

EXAMPLE 19.7. The shape of the reciprocal function is essentially the
same as the shape of all (negative-exponent) power functions of type NOP

One thing the identity function and the reciprocal function have in common,
though and for what it’s worth at this time, is that the reciprocal function
is the mirror image of itself when the mirror is the identity function.

3. Reciprocity Between 0 and ∞ 375

Output
Ruler

Input Ruler

Screen
Id

en
tit

y F
un

cti
on

Reciprocal Function

In particular, they intersect at a 90 degree angle.

Output
Ruler

Input Ruler

Screen
Id

en
tit

y F
un

cti
on

Reciprocal Function

90 degrees

90 degrees

Another way way to look at it is that the local graphs near +1 are locally
mirror images of each other when the mirror is the input level line for +1:

376 Chapter 19. Rational Functions: Global Analysis

far
reciprocal of each other

Output
Ruler

Input Ruler

Screen

Id
en

tit
y F

un
cti

on Reciprocal Function

45 degrees45 degrees

+1

+1

0

0

2. Reciprocity
1. It will be convenient to introduce two new terms:
• We introduced the word “near” almost from the begining and, with
Magellan graphs in mind, we will now introduce the word “far”. Thus,
– When an input is large, it is near ∞ and therefore far from 0,
– When an input is small, it is near 0 and therefore far from ∞.

• More generally, we will say that two power functions are reciprocal of
each other when:
– their coefficient are the same,
– the size of their exponents are the same,
– the sign of their exponents are the opposite.

In other words, two power functions are reciprocal of each other whenever
they differ only by the sign of their exponents.

EXAMPLE 19.8. The identity function and the reciprocal function are
reciprocal.

We will see that, when the mirror is the input level line for +1, the local
graphs near +1 of two power functions that are reciprocal of each other
are approximately mirror images of each other. But the angles will not
be 45 degrees anymore.

3. Reciprocity Between 0 and ∞ 377

2. The point of all this is that the local graph near∞ of a regular power
function is the same as the local graph near 0 of the power function that
it is reciprocal of and, vice versa, the local graph near 0 of a regular power
function is the same as the local graph near ∞ of the power function that
it is reciprocal of.

EXAMPLE 19.9. Given the local graph near 0 of JACK, an odd positive
power function with positive coefficient :

0

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more closing down the gap until the edges touch.

–∞ +∞
–∞ +∞

–∞ +∞ 0+0–0+0–
0+0– 0+0–

touchingbending
closing

–∞ +∞ –∞ +∞ ∞

enlarging
–∞ +∞

We then glue shut the edges of the screen at ∞ to get a cylinder.

378 Chapter 19. Rational Functions: Global Analysis

0+0–

–∞ +∞

glue

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

–∞ +∞

0+0– –∞+∞

0+ 0–

rotating

Now we cut open the cylinder along the input level line for 0

cut

0+ 0
–

+∞ –∞

We widen out and unbend the screen forward more and more until it becomes
flat.

3. Reciprocity Between 0 and ∞ 379

0+ 0–

–∞+∞ –∞+∞
–∞+∞0+ 0– 0+ 0–

0+ 0
–

+∞ –∞

open
widen out unbend

The local graph near ∞ that we end up with:

0+ –∞+∞ 0–

is exactly like the local graph near 0 of JACK’s reciprocal power function
which is an odd positive power function with positive coefficient:

0+0––∞ +∞

(On both graphs, outputs for negative inputs are negative and outputs for
positive inputs are positive.)

EXAMPLE 19.10. Given the local graph near 0 of the even positive power
function JILL:

380 Chapter 19. Rational Functions: Global Analysis

0

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.

0

0

0

0

∞

0

∞

0

∞

0

–∞
0

touchingbending
closing

+∞
enlarging

–∞ +∞

–∞ +∞

We then glue the edges of the screen at ∞ to get a cylinder.

∞

0

∞

0

glue

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

3. Reciprocity Between 0 and ∞ 381

∞

0

0

∞

∞

0

0

∞

rotating

Now we cut the cylinder open along the input level line for 0

0

∞

0

∞

cut

We unbend the screen forward more and more until it becomes flat.

0

∞ ∞∞

+0

∞ ∞∞

0

∞

∞

open
widen out unbend

–0

shrink

+0 –0

+0
–0

382 Chapter 19. Rational Functions: Global Analysis

The local graph near ∞ that we get (Remember that the left side of ∞ is the
positive side of ∞ and the right side of ∞ is the negative side of ∞):

∞

∞ –∞+∞
is just like the local graph near 0 of JILL’s reciprocal power function which is
a negative, even-exponent power function:

0

0 0+0–

EXAMPLE 19.11. Given the local graph near 0 of the even positive power
function JACK:

0

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.

3. Reciprocity Between 0 and ∞ 383

00 0

00 0

0

0

–∞
touchingbending

closing
+∞

enlarging
–∞ +∞

–∞ +∞

∞

We then glue the edges of the screen at ∞ to get a cylinder.

0

∞

0

∞ glue

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

0

∞

0

∞

∞

0

∞

0
rotating

Now we cut the cylinder at 0

384 Chapter 19. Rational Functions: Global Analysis

0

∞

0

∞

cut

and we unbend the screen forward more and more until it becomes flat.

∞

∞

∞

∞

0

∞

∞

∞

∞

+0open
widen out

unbend

–0 shrink
+0

–0

+0
–0

The local graph near ∞ that we get (Remember that the left side of ∞ is the
positive side of ∞ and the right side of ∞ is the negative side of ∞):

∞

∞ –∞+∞
is just like the local graph near 0 of JACK’s reciprocal power function which

4. The Family of Power Functions 385

size-preserving
is an even positive power function:

0

0 0+0–

4 The Family of Power Functions

The following is more of an informative nature at this stage than something
that we will be building on in this text. The purpose here is mostly to give
some coherence to all the power functions by showing various ways in which
they fit together. It should help the reader organize her/his vision of power
functions.

1. Types of Regular Functions This is just a recapitulation of
stuff we saw in the preceding two chapters:

Sign exponent Parity exponent Sign coefficient TYPE

+
Even

+ PEP

− PEN

Odd
+ POP

− PON

−
Even

+ NEP

− NEN

Odd
+ NOP

− NON

2. What Power Functions Do To Size We will say that a function
is size-preserving when the size of the output is the same as the size of
the input, that is “small gives small” and “large gives large”.

386 Chapter 19. Rational Functions: Global Analysis

size-inverting
fixed point EXAMPLE 19.12. Regular positive-exponent power functions are size-

preserving :

Correspondingly, we will say that a function is size-inverting when the
size of the output is the reciprocal of the size of the input, that is “small
gives large” and “large gives small”.

EXAMPLE 19.13. Negative-exponent power functions are size-inverting :

By contrast, with exponent-zero power functions, the output for small
inputs has size 1 and so is neither small nor large and so exponent-zero power
functions are neither size-preserving nor size-inverting. You might say that
they are “size-squashing”.

Thus, in a way, constant functions separate regular positive-exponent power
functions from negative-exponent power functions.

On the other hand, even though linear functions are exceptional, they
are nevertheless size-preserving.

3. Fixed point A fixed point for a function is an input whose out-
put is equal to the input.

EXAMPLE 19.14. Given the identity function, every input is a fixed point.
In particular, both 0 and +1 are fixed points.

EXAMPLE 19.15. 0 is a fixed point for all regular power functions.

EXAMPLE 19.16. +1 is a fixed point for all regular power functions.

5. The bigger the size of the exponent the boxier the graph 387

template
EXAMPLE 19.17. −1 is a fixed point for all regular even-exponent power
functions.

5 The bigger the size of the exponent the boxier
the graph

We will call template something that looks like it could be the graph of a
regular power function except that it is not a function because the inputs −1
and +1 both have an unbounded number of outputs. Each type of regular
power function has its own template.

1. We begin by comparing power functions with their template two at
a time.

EXAMPLE 19.18. The positive-even-exponent power function whose global
input-output rule is

x
P OW ER+4−−−−−−−−−−−−→ POWER+4(x) = +x+4

is much closer to its template than the positive-even-exponent power function
whose global input-output rule is

x
P OW ER+2−−−−−−−−−−−−→ POWER+2(x) = +x+2

–1 +10

0
+1

–1

–1 +10

0
+1

–1

–1 +10

0
+1

–1

EXAMPLE 19.19. The positive-odd-exponent power function whose global
input-output rule is

x
P OW ER+5−−−−−−−−−−−−→ POWER+5(x) = +x+5

is much closer to its template than the positive-odd-exponent power function

388 Chapter 19. Rational Functions: Global Analysis

whose global input-output rule is
x

P OW ER+3−−−−−−−−−−−−→ POWER+3(x) = +x+3

–1 +10

0
+1

–1

–1 +10

0
+1

–1

–1 +10

0
+1

–1

EXAMPLE 19.20. The negative-even-exponent power function whose
global input-output rule is

x
P OW ER−4−−−−−−−−−−−−→ POWER+5(x) = +x−4

is much closer to its template than the negative-even-exponent power function
whose global input-output rule is

x
P OW ER−2−−−−−−−−−−−−→ POWER−2(x) = +x−2

–1 +10

0
+1

–1

–1 +10

0
+1

–1

–1 +10

0
+1

–1

6. Local Quantitative Comparisons 389

EXAMPLE 19.21. The negative-odd-exponent power function whose global
input-output rule is

x
P OW ER−3−−−−−−−−−−−−→ POWER−3(x) = +x−3

is much closer to its template than the negative-odd-exponent power function
whose global input-output rule is

x
P OW ER−1−−−−−−−−−−−−→ POWER−1(x) = +x−1

–1 +10

0
+1

–1

–1 +10

0
+1

–1

–1 +10

0
+1

–1

2. Together, power functions make an interesting pattern:

6 Local Quantitative Comparisons

1. Local quantitative comparison near ∞

390 Chapter 19. Rational Functions: Global Analysis

Even positive-power functions
go through the input-output pair

(–1,+1)

Odd positive-power functions
go through the input-output pair

(–1,–1)

Even and odd positive-power functions
go through the input-output pair (+1,+1)

+1

+1

–1

–1

[+x+1]

[+x+2]

[+x+3]

[+x+1]

[+x+2] [+x+3]

[+x0][+x0]

2. Local quantitative comparison near +1

6. Local Quantitative Comparisons 391

0

2

4

6

8

10

12

14 [x+20]

[x+15]

[x+10]

[x+2]
1

3

5

7

9

11

13

0 0.25 0.50 1.000.75

Local quantitative comparison near 0, between −0.1 and +0.1

392 Chapter 19. Rational Functions: Global Analysis

3. +0.1–0.1

–0.01

+0.01

0.0

0.00

[+h+1]

[+h+2]

[+h+3]

7 Global Quantitative Comparisons

1. Global quantitative comparison between −1 and +1

€m∂€m

+1.0–1.0

•

•

–1.0

•

•

+1.0 h0

h1
h2
h3

Com
parison line

•
0.0

0.0

0.1

2. Global quantitative comparison between −1 and +1

7. Global Quantitative Comparisons 393

•

[+h+1]

[+h+2]

+1.0–1.0

–1.0

+1.0

0.0

0.0 [+h+3]

1. Symmetries Of Power Functions

3.

394 Chapter 19. Rational Functions: Global Analysis

–1

[+x–1
]

[+x–2]

[+x+3]

[+x–1]

[+x–3]

[+x–2]

[+x+1]
[+x+2]

[+x–3]

[+x–1]
[+x–3]

[+x0]

[+x–2]

[+x+1]

[+x+2] [+x+3]

[+x–1]

[+x–3]

[+x0]

[+x–2]

+1

+1

–1

2. Coverage By Power Functions

7. Global Quantitative Comparisons 395

x+∞x–∞

0

[+x+1]

[+x–1]

[+x–3]

[+x0]

[+x–2]

[+x+2][+x+3][+x–1] [+x–3][+x–2] [+x+4]

+1

+1

+x+2/3[]

[]+x+0.5

[]+x+1/3

[]+x+0.75

[]+x+0.25

[]+x–0.5

+x+5/3[]

[]+x+1.5

+x+4/3[]

Observe that there are graphs of power functions whose exponent is a
fraction or a decimal number and that these graphs are exactly where we
would expect them to be based on the way the fractional or decimal exponent
fits with the whole number exponents. This, though, is a something that
will be investigated in the next volume:
textscReasonable Transcendental Functions.

396 Chapter 19. Rational Functions: Global Analysis

Appendices

397

relative

Appendix A

Localization

Inputs are counted from the origin that comes with the ruler. However,
rather than counting inputs relative to the origin of the ruler, it is often
desirable to use some other origin to count inputs from.

399

400 Appendix A. Localization

Reverse problem

Appendix B

Reverse Problems

Reverse problems are called that way because, in a reverse problem, what
is GIVEN is the feature that the outputs are to have and what is WANTED
are the inputs for which the function returns outputs with the given feature
so that

401

402 Appendix B. Reverse Problems

Appendix C

Addition Formulas

1 Dimension n = 2: (x0 + h)2 (Squares)

In order to get

403

404 Appendix C. Addition Formulas

Appendix D

Polynomial Divisions

Division in Descending Exponents, 405.

1 Division in Descending Exponents

Since decimal numbers are combinations of powers of ten, it should not be
surprising that the procedure for dividing decimal numbers should also work
for polynomials which are combinations of powers of x.

405

406 Appendix D. Polynomial Divisions

Appendix E

List of Definitions

DEFINITION 1.1 A specification 5
DEFINITION 1.2 x0 . 9
DEFINITION 1.3 ⊕ and 	, . 10
DEFINITION 1.4 x0⊕ h . 14
DEFINITION 1.5 Qualitative Sizes. 24
DEFINITION 1.6 L . 26
DEFINITION 1.7 h . 26
DEFINITION 1.8 Real World Numbers. 27
DEFINITION 1.9 Neighborhood of 0 33
DEFINITION 1.10 A neighborhood of ∞ 34
DEFINITION 1.9 Neighborhood of 0 (Restated) 34
DEFINITION 1.7 h (Restated) . 35
DEFINITION 1.11 [...] . 43
DEFINITION 2.1 Two kinds of problems 51
DEFINITION 2.2 Functional requirement 52
DEFINITION 2.1 Two kinds of problems (Restated) 54
DEFINITION 2.2 Functional requirement (Restated) 60
DEFINITION 2.3 Explicit Functions 63
DEFINITION 2.4 FUNDAMENTAL PROBLEM 72
DEFINITION 3.1 Local Code . 81
DEFINITION 4.1 $64,000 Question 114
DEFINITION 4.2 Local Code . 115
DEFINITION 5.1 An essential onscreen graph 149
DEFINITION 6.1 Monomial Functions 153
DEFINITION 7.1 Square Functions 178
DEFINITION 7.2 Cube Functions 178

407

408 Appendix E. List of Definitions

DEFINITION 8.1 Constant Functions 201
DEFINITION 8.2 Linear Functions 206

Appendix F

List of Theorems

THEOREM 1.1 Multiplication and Division of Signs 11
THEOREM 1.2 Reciprocal of qualitative sizes 38
THEOREM 1.2 (Restated) Reciprocal of qualitative sizes 38
THEOREM 1.2 (Restated) Reciprocal of qualitative sizes 39
THEOREM 1.3 Multiplication of qualitative sizes 39
THEOREM 1.4 Division of qualitative sizes 39
THEOREM 2.1 large . 69
THEOREM 7.1 Output Sign . 180
THEOREM 7.2 Symmetry . 183
THEOREM 7.3 Output Size . 186
THEOREM 7.4 Reciprocity . 188
THEOREM 7.5 Output Sign for positive inputs. 193
THEOREM 10.1 Approximate output near ∞ 230
THEOREM 11.1 . 242
THEOREM 11.2 Approximate output near x0 242
THEOREM ?? (Restated) ?? . 242
THEOREM 11.3 Approximate output near ∞ 243
THEOREM 11.4 Offscreen Graph 243
THEOREM 11.5 Slope-Sign Change Non-Existence 244
THEOREM 11.6 0-Slope Input Non-Existence 245
THEOREM 11.7 Extremum Non-existence 245
THEOREM 11.8 0-Height Existence 246
THEOREM 11.9 Global Slope-sign 248
THEOREM 12.1 Approximate output near ∞ 258
THEOREM 13.1 Bounded Height 273
THEOREM 13.2 Offscreen Graph 273

409

410 Appendix F. List of Theorems

THEOREM 13.3 Concavity-sign Change Non-Existence 275
THEOREM 13.4 0-Concavity Input Non-Existence 275
THEOREM 13.5 Slope-sign Change Existence 276
THEOREM 13.6 0-Slope Existence 276
THEOREM 13.7 Extremum Existence 277
THEOREM 13.8 0-slope Location 278
THEOREM 13.9 Global Slope-sign 278
THEOREM 13.10 0-height Location 282
THEOREM 13.11 Global Height-sign 285
THEOREM 14.1 Approximate output near ∞ 292
THEOREM 14.2 Approximation Near ∞ 304
THEOREM 14.3 Height-sign Near ∞ 304
THEOREM 14.4 Slope-sign Near ∞ 304
THEOREM 14.5 Concavity-sign Near ∞ 305
THEOREM 14.6 Local Input-Output Rule 305
THEOREM 14.7 Height-sign Near x0 305
THEOREM 14.8 Slope-sign Near x0 305
THEOREM 14.9 Concavity-sign Near x0 305
THEOREM 15.1 Bounded Height 308
THEOREM 15.2 Offscreen Graph 308
THEOREM 15.3 Concavity sign-change 310
THEOREM 15.4 0-Concavity Existence 310
THEOREM 15.5 Slope-Sign Change Existence 311
THEOREM 15.6 0-Slope Existence 311
THEOREM 15.7 Extremum Existence 312
THEOREM 15.8 Height-Sign Change Existence 314
THEOREM 15.9 0-slope Location 314
THEOREM 15.10 Global Concavity-sign 315
THEOREM 15.11 0-slope Location 317
THEOREM 15.12 Extremum Location 318
THEOREM 19.1 Possible ∞-height Input 357
THEOREM 19.2 Possible 0-height Input 365

Appendix G

List of Notes

Note 1.1 . 4
NOTE 16.1 (Restated) . 6
Note 1.2 . 6
NOTE ?? ?? (Restated) . 8
Note 1.3 . 8
NOTE ?? ?? (Restated) . 12
Note 1.4 . 17
Note 1.5 . 18
Note 1.6 . 19
Note 1.7 . 20
Note 1.8 . 23
NOTE 1.3 The tolerance is a plain decimal number (Restated) . 25
Note 1.9 . 29
Note 1.10 . 34
Note 1.11 . 37
Note 2.1 . 53
Note 2.2 . 67
Note 2.3 . 69
Note 3.1 . 86
Note 3.2 . 100
NOTE 5.1 Location of essential inputs (Restated) 104
Note 5.1 . 148
Note 6.1 . 159
Note 8.1 . 202
Note 9.1 . 219
Note 10.1 . 226

411

412 Appendix G. List of Notes

Note 12.1 . 254
Note 14.1 . 288
Note 16.1 . 322

Appendix H

List of Agreements

AGREEMENT 1.1 . 3
AGREEMENT 1.2 . 7
AGREEMENT 1.3 . 9
AGREEMENT 1.4 . 13
AGREEMENT 1.5 . 13
AGREEMENT 2.1 . 54
AGREEMENT 2.2 . 64
AGREEMENT 2.3 . 68
AGREEMENT 3.1 . 90
AGREEMENT 4.1 . 105
AGREEMENT 4.2 . 124

413

414 Appendix H. List of Agreements

GNU Free Documentation
License

1. Applicability And Definitions, 416 • 2. Verbatim Copying, 417 • 3.
Copying In Quantity, 417 • 4. Modificatons, 418 • 5. Combining
Documents, 420 • 6. Collections Of Documents, 420 • 7. Aggregation With
Independent Works, 420 • 8. Translation, 421 • 9. Termination, 421 • 10.
Future Revisions Of This License, 421 • ADDENDUM: How to use this
License for your documents, 422.

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is

415

416 GNU Free Documentation License

not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains

a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using

417

a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorse-
ments", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to
this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify

418 GNU Free Documentation License

you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

419

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the

420 GNU Free Documentation License

Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise combine
any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,

421

is called an "aggregate" if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and anyWarranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later

422 GNU Free Documentation License

version" applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

Index

+, 7
+∞, 36
−, 7
−∞, 36
0, 6
0-height input, 365
0+, 33
IDENTITY , 207
L, 26
OPPOSITE, 207
UNIT+, 202
UNIT−, 202
| |, 7
∞, 29
∓, 160
�, 11
〈, 81, 115
〉, 81, 115
	, 10
⊕, 10
±, 160

f−−−→, 63
f(x), 63
h, 26, 232
x, 63
x0-height, 120
x0, 9, 226
x0 ⊕ h, 14
x+

0 , 16
x−0 , 17
x1, 9

x2, 9
x3, 9
x∞-height, 120
xmaxi-height, 85
xmin-height, 86
y0, 66
+large, 36
„ 81
—, 11
-large, 35
[...], 43
$64,000 Question, 114

absolute value, 7
abuse of language, 202
actual number, 9
add-on function, 215
add-on number, 215
addition formula, 258
affine function, 225
affine part, 254
amount, 2
angles, 81, 115
approximate, 42, 201, 230
arrow notation, 63
arrowhead, 15
at, 54
axis, 57

bar, 216
bar graph, 57, 216
base function, 215

423

424 Index

bi-level sign, 160
binomial function, 217
bump, 147

call for, 51
Cartesian setup, 56
center, 15, 34
closer to, 20
code, 160
coefficient, 153
Coefficient Sign, 158
Coefficient Size, 159
collection, 2
compactification, 103
compare, 17
compatible, 134
concavity, 94
concavity-sign, 94
concavity-size, 94
conclusive, 89, 111, 121
constant coefficient, 201, 225, 253, 287
constant coefficient in the jet near∞,

229
constant term, 226, 254, 288
continuation, 90, 124
continuous, 96
continuous at x0, 96
count, 2
counting number, 2
critical for the Concavity, 303
critical for the Height, 268
critical for the Slope, 268
cubic coefficient, 287
cubic term, 288
curve, 59
cut-off input, 98
cutoff, 23

data, 15
de-locate, 282

declare, 64
decode, 70
describe, 1
diagonal flip, 182
diametrically opposite, 29
differ, 4
different, xvi
digit, 26
dilation function, 213
direct problem, 54
discontinuous, 97
discontinuous at x0, 97
domain, 53

error, 9
essential, 134, 142
essential interpolation, 134
essential local extreme-height input,

145
essential-feature input, 308
even, 158
even pole, 88
even zero, 87
exceptional monomial function, 154
exceptional rational function, 323
execute, 70
explicit function, 63
exponent, 153
Exponent Parity, 158
Exponent Sign, 158
Exponent Size, 159
extract, 327
extremity, 109

family, 374
far, 376
farther from, 21
features, of input-output rule, 158
figure, 26
finite, 24, 28

Index 425

first derivative, 242
fixed point, 386
for, 54
forced, 134, 174
format, 70
fraction, 41
free, xvi
fudge, 139
function, 52

gap, 98
general, 9
general local analysis, 241
generic, 9
generic given input, 226
generic global input-output rule, 225
generic local input-output rule, 242
given, 1
given number, 9
global analysis, 106
global concavity, 275
global feature, 133
global height, 205
global input-output rule, 63
global slope, 212, 245
graph, 60, 68

height, 82, 117
Height-sign, 82, 117
height-size, 83, 119
histogram, 57
hollow dot, 57, 97
horizontal flip, 181

inconclusive, 89, 121
infinite, 24, 28
infinitesimal, 24, 28
infinity, 29
informal, xvi
information, 1
input, 50

input level band, 77, 105
input Magellan circle, 103
input ruler, 55
input-output, 55
interpolate, 134
item, 2

jet, 228
jet near x0, 293
join, 72
joining curve, 134
jump, 97

kink, 100

large number, 24
larger, 18
larger-in-size, 20
largest permissible error, 43
left of, 33
left of ∞, 36
level line, 57
limit, 105, 125
linear coefficient, 206, 225, 253, 287
linear coefficient in the jet near ∞,

229
linear term, 226, 254, 288
link, 55
local analysis, 106
local behavior, 106
local code, 81, 115
local extreme-height input, 86
local graph, 109
local graph near ∞, 112
local graph near x0, 80
local graph place, 79, 106
local input-output rule near ∞, 228
local maximum-height input, 85
local minimum-height input, 85
locate, 106
lower cutoff, 23

426 Index

Magellan circle, 28
Magellan continuous at, 126, 131
Magellan input, 103
Magellan view, 29
magnifier, 31
magnitude, 2
max-min fluctuation, 148
measure, 4
Mercator view, 34
min-max fluctuation, 148
monomial function, 153

natural number, 2
near, 35
nearby, 15
nearby input, 104
negative, 7
neighborhood, 15, 34
neighborhood of ∞, 34, 104
normalize, 159
number, 1, 9
number line, 13

object, 2
odd, 158
odd pole, 88
odd zero, 87
offscreen graph, 68
on-off function, 98
onscreen graph, 68
opposite, 8
opposite input, 183
opposite of x, 207
origin, 13
output, 50
output jet near x0, 232, 259
output level band, 78, 106
output Magellan circle, 104
output neighborhood, 78, 106
output ruler, 55

output-specifying code, 63, 153
override, 99

pair, 50, 55
Parentheses, 15
parity, 87, 88
perform, 70
picture, 13
plain decimal number, 3
plain error, 4
plain number, 9
plain whole number, 2
plot, 56
plot point, 57
point, 30
polar graph, 113
pole, 88
positive, 7
positive integer, 2
possible ∞-height input, 356
power, 153
power function, 154
procedure, 43
prototypical, 374

quadratic coefficient, 253, 287
quadratic equation, 279
Quadratic function, 253, 287
quadratic part, 288
quadratic term, 254, 288
qualitative, 7
qualitative ruler, 15
qualitative size, 24
quantitative, 7
quasi-continuous at, 99

radius, 15
rational degree, 322
Rational function, 321
real number, 40
real world, 1

Index 427

real world number, 24
reciprocal, 11, 373
reciprocal function, 372
reciprocal of each other, 376
regular monomial function, 154
regular rational function, 322
relation, 49, 50
relative, 399
removable discontinuity at, 99
remove, 99
result, 66
return, 53
Reverse Polish Notation, 63
Reverse problem, 401
reverse problem, 54
right of, 33
right of ∞, 35
rigorous, xv
rise, 212
root, 41
ruler, 13
run, 212

scale, 32
screen, 56
set, 1
shape, 174
Shape type I, 317
Shape type II, 318
Shape type O, 317
side, 13, 35
sided local graph place, 79, 107
sign, 7
sign-size compare, 17
signed decimal number, 7
signed whole number, 7
signed error, 8
signed-number, 6
significant, 5
simplest, 149

size, 7
size-compare, 19
size-inverting, 386
size-preserving, 385
slope, 89, 92
slope-sign, 92
slope-size, 94
small number, 24
small relative, 5
smaller, 17
smaller-in-size, 20
smooth, 100
smoothness, 100
solid dot, 57
specification, 5
specify, 1
straight, 246
straight line, 204
stuff, 2
sum function, 215
supplement, 99
symmetrical, 13

table, 50
template, 387
term, 226, 254, 288
thicken, 15, 104
tickmark, 13
tolerance, 5
transition function, 98
transition input, 98, 134
trinomial function, 222
type, 177

uncertainty, 4
undetermined, 37
unit, 3
unspecified input, 63
unspecified output, 63
upper cutoff, 23

428 Index

vertical flip, 182

way, 2
wiggle, 147

zero, 87

	Preface
	1 Language.
	2 Rigor.
	3 Exercises.
	4 Proof/Belief.

	1 Numbers
	1 Numbers for what?
	2 Plain Whole Numbers
	3 Plain Decimal Numbers
	4 Signed Numbers
	5 Computing With Given Numbers
	6 Picturing Given Numbers
	7 Nearby Numbers
	8 Comparing Given Numbers
	9 Qualitative Sizes
	10 Real World Numbers
	11 Picturing small numbers
	12 Picturing large numbers
	13 Infinity
	14 Picturing Small Numbers
	15 Picturing Large Numbers
	16 Computing With Qualitative Sizes
	17 Real Numbers
	18 Decimal Approximations

	2 Functions
	1 Relations
	2 Functions
	3 Picturing Input-Output Pairs
	4 Functions Specified By A Global Graph
	5 Functions Specified By A Global I-O Rule
	6 Declaring Inputs
	7 Returned Outputs
	8 Onscreen Graph
	9 Functioning With Infinity
	10 Computing Input-Output Pairs
	11 Fundamental Problem
	12 Joining Plot Points

	3 Features Near x0
	1 Local Place
	2 Local graph
	3 Local code
	4 Local Height
	5 Local extreme
	6 Zeros And Poles
	7 Conclusive information
	8 Local Slope
	9 Local Concavity
	10 Pointwise Continuity
	11 Local Smoothness

	4 Features Near
	1 Compactification
	2 Local graph place near
	3 Local graph near
	4 Offscreen graph
	5 Local code near
	6 Height near
	7 Continuity at
	8 Smoothness near

	5 Global Analysis
	1 Interpolation
	2 Feature Sign-Change Inputs
	3 Essential Feature Sign-Changes Inputs
	4 Essential Extreme-Height Inputs
	5 Non-essential Features
	6 Essential Onscreen Graph

	6 Regular Monomial Functions - Local Analysis
	1 Output At x0
	2 Plot Point
	3 Normalization
	4 Thickening The Plot
	5 Output Near
	6 Output Near 0
	7 Graph Place Near and Near 0
	8 Local Graph Near and Near 0
	9 Local Features Near and Near 0

	7 Regular Monomial Functions - Global Analysis
	1 Types of Global Input-Output Rules
	2 Output Sign
	3 Output Qualitative Size
	4 Reciprocity
	5 Global Graphing
	6 Types of Global Graphs

	8 Exceptional Monomial Functions
	1 Outputs Of Constant Functions
	2 Graphs Of Constant Functions
	3 Features Of Constant Functions
	4 Output Of Linear Functions at x0
	5 Outputs Of Linear Functions near and 0
	6 Graphs Of Linear Functions
	7 Features Of Linear Functions

	9 Prelude To Polynomial Functions
	1 Adding Functions
	2 Binomial Functions
	3 Graphs of Binomial Functions
	4 Trinomial Functions
	5 Comparing Monomial Functions

	10 Affine Functions: Local Analysis
	1 Output at x0
	2 Output near
	3 Output near x0
	4 Local graphs
	5 Local Feature-signs

	11 Affine Functions: Global Analysis
	1 Smoothness
	2 The Essential Question
	3 Slope-sign
	4 Extremum
	5 Height-sign
	6 Bounded Graph
	7 0-Slope Location
	8 Locating Inputs Whose Output =y0
	9 Locating Inputs Whose Output >y0 Or <y0
	10 Initial Value Problem
	11 Boundary Value Problem

	12 Quadratic Functions: Local Analysis
	1 Output at x0
	2 Output near
	3 Output near x0
	4 Local graphs
	5 Local Feature-signs

	13 Quadratic Functions: Global Analysis
	1 The Essential Question
	2 Concavity-sign
	3 Slope-sign
	4 Extremum
	5 0-Concavity Location
	6 0-Slope Location
	7 Extremum Location
	8 0-Height Location

	14 Cubic Functions: Local Analysis
	1 Output at x0
	2 Output near
	3 Output near x0
	4 Local graphs
	5 Local Feature-signs
	6 Local Graph Near

	15 Cubic Functions: Global Analysis
	1 Global Graph
	2 Concavity-sign
	3 Slope-sign
	4 Extremum
	5 Height-sign
	6 0-Concavity Location
	7 0-Slope Location
	8 Extremum Location
	9 0-Height Location

	16 Rational Degree & Algebra Reviews
	1 Rational Degree
	2 Graphic Difficulties

	17 Rational Functions: Local Analysis Near
	1 Local I-O Rule Near
	2 Height-sign Near
	3 Slope-sign Near
	4 Concavity-sign Near
	5 Local Graph Near

	18 Rational Functions: Local Analysis Near x0
	1 Local I-O Rule Near x0
	2 Height-sign Near x0
	3 Slope-sign Near x0
	4 Concavity-sign Near x0
	5 Local Graph Near x0

	19 Rational Functions: Global Analysis
	1 The Essential Question
	2 Locating -Height Inputs
	3 Offscreen Graph
	4 Feature-sign Change Inputs
	5 Global Graph
	6 Locating 0-Height Inputs

	Epilogue
	1 Looking Back
	2 Looking Ahead
	3 Reciprocity Between 0 and
	4 The Family of Power Functions
	5 The bigger the size of the exponent the boxier the graph
	6 Local Quantitative Comparisons
	7 Global Quantitative Comparisons

	A Localization
	B Reverse Problems
	C Addition Formulas
	1 Dimension n=2: (x0+h)2 (Squares)

	D Polynomial Divisions
	1 Division in Descending Exponents

	E List of Definitions
	F List of Theorems
	G List of Notes
	H List of Agreements
	GNU Free Documentation License
	1. Applicability And Definitions
	2. Verbatim Copying
	3. Copying In Quantity
	4. Modificatons
	5. Combining Documents
	6. Collections Of Documents
	7. Aggregation With Independent Works
	8. Translation
	9. Termination
	10. Future Revisions Of This License
	ADDENDUM: How to use this License for your documents

	Index

