Calculus According to the Real World

Alain Schremmer

Calculus According to the Real World

For People Who Think Textbooks Ought To Make Sense.

Volume 1 Polynomial And Rational Functions

FreeMathTexts.org

Copyright © 2020 A. Schremmer. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Section, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

To Françoise. A mathematician according to mathematicians.

Contents

Preface $\mathbf{X V}$

1. Language. xv
2. Rigor. xv
3. Exercises xv
4. Proof/Belief. xv
Chapter 1 Numbers 1
5. Numbers for what? 1
6. Plain Whole Numbers 2
7. Plain Decimal Numbers 3
8. Signed Numbers 6
9. Computing With Given Numbers 10
10. Picturing Given Numbers 13
11. Nearby Numbers 14
12. Comparing Given Numbers 17
13. Qualitative Sizes 21
14. Real World Numbers 26
15. Picturing small numbers 28
16. Picturing large numbers 28
17. Infinity 28
18. Picturing Small Numbers 30
19. Picturing Large Numbers 34
20. Computing With Qualitative Sizes 37
21. Real Numbers 40
22. Decimal Approximations 42
Chapter 2 Functions 49
23. Relations 49
24. Functions 51
25. Picturing Input-Output Pairs 55
26. Functions Specified By A Global Graph 59
27. Functions Specified By A Global I-O Rule 62
28. Declaring Inputs 64
29. Returned Outputs 66
30. Onscreen Graph 69
31. Functioning With Infinity 69
32. Computing Input-Output Pairs 69
33. Fundamental Problem 71
34. Joining Plot Points 72
Chapter 3 Features Near x_{0} 77
35. Local Place 77
36. Local graph 80
37. Local code 81
38. Local Height 82
39. Local extreme 84
40. Zeros And Poles 87
41. Conclusive information 89
42. Local Slope 92
43. Local Concavity 94
44. Pointwise Continuity 96
45. Local Smoothness 100
Chapter 4 Features Near ∞ 103
46. Compactification 103
47. Local graph place near ∞ 106
48. Local graph near ∞ 108
49. Offscreen graph 111
50. Local code near ∞ 115
51. Height near ∞ 117
52. Continuity at ∞ 125
53. Smoothness near ∞ 131
Chapter 5 Global Analysis 133
54. Interpolation 134
55. Feature Sign-Change Inputs 140
56. Essential Feature Sign-Changes Inputs 142
57. Essential Extreme-Height Inputs 145
58. Non-essential Features 146
59. Essential Onscreen Graph 148
Chapter 6 Regular Monomial Functions - Local Analysis 153
60. Output At x_{0} 154
61. Plot Point 157
62. Normalization 158
63. Thickening The Plot 160
64. Output Near ∞ 161
65. Output Near 0 165
66. Graph Place Near ∞ and Near 0 169
67. Local Graph Near ∞ and Near 0 174
68. Local Features Near ∞ and Near 0 175
Chapter 7 Regular Monomial Functions - Global Analysis 177
69. Types of Global Input-Output Rules 177
70. Output Sign 178
71. Output Qualitative Size 184
72. Reciprocity 187
73. Global Graphing 193
74. Types of Global Graphs 198
Chapter 8 Exceptional Monomial Functions 201
75. Outputs Of Constant Functions 202
76. Graphs Of Constant Functions 203
77. Features Of Constant Functions 205
78. Output Of Linear Functions at x_{0} 207
79. Outputs Of Linear Functions near ∞ and 0 208
80. Graphs Of Linear Functions 209
81. Features Of Linear Functions 212
Chapter 9 Prelude To Polynomial Functions 215
82. Adding Functions 215
83. Binomial Functions 217
84. Graphs of Binomial Functions 219
85. Trinomial Functions 222
86. Comparing Monomial Functions 223
Chapter 10 Affine Functions: Local Analysis 225
87. Output at x 0 226
88. Output near ∞ 228
89. Output near x_{0} 230
90. Local graphs 234
91. Local Feature-signs 237
Chapter 11 Affine Functions: Global Analysis 241
92. Smoothness 241
93. The Essential Question 242
94. Slope-sign 244
95. Extremum 245
96. Height-sign 245
97. Bounded Graph 246
98. 0-Slope Location 248
99. Locating Inputs Whose Output $=y_{0}$ 248
100. Locating Inputs Whose Output $>y_{0} \mathrm{Or}<y_{0}$ 248
101. Initial Value Problem 249
102. Boundary Value Problem 251
Chapter 12 Quadratic Functions: Local Analysis 253
103. Output at x_{0} 255
104. Output near ∞ 256
105. Output near x_{0} 258
106. Local graphs 261
107. Local Feature-signs 266
Chapter 13 Quadratic Functions: Global Analysis 271
108. The Essential Question 272
109. Concavity-sign 274
110. Slope-sign 275
111. Extremum 276
112. 0-Concavity Location 277
113. 0-Slope Location 277
114. Extremum Location 278
115. 0-Height Location 279
Chapter 14 Cubic Functions: Local Analysis 287
116. Output at x_{0} 289
117. Output near ∞ 290
118. Output near x_{0} 292
119. Local graphs 296
120. Local Feature-signs 300
121. Local Graph Near ∞ 304
Chapter 15 Cubic Functions: Global Analysis 307
122. Global Graph 307
123. Concavity-sign 308
124. Slope-sign 310
125. Extremum 311
126. Height-sign 312
127. 0-Concavity Location 314
128. 0-Slope Location 315
129. Extremum Location 317
130. 0-Height Location 319
Chapter 16 Rational Degree \& Algebra Reviews 321
131. Rational Degree 321
132. Graphic Difficulties 323
Chapter 17 Rational Functions: Local Analysis Near ∞ 327
133. Local I-O Rule Near ∞ 327
134. Height-sign Near ∞ 330
135. Slope-sign Near ∞ 332
136. Concavity-sign Near ∞ 335
137. Local Graph Near ∞ 339
Chapter 18 Rational Functions: Local Analysis Near x_{0} 343
138. Local I-O Rule Near x_{0} 344
139. Height-sign Near x_{0} 346
140. Slope-sign Near x_{0} 349
141. Concavity-sign Near x_{0} 350
142. Local Graph Near x_{0} 351
Chapter 19 Rational Functions: Global Analysis 353
143. The Essential Question 353
144. Locating ∞-Height Inputs 354
145. Offscreen Graph 359
146. Feature-sign Change Inputs 361
147. Global Graph 362
148. Locating 0-Height Inputs 363
Epilogue 369
149. Looking Back 369
150. Looking Ahead 371
151. Reciprocity Between 0 and ∞ 372
152. The Family of Power Functions 385
153. The bigger the size of the exponent the boxier the graph 387
154. Local Quantitative Comparisons 389
155. Global Quantitative Comparisons 392
Appendix A Localization 399
Appendix B Reverse Problems 401
Appendix C Addition Formulas 403
156. Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares) 403
Appendix D Polynomial Divisions 405
157. Division in Descending Exponents 405
Appendix E List of Definitions 407
Appendix F List of Theorems 409
Appendix G List of Notes 411
Appendix \mathbf{H} List of Agreements 413
GNU Free Documentation License 415
158. Applicability And Definitions 416
159. Verbatim Copying 417
160. Copying In Quantity 417
161. Modificatons 418
162. Combining Documents 420
163. Collections Of Documents 420
164. Aggregation With Independent Works 420
Contents xiii
165. Translation 421
166. Termination 421
167. Future Revisions Of This License 421
ADDENDUM: How to use this License for your documents 422
Index 423

Contents

The pure mathematician's view is, It's not what you know, it's what you can prove. The difficulty with this view is that it is very hard to prove something before you know what you need to prove.

Jacob Rubinstein ${ }^{1}$

Preface

Language., xv • Rigor., xv • Exercises., xv • Proof/Belief., xv •

This is for the prospective reader because, before anything else, they should be made aware of what it is that they may be about to get into. Indeed, in many deep ways, this text is truly very different from the usual CALCULUS textbooks.

The usual preface is for convincing teachers that the book is what they want for that class they are going to teach next semester.

1 Language.

2 Rigor.

3 Exercises.

4 Proof/Belief.

The first thing is that this is not a rigorous text. One reason is that the CALCULUS is extraordinarily difficult to present rigorously (https://en. wikipedia.org/wiki/Calculus\#Foundations). For instance, it was only in 1950 that "Delta functions" (https://en.wikipedia.org/wiki/Dirac_ delta_function) were made rigorous by Laurent Schwartz-for which he was awarded the Fields Medal ${ }^{2}$

In fact, rigorous presentations go under the name of Advanced Calculus or Real Analysis and, for what it's worth, most calculus textbooks just skip the many long, hard parts of Advanced Calculus.

[^0]Never mind that those who
free to pay for the book have
differy it choosing $=====$ OK SO FAR $=========$
that downloading the pdf is free and that they can print it freely.
This text is for "just plain folks" who want to learn CALCULUS and it's free.
-So, what's this "Not a Preface" all about?
-Mostly a bit of advice on how to use this text.
-Ok, let's have it.
-One way this book is different is because it was designed to be read onscreen rather than on paper.
-What's the point?
-When we read a scientific text, to really make sense of what we read we need to remember the exact meaning of each and every word. Which is impossible. Which is why all scientific texts have an index to let you find where each word, in bold black, was explained. But in this text, onscreen, just clicking on any word in red-black will also get you there.
-I guess. So what's the advice?
-Start at the beginning. Don't skip. Don't go ahead until things make sense. Don't even try to remember what a word means, just click.
-You said "one way this text is different", what about the other ways?
-Because, in contrast with most textbooks which present the calculus from the mathematician's point of view, this text aims at the informal CALCULUS that physicists, chemists, biologists (https://en.wikipedia.org/ wiki/Hard_and_soft_science), and engineers have been using for a very long time - and are still using.

In particular, but most importantly, "infinitesimals" were routinely used informally from 1684 on by physicists - as well as by mathematicians - even though it was realized almost from the start that "infinitesimals" were not rigorous (https://en.wikipedia.org/wiki/Non-standard_analysis). And when, some two centuries later, "limits" were finally made rigorous and most mathematicians stopped using "infinitesimals" in favor of "limits", physicists, and for a long time even differential geometers, kept using "infinitesimals" because they are being closer to the real world (https://en. wikipedia.org/wiki/Calculus\#Limits_and_infinitesimals).

In any case, in 1961, Abraham Robinson, three years over the age limit for the Fields Medal, made "infinitesimals" rigorous (https://en. wikipedia. org/wiki/Abraham_Robinson). In spite of which, most textbooks still avoid "infinitesimals" like the plague!

Yet, as Vladimir Arnold (https://en.wikipedia.org/wiki/Vladimir_ Arnold) wrote in 1990: "Nowadays, when teaching analysis, it is not very
popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it." (https://en.wikipedia.org/wiki/ Infinitesimal)

All this to say that, if this text doesn't follow current fashions, it is nevertheless rooted in rigorous mathematics.
-Whew! All this to say just that! That was dense. Any other reason why I should buy your book?
-Remember, you can download this text for free and print it if you want. So, just keep on reading and make up your mind yourself
-That it?
-No. Another way this text is free is that it is open source. So, after you got something you first had trouble with, after you got it your way, you can put that way on http://freemathtexts.org/ to help others. Another way it's different.

What is important is the real world, that is physics, but it can be explained only in mathematical terms.

Chapter 1

Dennis Serre ${ }^{1}$	real world
	number
set	
	given
information	
	describe
	specify

Numbers

Numbers for what?, 1 • Plain Whole Numbers, 2 • Plain Decimal
Numbers, 3 • Signed Numbers, 6 - Computing With Given Numbers,
10 - Picturing Given Numbers, 13 - Nearby Numbers, 14
- Comparing Given Numbers, 17 • Qualitative Sizes, 21 • Real World Numbers, 26 • Picturing small numbers, $28 \bullet$ Picturing large numbers, 28 • Infinity, 28 • Picturing Small Numbers, 30 • Picturing Large Numbers, 34 • Computing With Qualitative Sizes, 37 • Real Numbers, 40 • Decimal Approximations, 42 .

The point of this first chapter is to discuss aspects of numbers usually not given much attention in Arithmetic textbooks but which are at the heart of their relationship to the real world and therefore most relevant to the Calculus According to the Real World.

In other words, nowhere near the obligatory "Review of things you oughtn't to have forgotten" in standard textbooks.

1 Numbers for what?

There are many different sets of numbers, each used for many different purposes, but "the rest of us" give numbers as information to describe what we have or to specify what we want. More precisely, in the real world, depending on:

[^1]way
magnitude
count
plain whole number
counting number
natural number
positive integer
A. What kind of real world object we want to describe or specify namely:

- A collection of items that we can deal with one at a time,
or
- An amount of stuff that we can deal with only in bulk,
and
B. What kind of information we want to give about the object namely:
- The magnitude of the object,
or
- The magnitude of the object together with the way (as in "twoway street") the object goes.
we only use numbers from the following four sets of numbers:

	Collections of items	Amounts of stuff
Magnitude	Plain whole numbers	Plain decimal numbers
Magnitude and Way	Signed whole numbers	Signed decimal numbers

Scientists other than physicists just say "quantity".

LANGUAGE 1.1 Amount is what physicists call "physical quantity".

LANGUAGE 1.2 Way is not a very good word but neither is "direction" unless we are willing to say "one of two opposite directions".

2 Plain Whole Numbers

Because we can deal with items one at a time, both describing and specifying how many items there are in a collection are easy: we just count the items. Then, how many items are in the collection will be given by a plain whole number.

EXAMPLE 1.1. Apples are items. (We can eat apples one at a time.) To say how many ω are in the collection $\omega \boldsymbol{\omega} \boldsymbol{\omega}$ we count them that is we point successively at each while singsonging "one, two, three".

At least, "counting" reminds us of how we get them but "natural"?

LANGUAGE 1.3 Plain whole numbers are also called counting numbers and natural numbers (https://en.wikipedia.org/wiki/ Natural_number).

LANGUAGE 1.4 Plain whole numbers are also called positive integers
 (https://en.wikipedia.org/wiki/Integer)

The calculus, though, is not concerned with collections of items and only with amounts of stuff and so we will use whole numbers only occasionally, mostly as a backdrop for decimal numbers.

3 Plain Decimal Numbers

Because we can only deal with stuff in bulk, both describing and specifying how much stuff there is in an amount are quite a bit more complicated than for collections of items. There are two complications.

1. Units. The first complication is that before we can describe or specify an amount of stuff we must decide on a unit amount of that stuff. Indeed, "The Weights and Measures Division promotes uniformity in U.S. weights and measures laws, regulations, and standards to achieve equity between buyers and sellers in the marketplace." (https://www.usa.gov/ federal-agencies/weights-and-measures-division)

Then, how much stuff is in an amount will be given by a plain decimal number of units of that stuff.

EXAMPLE 1.2. Milk is stuff that we drink and before we can describe or specify how much milk we must decide on a unit of milk, for instance liters of milk. Then, for instance, how much milk could be 6.4 liters of milk.

To help remind ourselves that we are talking about plain decimal numbers rather than plain whole numbers,

Agreement 1.1 The decimal point will never go without saying in this text.

EXAMPLE 1.3. We will always distinguish the plain decimal number 27. which we would give to describe of specify an amount of stuff from the plain whole number 27 which we would give to describe or specify a collection of items.
unit
plain decimal number
"Positive integer" makes sense but only to ...teachers since only they already know what integers are.
measure
uncertainty
2. To err is human. The second complication is a lot harder to deal with because for an amount of stuff, specifying how much we want and describing how much we have involve different issues.
a. To describe an amount of stuff, the complication is that we have to measure this amount of stuff so that there will always be some uncertainty about the measured plain decimal number because of things such as the quality of the equipment used to measure the amount, the ability of the person doing the measurement, etc.

EXAMPLE 1.4. We cannot really say "we have 2.3 quarts of milk" because what we really have depends on the care with which the milk was measured. The uncertainty may of course be too small to matter ... but then may not.

As Timothy Gowers, Fields Medal 1998, put it ($6^{\text {th }}$ paragraph of https: //www.dpmms.cam.ac.uk/~wtg10/continuity.html.), "a measurement of a physical quantity will not be an exactly accurate infinite decimal. Rather, it will usually be given in the form of a finite decimal together with some error estimate: $x=3.14 \pm 0.02$ or something like that." ${ }^{2}$ [Where 3.14 ± 0.02 is to be read as $3.14 \pm$ some error smaller than 0.02]
b. To specify an amount of stuff, the complication then is that while, in the case of a collection of items

- the plain whole number given to specify how many items we want,
will never differ from
- the plain whole number counted to describe how many items we get
in the case of an amount of stuff,
- the plain decimal number given to specify how much stuff we want.
will always differ by some plain error from
- the plain decimal number measured to describe how much stuff we get
In other words:
Note 1.1 A plain decimal number by itself can never specify an amount of stuff.

[^2]EXAMPLE 1.5. We cannot say " 6.4 quarts of milk" without also saying how big a plain error we are willing to put up with. A spoonful? A quart?
significant
small relative
tolerance specification
c. However, not all differences are significant, that is carry information that is relevant to the real world situation.

EXAMPLE 1.6. The difference between $\$ 3$. and $\$ 8$. is the same as the difference between $\$ 1000000003$. and $\$ 1000000008$., namely $\$ 5$.. However, while the difference between $\$ 3$. and $\$ 8$. is significant because $\$ 5$. is in the same range as $\$ 3$. and $\$ 8$., the difference between $\$ 1000000003$. and $\$ 1000000008$. is ... insignificant because $\$ 5$. is much smaller than both $\$ 1000000003$. and $\$ 1000000008$.

Now, while we cannot avoid errors, we sure want to avoid significant errors, that is we want the error to remain small relative to the plain decimal number that specifies what we want. So. along with the plain decimal number that specifies what we want, we must also specify a tolerance, that is the largest plain error we can put up with (https://en.wikipedia.org/ wiki/Engineering_tolerance).
And, in the spirit of Gowers' "measurement of a physical quantity", we set
DEFINITION 1.1 A specification for an amount of stuff consists of two plain decimal numbers:

- a plain decimal number to specify the amount we want, - a plain decimal number to specify the errors we can tolerate. which we will write
given plain decimal number \pm given tolerance
but which, as with Gower's "error estimate", we will read
given plain decimal number \pm plain decimal number smaller than given tolerance

EXAMPLE 1.7. While we cannot specify an amount of 6.4 quarts of milk (Example 1.5, page 5.), we can specify an amount of 6.4 ± 0.02 quarts of milk where ± 0.02 quarts of milk is the tolerance: what can be poured will then be $6.4 \pm$ a plain decimal number smaller than 0.02 quarts of milk.

We can then restate ?? in a more constructive manner:
signed-number

NOTE 16.1 (Restated) A plain decimal number without a tolerance can never specify an amount of stuff.
3. What about zero? As we will see again and again, $\mathbf{0}$ is a very special number and indeed already "the ancient Greeks seemed unsure about the status of zero as a number." (https://en.wikipedia.org/wiki/0)

With plain decimal number other than 0 , even though we cannot have the exact amount of stuff specified by the given plain decimal number of unit of stuff that we want, that exact amount of stuff does exist.

But 0 is special because when we specify 0 unit of some stuff, there is no such thing as 0 unit of that stuff in the real world and all we get is the error!

EXAMPLE 1.8. There is no such thing as a perfect vacuum. (https: //en.wikipedia.org/wiki/Vacuum).
There is no such thing as an absolute zero temperature. (https://en. wikipedia.org/wiki/Absolute_zero)

So,
NOTE 1.20 is special because:
i. 0 specifies nothing.

4 Signed Numbers

Most of the time, we need not only to describe or specify how many items there are in a collection or how much stuff there is in an amount, but also the way the collection of items or the amount of stuff is going.

EXAMPLE 1.9. How many people are going into a building as opposed to how many are coming out of the building usually depends on the time of the day. How much money is coming into or going out of our bank account usually depends on the day of the month.

LANGUAGE 1.5 Signed whole numbers are usually called integers.

1. Size and sign. So, both signed whole numbers and signed decimal numbers carry two kinds of information:

- The size of a signed-number (whole or decimal) is the quantitative information which is given by the plain-number that describes or specifies how many items in the collection or how much stuff in the amount. The standard symbol for size is | |

EXAMPLE 1.10. Instead of "size $-3=3$ " we can write " $|-3|=3$ ".

Language 1.6 Absolute value is often used in textbooks instead of size but we will stick with size because that's what's used in the real world. Instead of the word "size", textbooks mostly use "absolute value" but, sometimes, "numerical value" or "modulus" or "norm". None of these words will be used in this text.

- The sign of a signed-number (whole or decimal) is the qualitative information which is given by + or - , the symbols that describe or specify which way the collection or the amount is going.

Positive numbers (whole or decimal) are the signed-numbers whose sign is + ,
Negative numbers (whole or decimal) are the signed-numbers whose sign is -.

EXAMPLE 1.11. + 17.43 Dollars specifies a real world money transaction in which:

- The size of +17.43 is 17.43 which specifies how much money was transacted,
- The sign of +17.43 is + which specifies which way the money went.

Agreement 1.2 The sign + will never go without saying In this text.

EXAMPLE 1.12. We will always distinguish, for instance,

- +51.7 which is a signed number from 51.7 which is the plain number that is the size of +51.7 . (As well as the size of -51.7
- +643 which is a signed number from 643 which is the plain number that is the size of +643 . (As well as the size of -643)
signed whole number signed decimal number size
quantitative
absolute value
sign
qualitative
$+$
positive
negative
opposite
signed error

A positive number and a negative number with the same size are said to be opposite.

EXAMPLE 1.13. Opposite $+32.048=-32.048$
2. Zero has no sign. 0 is neither positive nor negative. So,

NOTE ?? (Restated) ?? because:
i. 0 specifies nothing.
ii. 0 has no sign

Nevertheless, we will want to consider 0 as a signed decimal number because, in spite of not having a sign, 0 does come up in many computations with signed decimal numbers.

EXAMPLE 1.14. A number and its opposite add up to 0 . Conversely, if two numbers add up to 0 then they are opposite.
3. Signed error. While scientists can never know what the plain error in a measurement $i s$, scientists often know if the measured plain decimal number is larger or smaller than the given plain decimal number. So scientists use signed errors whose size is the plain error and whose sign is:

+ when the measured plain decimal number is larger than the given plain decimal number
- when the measured plain decimal number is smaller than the given plain decimal number
However, even with signed errors,
NOTE 1.3 The tolerance is a plain decimal number because the tolerance is the largest size of signed error we can put up with.
$======$ Begin MISPLACED $=======$
EXAMPLE 1.15. It makes no sense to specify $-6.4 \pm$ a plain error smaller than 0.02 . What we can specify is $-6.4 \oplus$ a signed error whose size is smaller than 0.02 where 0.02 is the given tolerance (plain number).
$=======$ End MISPLACED $=======$

4. Numbers to go. As already mentioned in ??. we will mostly use signed decimal numbers- except of course when dealing with the size of signed decimal numbers. So, to make our life a little easier, we will use:

Agreement 1.3 Number is short for signed decimal number including
0 . In particular:

- Given number is short for given signed decimal number including 0 .
- Measured number is short for measured signed decimal number including 0 ,
- Error is short for signed error.

And, in order to discuss the size of numbers,

- Plain number is short for plain decimal number including 0 .

5. Generic given numbers. In order to make general statements, we will use generic symbols.

Example 1.16. In Arithmetic, we may check that $2+3=3+2$ and then that $4+7=7+4$. Then, maybe after further experimentation or maybe just as a wild guess, we may want to make the general statement that the order in which we add two plain whole numbers does not change the result. To make that statement, we would use two generic symbols for plain whole numbers, say, a and b, and then we would state that $a+b=b+a$

In other words, a generic symbol stands for something whose identity is to remain undisclosed for the time being. In particular, a generic given number is a given number whose "identity" remains undisclosed so that any given number can later be substituted for the generic given number.

EXAMPLE 1.17. In Example 1.20, after we have stated that $a+b=b+a$, we can state without further ado that, say, $152695+4082=4082+152695$ just by replacing a by 152695 and b by 4082

We will use the following:
DEFINITION $1.2 x_{0}, x_{1}, x_{2}, x_{3}$, etc are symbols for generic given numbers including 0 .
$=======$ Begin WORK ZONE $=======$
$=======$ End WORK ZONE========

5 Computing With Given Numbers

We assume the reader knows how to perform the four operations with given numbers but there are nevertheless a few issues worth discussing, if only for the sake of clarity.

1. Addition and subtraction. The symbols + and - are vastly overused because not only are we using the symbols + and - for both
i. addition and subtraction of plain whole numbers and
ii. addition and subtraction of plain decimal numbers
which already are two very different sets of numbers with very different procedures for addition and subtraction, but we are also using the symbols + and - to
iii. distinguish positive numbers from negative numbers which has little to do with addition or subtraction.

So, it would really be asking for trouble for us to use, on top of all that, the symbols + and - for addition and subtraction of signed decimal numbers and this is where we draw the line:

DEFINITION 1.3 \oplus and \ominus, pronounced "oplus" and "ominus", will be the symbols for addition and subtraction of signed decimal numbers.

In other words, the \bigcirc around the operation symbol will remind us to take care of the signs but, as an added benefit, \oplus and \ominus will also let us avoid using lots of parentheses. ${ }^{3}$

EXAMPLE 1.18. Instead of:
$-23.87+(-3.03), \quad-44,29-(+22.78), \quad+12.04-(-41.38)$
we will write:
$-23.87 \oplus-3.03, \quad-44,29 \ominus+22.78, \quad+12.04 \ominus-41.38$

[^3]2. Multiplication and division.
i. We will use
reciprocal

- The operation symbol $\odot($ instead of $\otimes)$ for multiplication of signed decimal numbers,
- The operation symbol - (fraction bar instead of \odot) for division of signed decimal numbers.
ii. For future reference, we recall

Theorem 1.1 Multiplication and Division of Signs

$$
\begin{array}{|c|cc|}
& + & - \\
\hline+ & + & - \\
- & - & + \\
\hline
\end{array}
$$

EXAMPLE 1.19.

$+2 \odot+5=+10, \quad+2 \odot-5=-10, \quad-2 \odot+5=-10, \quad-2 \odot-5=+10$
$\frac{+12}{+3}=+4, \quad \frac{+12}{-3}=-4, \quad \frac{-12}{+3}=-4, \quad \frac{-12}{-3}=+4$,
3. Reciprocal. The reciprocal of a number is +1 . divided by that number. (https://www.mathsisfun.com/reciprocal.html)

So:
i. Reciprocal $+1 .=+1$. and Reciprocal $-1 .=-1$.
ii. The reciprocal of 1 followed or preceded by 0 s is easy to get: read the number you want the reciprocal of and insert/remove "th" accordingly,
iii. The reciprocal of most other numbers needs to be computed and we may as well use a calculator.

EXAMPLE 1.20.

EXAMPLE 1.21. In ALGEbra, to prove that:

- When we oplus a number and its opposite, the result is 0 , we compute $x_{0} \oplus$ Opposite x_{0} to show that the result is 0 .
- When we oplus two numbers, the order does not matter, we compute $x_{1} \oplus x_{2}$ and $x_{2} \oplus x_{1}$ to show that the results are the same.
- When we oplus three numbers, the grouping does not matter, we compute [$\left.x_{1} \oplus x_{2}\right] \oplus x_{3}$ and $x_{1} \oplus\left[x_{2} \oplus x_{3}\right]$ to show that the results are the same.
$x_{0} \otimes o p p x_{0}$ is negative

4. Computing with Zero? As far as \oplus and \ominus are concerned, 0 is not at all special since oplussing 0 and ominussing 0 do not do anything and so, do not cause any difficulty.

On the other hand, inasmuch as

- Multiplying any number by 0 always gives 0 as a result,
- Dividing any number by 0 is impossible. (https://en.wikipedia.org/ wiki/Division_by_zero)
this is yet another way
Note ?? (Restated) ??:
i. 0 specifies nothing.
ii. 0 has no sign
iii. Multiplying any number by 0 always gives 0 as a result,
iv. Dividing any number by 0 is impossible.

6 Picturing Given Numbers

1. Quantitative rulers. To picture given numbers, we will use quantitative rulers which are essentially just what goes by the name of "ruler" in the real world.

Agreement 1.4 Origin The tickmarks on a quantitative ruler must include an origin, that is a tickmark labeled 0 .

EXAMPLE 1.22. The following:

is a quantitative ruler.

LaNGUAGE 1.7 Number line is the name often used instead of quantitative ruler but in this text we will stick to quantitative ruler.
2. Graphic meanings. From the graphic viewpoint:

- The size of a given number specifies how far from 0 the given number is on a quantitative ruler. So opposite numbers are symmetrical relative to the origin.

EXAMPLE 1.23. The numbers -5.0 and +5.0 have the same size, namely 5.0 , so they are equally far from 0 :

- The sign of a given number specifies which side of the origin the given number is - as seen when facing 0 :

Agreement 1.5 Sides of the origin

- Positive numbers (+ sign) will be to the right of the origin 0 ,
- Negative numbers (- sign) will be to the left of the origin 0 .

EXAMPLE 1.24. On a quantitative ruler, Since Sign $-5=-$, the number -5 is left of 0 .
Since Sign $+3=+$, the number +3 is right of 0 .

$========$ THIS IS WHERE THINGS GET HARD $=========$

7 Nearby Numbers

We already saw several instances where by itself a number does not provide much information if at all. and neighborhood of given number

1. However, see ??, a plain decimal number unaccompanied by a tolerance can never specify an amount of stuff.

So now we can say that a measured signed decimal number is the given signed decimal number \oplus a signed error whose size is smaller than the given tolerance .

To code a generic nearby number for the real world number x_{0}, we will use

DEFINITION $1.4 x_{0} \oplus h$
Given $x_{0}, x_{0} \oplus h$ is code for a generic nearby number.
but a frequent mistake is to forget that (??, ??)

2. Neighborhood

3. Real World Numbers (Section 10, page 26) was easy because we knew exactly where were the numbers we wanted to picture. But in the case
of measured numbers, all we know is that the numbers we want to picture are somewhere within the given tolerance of the real world number.

But here again qualitative rulers are not up to the task because of its scale and, here again, we must aim a magnifier at x_{0} to see a neighborhood of x_{0}.
single points usually do not carry enough information for the purposes of the calculus. So, what we will do is to thicken the point we want to look at, that is we will look at the point as center of a neighborhood, that is we will look at the point together with nearby numbers that is numbers within a given radius of the center. (http://mathworld.wolfram.com/ Neighborhood.html.)

As useful as quantitative rulers are, and they are used a lot in engineering and the sciences to help picture data, that is lots of real world numbers, they do not lend themselves to picturing neighborhoods and to picture neighborhoods we will use qualitative ruler, that include just:

- A tickmark for the origin 0
- An arrowhead to indicate the way $u p$. In this text, according to Agreement 1.4 (Page 13), the arrowhead will always point to our right.
- Parentheses to mark the cutoffs of a generic positive range and a generic negative range

4. Since ∞ and 0 are diametrically opposed on a Magellan circle, it is of course tempting to think of ∞ and 0 as being reciprocal. Unfortunately we can't divide by 0 and ∞ is not even a number so that's that. Yet there has to be something to it and we will get to it later.
5. Picturing $\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{h}$. For the real world number x_{0}, the nearby numbers are in a neighborhood of x_{0} with the radius of the neighborhood being the tolerance. (See https://en.wikipedia.org/wiki/Neighbourhood_ (mathematics).)

So, in order to picture $x_{0}+h$ we aim a magnifier at x_{0} to see a neighborhood of x_{0}.

The tolerance is the radius of the neighborhood but, of course, since in this text the tolerance will remain undisclosed, we will just:

- Draw a tickmark for the real world number,
- Draw a small stretch below the qualitative ruler around the tickmark.

EXAMPLE 1.25. Given the number -5.7 , to picture the actual number $-5.7+h$, we draw a neighborhood of -5.7

In other words, given a number x_{0}, the actual number $x_{0}+h$ will be a nearby number.
6. Sides of a neighborhood of $\boldsymbol{x}_{\mathbf{0}}$. In order to deal separately with each side of a neighborhood of x_{0}, we will use

- x_{0}^{+}(namely x_{0} with a little + up and to the right) which is standard code for nearby numbers right of x_{0}, that is for nearby numbers larger than x_{0}. (They are indeed to our right when we are facing x_{0}, the center of the neighborhood.)
Another way to code nearby numbers right of x_{0} is: $x_{0}+h$ with $h>0$

- $x_{\mathbf{0}}^{-}$(namely x_{0} with a little - up and to the right) which is standard code for nearby numbers left of x_{0}, that is for nearby numbers smaller than x_{0}. (They are indeed to our right when we are facing x_{0}, the center of the neighborhood.)
Another way to code nearby numbers left of x_{0} is: $x_{0}+h$ with $h<0$

8 Comparing Given Numbers

We assume that the reader knows how to compare plain-numbers but it is probably worthwhile reminding the reader that

NOTE 1.4 Comparing numbers without units makes no sense at all.

In the case of signed-number, though, things are more complicated because there are two very different ways to compare signed-number depending on whether or not we take the signs into account or only the sizes.

1. Sign-size comparison. To sign-size compare signed-numbers, that is to take both signs and sizes into account, the easiest way is to picture the two numbers on a quantitative ruler and then, because of Agreement 1.4 (Page 13), the number to our left will be smaller than the number to our
right and the number to our right will be larger than the number to our left.

NOTE 1.5 sign-size goes without saying when we say larger and/or smaller.

EXAMPLE 1.28. Given the numbers -7.2 and -0.9 we have

The standard symbols for sign-size-comparisons of all four kinds of numbers are:

Sign-size-comparisons	Symbols
equal to	$=$
not equal to	\neq
smaller than	$<$
smaller than or equal to	\leqq
larger than	$>$
larger than or equal to	\geqq

EXAMPLE 1.29. In symbols, Example 1.28 becomes

2. Size-comparison. To size-compare signed-number is to com- size-compare pare them only in terms of their sizes and to ignore their signs.

EXAMPLE 1.30. On a ticket for speeding on a two-way road, only the size of the speed is mentioned, not which way we were going.

In fact,
Note 1.6 In common English, "higher" and "lower" do not correspond to the mathematical larger and smaller but to larger-in-size and smaller-in-size.

EXAMPLE 1.31. In common English, we say that a $\$ 700$ expense is higher than a $\$ 300$ expense even though -700 is smaller than -300 This is because -700 is larger-in-size than -300 .

The trouble is that "size-comparing" is almost always confused with "comparing sizes". But the difference is what we are comparing in each case and that is important.

EXAMPLE 1.32. Suppose that:
i. Jack is 41 year old
ii. Jack's daughter is 15 year old
iii. Jill is 39 years old
iv. Jill'son is 17 years old

Now:
a. If we compare Jack and Jill in terms of their own age, we get that Jack is-older than Jill,

But since Jack's child is-younger than Jill's child
b. If we compare Jack and Jill in terms of their child's age, we get from b. that

> Jack has-a-younger-child than Jill

Similarly:
+2.7 is larger than -17.4
but since Size +2.7 is smaller that Size -17.4
+2.7 is smaller-in-size than -17.4

PROCEDURE 1.1 To size-compare two signed decimal numbers

i. Get the plain decimal numbers that are the size of each of the two signed decimal numbers,
ii. Compare the plain decimal numbers that are the sizes of the signed decimal numbers,
iii. And then

- If the size of the first signed decimal number is smaller than the size of the second signed decimal number, then the first signed decimal number is itself smaller-in-size than the second signed decimal number
- If the size of the first signed decimal number is larger than the size of the second signed decimal number, then the first signed decimal number is itself larger-in-size than the second signed decimal number

TEMO 1.1 To size-compare the numbers -7.5 and +3.2
i. We compare their sizes: since the size of -7.5 is the plain-number 7.5 and the size of +3.2 is the plain-number 3.2 and since

$$
7.5>3.2
$$

we can conclude that
size -7.5 is-larger-than size +3.2
or, in symbols, that
ii. On the basis of which we conclude that

$$
-7.5 \text { is-larger-in-size-than }+3.2
$$

And the trouble in most textbooks is that the first step is the only one that is explicited while the second step is supposed to "go without saying", perhaps because, unfortunately,

NOTE 1.7 There are no symbols for size-comparisons of signednumbers.
so that we will have to say it in so many words.
Graphically:

- The signed-number that is smaller-in-size than the other signed-number is closer to 0 than the other signed-number
- The signed-number that is larger-in-size than the other signed-number is
farther from 0 than the other signed-number.
farther from
EXAMPLE 1.33. Given the numbers -7.5 and +3.2 , we saw in ?? that - -7.5 is larger-in-size-than +3.2 ,
and therefore that
- +3.2 is smaller-in-size-than -7.5 ,

After picturing -7.5 and +3.2

Larger-in-size $5 m$ Smaller-in-size
we see that

- -7.5 is farther from 0 than +3.2 ,
- +3.2 is closer to 0 than -7.5 ,

9 Qualitative Sizes

We can of course give any number and any tolerance we want and, indeed, mathematicians treat all the numbers in a set of numbers in exactly the same manner, regardless of their size.

EXAMPLE 1.34. +36.42 and -105.71 are added, subtracted, multiplied and divided by the same rules as -41008333836092.017 and -0.000001607 .

In the real world however numbers come in vastly different sizes.
EXAMPLE 1.35. The numbers that astrophysicists (https:// en.wikipedia.org/wiki/Astrophysics) use are entirely different from the numbers that nanophysicists (https://en.wikipedia.org/wiki/ nanophysicist) use.

Well worth looking up in this regard are

- The 9 minutes 1977 classic video at the bottom of http://www.eamesoffice. com/the-work/powers-of-ten/,
- Terence Tao, Fields Medal 2006, http://terrytao.files.wordpress. com/2010/10/cosmic-distance-ladder.pdf

1. Out of this world. The first two limitations have to do with the fact that numbers can be incredibly large-in-size as well as incredibly small-in-size:

- We all went through a stage as children when we would count, say, "one, two, three, twelve, seven, fourteen, ..." but, not too long after that we were able to count properly and then, soon after that, we discovered that there was no end to whole: we could always count one more. But that was only the tip of the iceberg.

EXAMPLE 1.36. Start with, say, -73.8 and insert 0s left of the decimal point

$$
\begin{array}{r}
-730.8 \\
-7300.8 \\
-73000.8
\end{array}
$$

$$
-73000000000000000000000.8
$$

This last number is probably already a lot larger-in-size-than any number you are likely to have ever encountered but, if not, just keep inserting 0 s until you get one!

Also, see https://en.wikipedia.org/wiki/Large_numbers\#Large_numbers_ in_the_everyday_world)

- On the other hand, as children knowing only whole numbers, we thought there was a number smaller than all others, namely 1 . With decimal numbers, though, there is no number smallest-in-size.

EXAMPLE 1.37. Start with +0.8 and insert 0 s right of the decimal point

$$
+0.08
$$

$+0.008$
$+0.0008$
$+0.00000000000000000000000000008$

This last number is probably already a lot smaller-in-size-than any number you are likely to have ever encountered but, if not, just keep inserting 0s until you get one!
2. Qualitative sizes. In view of the above, we have to face the fact that, in any real world situation, most numbers will be either too large-insize or too small-in-size.

EXAMPLE 1.38. In Example 1.50 (Page 27), how likely is a number with a million Os left of the decimal point to specify anything in the real world? How
cutoff
upper cutoff lower cutoff about with a billion 0s ? A trillion 0s?

EXAMPLE 1.39. In Example 1.37 (Page 22), how is a tolerance with a million 0s right of the decimal point likely to work in the real world? How about with a billion 0s? A trillion 0s?

More precisely, in any real world situation, there will always be two cutoff sizes:

- An upper cutoff size above which numbers will be too large-in-size to be relevant to the situation,
- A lower cutoff size below which numbers will be too small-in-size to be relevant to the situation.

Note 1.8 Upper and lower refer only to the size of the cutoff numbers.

EXAMPLE 1.40. A mom and pop business could use 99999.99 and 0.01 as cutoff sizes for their acwhole system as it probably would never have to deal with numbers such as -1058436.39 or +0.00072 .

Of course, the upper cutoff size and the lower cutoff size will depend on the situation.

EXAMPLE 1.41. In contrast with the mom and pop business of Example 1.44, the acwhole system for a multination corporation would certainly use much larger cutoff sizes.

At least to an extent, the limitation on size of the specifying number and the limitation on the size of the tolerance are linked.

EXAMPLE 1.42. We cannot specify a distance in light years with a tolerance in inches.
qualitative size
real world number
large number
small number
finite
infinite
infinitesimal

As far as we will be concerned, just knowing that, any real world situation, there always are cutoff sizes will be enough for us to use the following:

DEFINITION 1.5 Qualitative Sizes. Given a real world situation,

- Large numbers will be numbers whose size is above the upper cutoff size
- Smalll numbers will be numbers whose size is below the lower cutoff size

EXAMPLE 1.43. In Example 1.33 we would have

EXAMPLE 1.44. In Example 1.50 we would have

Language 1.8 Standard Words For Qualitative Sizes.

- The standard' word for large is infinite. (https://www. merriam-webster.com/dictionary/infinite.)
- The standard word for small is infinitesimal. (https://en. wikipedia.org/wiki/Infinitesimal.
We will stick to the words large and small because using the words "infinite" and "infinitesimal" informally, the way scientists do, really annoys mathematicians-which we can't afford.

3. Zero has no qualitative size since 0 is excluded from small numbers. (Definition 1.8 Real World Numbers, page 27.)

NOTE 1.3 (Restated) The tolerance is a plain decimal number because:
i. 0 specifies nothing.
ii. 0 has no sign
iii. Multiplying any number by 0 always gives 0 as a result,
iv. Dividing any number by 0 is impossible. See https://en. wikipedia.org/wiki/Division_by_zero
v. 0 has no qualitative size .
4. Reciprocals. It is very tempting to think that the reciprocal of a small number is a large number and, the other way round, that the reciprocal of a large number is a small number.

But this is not necessarily the case because qualitative sizes depend on the cutoffs which we set

EXAMPLE 1.45. Given

i. +0.009 is below the positive lower cutoff $(+0.009<+0.010=0.01)$ and is therefore a small number,
ii. The reciprocal of +0.009 is +111.1 (Use a calculator.)
iii. +111.1 is below the positive upper cutoff and is therefore not a large number.

But indeed, if we were to let the lower cutoffs and the upper cutoffs be reciprocals of each other, then it would be the case that the reciprocal of a small number would necessarily be a large number and the other way round.

EXAMPLE 1.46. Given:

L
figure
where the lower cutoffs and the upper cutoffs are reciprocal of each other, i. +0.0009 is below the positive lower cutoff $(+0.0009<+0.0010=0.001)$ and is therefore a small number,
ii. The reciprocal of +0.0009 is +1111.1 (Use a calculator.)
iii. +1111.1 is above the positive upper cutoff and is therefore a large number.

So, why didn't we also say in Agreement 1.5 that the lower cutoffs and the upper cutoffs would always have to be reciprocals of each other? Because that is not always the case in the real world.

EXAMPLE 1.47.

- In business, one penny is probably the size of the smallest amount a business can earn or lose but the reciprocal of +0.01 is +100.0 and even the tiniest business will, at least occasionally, earn or lose more than the reciprocal, \$100.0
- In astronomy, a millionth of a mile would be unmanageably small but the reciprocal, a million miles, would be quite medium.
- In biology, a thousand inches would be unmanageably large but the reciprocal, a thousandth of an inch, would be quite medium.

5. Generic names.

i. There is no standard symbol for generic large number and we will use

DEFINITION 1.6 L is a generic large number

ii. There is a standard symbol for generic small number namely:

DEFINITION $1.7 \boldsymbol{h}$ is a generic small number.

10 Real World Numbers

1. Significant digits. Both whole numbers and decimal numbers are made up of digits.

EXAMPLE 1.48. Both the whole number 516026618 and the decimal number 516.026618 are made of the digits $0,1,2,5,6,8$

Language 1.9 Figure is the name often used instead of digit but In this text we will stick to digit.
a. However, not all the digits in a number are significant.

EXAMPLE 1.49. To say that "the estimated population of the US was "328 285992 as of January 12, 2019" (https://en.wikipedia.org/wiki/ Demography_of_the_United_States on 2019/02/06) is not reasonable because at least the rightmost digit, 2 , is certainly not significant: on that day, some people died and some babies were born so the population could just as well been given as, say, 328285991 or 328285994 .
Note that further along in the Wikipedia article, the population is given more reasonably: "from about 76 million in 1900 to 281 million in 2000".

But as always, what is significant depends on the situation.
EXAMPLE 1.50. The numbers given in https://en.wikipedia.org/ wiki/Iron_and_steel_industry_in_the_United_States are much more reasonable: 'In 2014, the United States [...] produced' 29 million metric tons of pig iron and 88 million tons of steel." Similarly, "Employment as of 2014 was 149,000 people employed in iron and steel mills, and 69,000 in foundries. The value of iron and steel produced in 2014 was 113 billion."

Identifying significant digits, however, is not quite a simple matter (https: //en.wikipedia.org/wiki/Significant_figures\#Identifying_significant_ figures) and neither is determining in the result of a computation which digits will be significant (https://en.wikipedia.org/wiki/Significant_ figures\#Arithmetic).
b. The third limitation has to do with the fact that, just like small numbers, any number can have incredibly many decimal digits and of course only so many of these digits will be significant.

EXAMPLE 1.51. What could $\$ 312.374333840$ possibly correspond to in the real world?

Definition 1.8 Real World Numbers. Given a real world situation, real world numbers will be numbers:

- whose size is between the upper and lower cutoff sizes,
finite
infinite
infinitesimal
Magellan circle

and

- whose digits are all significant

Language 1.10 Standard Words For Qualitative Sizes.

- The standard word for real world number is finite. (https://en. wikipedia.org/wiki/Finite_number.)
$=========$ OK SO FAR $=========$

11 Picturing small numbers

12 Picturing large numbers

13 Infinity

Rulers are "anthropocentric" inasmuch as we tend to think of ourselves as being "somewhere on the ruler". And, indeed, the idea that the earth is flat goes only so far and, similarly, so does the idea of picturing numbers with straight rulers.

1. The earth is round. If, starting from the origin, we go straight ahead on a ruler, in either direction, farther and farther, we have the feeling that the longer we go, the farther away from the origin we will get and that there is nothing that can keep us from getting as far away as we want from the origin.

But this is not the case in the real world: even though Magellan died in 1521 while trying to go as far away from Seville as he could, his ships kept on going west and one of them eventually reached ...home, bearing witness that there was no going around the fact that the earth is round. (https: //en.wikipedia.org/wiki/Ferdinand_Magellan)

Thus, in the real world, what looks to us like a straight line is in fact just a piece of a Magellan circle.
2. Down under. On a Magellan circle, the point diametrically opposed to the origin is the point farthest away from the origin. This point is called infinity and the symbol for infinity is ∞.

3. Magellan view. When we use a Magellan circle instead of a ruler, which is what we will call the Magellan view, the view is not "anthropocentric" anymore because now ∞ is in the middle of non-real world numbers the way 0 is in the middle of the real world numbers:

4. ∞ is not a number. Indeed, we will have to be careful and keep in mind that, while we can always compute with x_{0} and part of the time with 0 ,

Note 1.9∞ is not a number and we can never compute with ∞ the way we compute with x_{0} or even 0 .
$=======$ Begin WORK ZONE======
However:

- $-\infty<x_{0}$
- $+\infty>x_{0}$
- $x_{0} \oplus+\infty=+\infty$
- $x_{0} \oplus-\infty=-\infty$
-

point
5. Points. Nevertheless, as we will see, it will be extremely convenient to use the word point to stand for " $x_{0}, 0$, or ∞ ". But we won't use a synbol for points because computing with such a symbol would be much too dangerous as we can always compute with x_{0} (Definition 1.2, page 9.), only sometimes with 0 (??, ??.) and never with ∞ (??, ??.).
$=======$ End WORK ZONE========
$=======$ Begin LOOK UP $=======$
which, in a Magellan view, would look something like

which, in a Magellan view, would look like something like

$=======$ End LOOK UP $=======$
$=======$ End WORK ZONE $========$

14 Picturing Small Numbers

1. Qualitative rulers give the wrong impression by making it look like magnifier there are a lot more large numbers than there are small numbers:

But since where the cutoffs are depends on what the real world numbers are, and therefore on what the particular situation being dealt with is, it is not possible to make a general argument as to why indeed this impression might be wrong.

On the other hand, the two upper cutoffs, and therefore large numbers, are usually beyond -1.0 and +1.0 so that their reciprocals are between -1.0 and +1.0 and therefore have a good chance of falling between the negative lower cutoff and the positive lower cutoff and therefore to be small. So, it is fairly likely that each large number is matched with a small number, namely its reciprocal.

Which means, though, that small numbers must be packed more tightly than large numbers.

EXAMPLE 1.52. While +7000 and +8000 differ by +1000 , their reciprocals, which are +0.000143 and +0.000125 differ only by -0.000018
2. Since small numbers are packed so tightly, to picture small numbers we aim a magnifier at 0 to see a neighborhood of 0 :
scale

The radius of the neighborhood is the tolerance but since in this text the tolerance will remain undisclosed so will the radius of the neighborhood and we will just:

- Draw a tickmark for 0 ,
- Draw a small stretch below the qualitative ruler around the tickmark.

Since the scale of the neighborhood is larger than the scale of the ruler (https://en.wikipedia.org/wiki/Scale_(map)\#Large_scale,_medium_ scale,_small_scale), though, drawing the neighborhood on top of the ruler, as is often done, can be misleading and, for the picture to be perfectly clear, we will draw the neighborhood of 0 just under the qualitative ruler:

EXAMPLE 1.53. With a given radius of 0.4 the neighborhood of 0 would extend from -0.4 to +0.4 :

So, a
DEFINITION 1.9 Neighborhood of 0 consists of the small numbers.
3. Sides of a neighborhood of $\mathbf{0}$. In order to deal separately with each side of a neighborhood of 0 , we will use

- $\mathbf{0}^{+}$(namely 0 with a little + up and to the right) which is standard code for nearby numbers right of 0 , that is for positive small numbers. (They are indeed to our right when we are facing 0 , the center of the neighborhood.) .
- $\mathbf{0}^{-}$(namely 0 with a little - up and to the right) which is standard code for nearby numbers left of 0 , that is for negative small numbers. (They are indeed to our left when we are facing 0 , the center of the neighborhood.) .

EXAMPLE 1.54. 0^{+}refers to nearby numbers right of 0 (such as for instance +0.37) and 0^{-}refers to nearby numbers left of 0 (such as for instance -0.88):

So, never forget that
neighborhood of ∞ neighborhood center
Mercator view

NOTE 1.10 A small ${ }^{+}$or ${ }^{-}$, alone and up to the right, is not an "exponent".

15 Picturing Large Numbers

1. In the Magellan view, we see that the two stretches beyond the ranges make up in fact a single stretch of the Magellan circle whose center is ∞ :

So,
Definition 1.10 A neighborhood of ∞ is the part of the Magellan circle that is beyond the upper cutoffs and whose center is ∞.

In other words, large numbers are near ∞ and to thicken ∞ will mean to look instead at ∞ together with large numbers.
2. But in the Mercator view (https://en.wikipedia.org/wiki/ Mercator_projection), which is when we look just at the qualitative ruler, we will say that a neighborhood of ∞ is the part of the qualitative ruler that is left of the negative upper cutoff and right of the positive upper cutoff.

In other words:
DEfinition 1.9 (Restated) Neighborhood of 0 consists of the large numbers.
3. Nearness. Instead of saying that a number is in a neighborhood of something, it is standard to say that the number is near that something. We then have a couple more ways to think of large:

DEFINITION 1.7 (Restated) h

- Large numbers are the numbers that are in a neighborhood of ∞.
- Large numbers are the numbers that are near ∞.

4. Sides of a neighborhood of ∞. In order to refer separately to each side of a neighborhood of ∞, we need to imagine that we are facing the center of the neighborhood in the Magellan view, that is that we are "facing ∞ ":

We will then say that:

- Numbers right of ∞ refers to large negative numbers because if we could be facing ∞ large negative numbers would then be right of ∞. We will use - large as code for numbers right of ∞.

EXAMPLE 1.55. -724873336 . is right of ∞ :

left of ∞

+ large
$-\infty$
$+\infty$
- Numbers left of ∞ refers to large positive numbers because if we could be facing ∞ large positive numbers would then be left of ∞. We will use + large as code for numbers left of ∞.

EXAMPLE 1.56. +724873336 . is left of ∞ :

5. Sides of ∞ in Mercator view. But we will also use the Mercator view and while it is fairly easy to remember which side is left of ∞ and which side is right of ∞ in the Magellan view, it;s easy to forget in the Mercator view.

So, we will also use the sign of the large numbers to refer to the sides of ∞ and we will label the extremities of qualitative rulers with $-\infty$ and $+\infty$ for which, however, there are no tickmarks because they do not label numbers but only "the end of the line".

- Magellan view:
- Mercator view:

But keep in mind that the (??) in the first place. (Again, the sign in front of ∞ designates a side of ∞.)

16 Computing With Qualitative Sizes

For computational purposes, qualitative sizes make up a rather crude system because:

- medium carries no information about where the lower cutoffs and the upper cutoffs are,
- large carries no information about where the upper cutoffs are, that is "how large" large is
- small carries no information about where the lower cutoffs are, that is "how small" small is
On the other hand, as we will see, qualitative sizes will carry plenty enough information for our investigations in this text. ${ }^{4}$

1. A good rule of thumb for experimenting with numbers of qualitative sizes will be

- medium: try ± 1,
- large: try ± 10.0 or ± 100.0 or ± 1000.0 etc
- small: try ± 0.1 or ± 0.01 or ± 0.001 etc

And of course, if a number is:

- large, then all numbers that are larger-in-size will themselves be large,
- small, then all numbers that are smaller-in-size will themselves be small.

We will now see to what extent we can compute with large, small and medium.
2. Addition and subtraction. large - large is undetermined because the result could be large, small or medium depending on "how large" each one of the two large is.

[^4]EXAMPLE 1.57. Here are two instances of large - large that are different in qualitative sizes:
$+1000000000000.7-+1000000000.4=+999000000000.3$,
but
$+1000000000000.5-+1000000000000.2=+0.3$.
3. Reciprocals and we have:

THEOREM 1.2 Reciprocal of qualitative sizes

- The reciprocal of \pm large is \pm small: $\frac{+1.0}{ \pm \text { large }}= \pm$ small,
- The reciprocal of \pm medium is \pm medium: $\frac{+1.0}{ \pm \text { medium }}= \pm$ medium,
- The reciprocal of \pm small is \pm large: $\frac{+1.0}{ \pm \text { small }}= \pm$ large.

Keeping in mind that generic codes always include the sign, we have

THEOREM 1.2 (Restated) Reciprocal of qualitative sizes

$$
\begin{aligned}
\text { Reciprocal of } h & =\frac{+1.0}{h}=L \\
\text { Reciprocal of } L & =\frac{+1.0}{L}=h \\
\text { Reciprocal of } x_{0} & =\frac{+1.0}{x_{0}}=y_{0}
\end{aligned}
$$

The fact that numbers that are near ∞ are far from 0 and therefore the change of viewpoint from 0 to ∞ makes it of course tempting to say that 0 and ∞ are reciprocal of each other and the more so that, on a Magellan circle, 0 and ∞ are diametrically opposed to each other. However,

- Since a neighborhood of ∞ looks a lot bigger than a neighborhood of 0 the situation is not really that symmetrical.
- Since we cannot divide any number by 0 (See ??, ??), we certainly cannot divide +1.0 by 0 and so 0 has no reciprocal.
- Since ∞ is not a number to begin with (See ??, ??) ∞ has no reciprocal. The last two, though, is where thickening with nearby numbers comes to the rescue:
- We can thicken 0 with small numbers
- We can thicken ∞ with large numbers
and then, using Theorem 1.2 (Page 38.) we get:

THEOREM 1.2 (Restated) Reciprocal of qualitative sizes

- The reciprocal of being near ∞ is being near 0 ,
- The reciprocal of being near 0 is being near ∞,
- The reciprocal of being near a medium number is being near a medium number.

4. Multiplication. While multiplying by 0 always gives 0 -see ?? (??), and while we cannot multiply by ∞ at all-See ?? (??), we can often multiply by small and by large:

THEOREM 1.3 Multiplication of qualitative sizes

\cdot	large	medium	small
large	large	large	$?$
medium	large	medium	small
small	$?$	small	small

i. The non-highlighted entries are pretty much as we would expect.

EXAMPLE 1.58. $10000 \cdot 1000=10000000$ and $0.01 \cdot 0.001=0.00001$
ii. The two highlighted entries, that is large \cdot small and small \cdot large, are undetermined because the result could be any of large, small or medium depending on how small is small compared to how large large is.

EXAMPLE 1.59. Here are three instances of large.small that are different in qualitative sizes: $1000 \cdot 0.1=100, \quad 1000 \cdot 0.001=1, \quad 1000 \cdot 0.00001=0.01$
5. Division. While we cannot divide by 0-see ?? (??), we can often divide by small and more generally we have::

THEOREM 1.4 Division of qualitative sizes

\div	large	medium	small
large	$?$	large	large
medium	small	medium	large
small	small	small	$?$

real number
i. The non-highlighted entries follow from Theorem 1.3 and the fact that Reciprocal of large $=1 \div$ large $=$ small and Reciprocal of small $=1 \div$ small $=$ large (Theorem 1.2).

EXAMPLE 1.60. $1000 \div 0.01=1000 \cdot$ Reciprocal $0.01=1000 \cdot 100=100000$
ii. The two highlighted entries, namely large \div large and small \div small, are undetermined because the result could be any one of large, small or medium depending on how large each one of the two large is and how small each one of the two small are.

EXAMPLE 1.61. Here are three instances of large \div large that are different in qualitative size:
$1000 \div 10=100, \quad 1000 \div 1000=1, \quad 100 \div 1000=0.1$

EXAMPLE 1.62. Here are three instances of small \div small that are different in qualitative size:
$0.001 \div 0.1=0.01, \quad 0.001 \div 0.001=1, \quad 0.01 \div 0.001=10$

17 Real Numbers

As opposed to Numbers, most textbooks use so-called real numbers which are an entirely different kind of numbers. This text will not really use real numbers and the purpose of this section is only to give the reader an idea of what the difficulties with really using real numbers would be and thus to explain why we will mostly use signed decimal numbers and how we will occasionally use real numbers.

1. What are real numbers anyway? Even though most college mathematics textbooks claim to use real numbers the closest they ever come to explaining what real numbers are is something along the lines of " a real number is a value of a continuous quantity that can represent a distance along a line." (https://en.wikipedia.org/wiki/Real_number.) Which, one has to admit, isn't particularly enlightening. ${ }^{5}$

But there is a very good reason for that: in contrast with signed decimal numbers, real numbers are extremely complicated to pin down.

[^5]
Abstract

EXAMPLE 1.63. "The real number system ($\mathbb{R} ;+; \cdot ;<$) can be defined axiomatically [...] There are also many ways to construct "the" real number system, for example, starting from natural numbers, (https: //en.wikipedia.org/wiki/Natural_number) then defining rational numbers algebraically (https://en.wikipedia.org/wiki/Rational_number), and finally defining real numbers as equivalence classes of their Cauchy sequences or as Dedekind cuts, which are certain subsets of rational numbers." (https://en.wikipedia.org/wiki/Real_number\#Definition) Which, unless you are a mathematician, is not exactly enlightening either. Moreover, the above "construction" is, in fact, quite incomplete as one really should: i. go the Dedekind cuts route and also extend the metric and show that the quotient is metric-complete, and ii. go the Cauchy sequence route and also extend the order and show that the quotient is order-complete, and iii. show that the two quotients are both metric-isomorphic and order-isomorphic. In any case, a very tall order.

2. Fractions and roots In fact, at best, that is when the given real number is a fraction or a root, a given real number is only like a Birth Certificate in that the given real number is just a name that says where the real number is coming from. But, by itself, certainly gives no indication of what its size is.

EXAMPLE 1.64.

- The fraction $\frac{4168}{703}$ is just a name for the solution of the equation $703 x=$ 4168 (Assuming there is a solution!)
- The root $\sqrt[3]{-17.3}$ is just a name for the solution of the equation $x^{3}=-17.3$. (Assuming there is a solution!)

However, this best case is actually extremely rare and most given real numbers do not tell us by themselves where they are coming from which

In textbooks it's of course the other way around, leaves us with no way to get even a rough idea of what the size of that given real number might be. You just have to find out from somewhere.

EXAMPLE 1.65.

- π is just a name that does not say by itself that π is "the ratio of a circle's circumference to its diameter". (https://en.wikipedia.org/wiki/Pi)
- e is just a name that does not say by itself that e is "a mathematical
constant which appears in many different settings throughout mathematics".
(https://en.wikipedia.org/wiki/E_(mathematical_constant))

3. Computing with real numbers can be done directly from the code only with the same two kinds of real numbers, that is when the real numbers are fractions or roots:
i. When the real numbers are fractions, there are rules to compare, add, subtract, multiply and divide directly with the codes. (https://en. wikipedia.org/wiki/Rational_number\#Arithmetic)

EXAMPLE 1.66. To know which is the larger of $\frac{4168}{703}$ and $\frac{5167}{831}$ we can use a rule that involves computing the "common denominator".
ii. When the real numbers are roots, there are rules to multiply and divide directly with the codes but not to add or subtract. (https://en. wikipedia.org/wiki/Nth_root\#Identities_and_properties)
iii. However, it is usually not possible to compute with both kinds of real numbers at the same time.

EXAMPLE 1.67. Add e and π or figure out which of the two is larger. (Hint: you can't do either from the code.)

And, even when the real numbers are fractions and roots, things can still be difficult.

EXAMPLE 1.68. Add $\sqrt[3]{64}$ and $\frac{876}{12}$ or figure out which of the two is larger. (Hint: you can do both but not with the only slightly different $\sqrt[3]{65}$ and $\frac{875}{12}$.)
iv. Of course, the examples in textbools use mostly fractions and/or roots even though it is at the cost of being immensely misleading if only because most real numbers are neither fractions nor roots. ${ }^{6}$

18 Decimal Approximations

The way engineers and physicists, chemists, biologists, compute with real numbers is by approximating the real numbers with signed decimal num-

[^6]bers.
procedure
[...]
largest permissible error

1. To begin with, one way or the other, all real numbers, including fractions and roots, come with a procedure for computing approximations by signed decimal numbers. Of course, the more "exotic" the real number is, the more complicated the procedure for approximating is.

EXAMPLE 1.69.

- To approximate $\frac{4168}{703}$, we use the division procedure to divide 703 into 4168. Few divisions, though, end of themselves. But when a division does not, the more we push the division, the better the approximation.
- To approximate $\sqrt[3]{17.3}$, we essentially proceed by trials and errors:
$2.0^{3}=8.0,3.0^{3}=27.0$, so, since 17.3 is between 8.0 and $27.0, \sqrt[3]{17.3}$ must be somewhere between 2.0 and 3.0. (But how do we know that it must?)
$2.7^{3}=19.683$ so, since 17.3 is less than $19.183, \sqrt[3]{17.3}$ must be less than
2.7 , etc. (But how do we know that it must?)

Of course, the actual procedure is systematic but that's the idea.

- There are many ways to approximate π. Perhaps the simplest one is the Gregory-Leibniz series whose first few terms are:
$\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\frac{4}{13} \ldots$
However, even with "500,000 terms, it produces only five correct decimal digits of $\pi^{\prime \prime}$ (https://en.wikipedia.org/wiki/Pi\#Approximate_ value)
- One of the very many ways to approximate e is:
$1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \ldots$
(https://en.wikipedia.org/wiki/E_(mathematical_constant)
\#Asymptotics)

2. Since a given real number is usually not equal to the signed decimal number that we will use to approximates it, in order to write equalities we will have to use:

DEFINITION 1.11 [...] will be code for "some small number, positive or negative, whose size is too small to matter here".

In other words, [...] is a signed number about which the only thing we know is that the size of [...] is less than the largest permissible error whichi is the equivalent here of a tolerance.

EXAMPLE 1.70.

- $\frac{4168}{703}=5.929+[\ldots]$ where [...] is less than 0.001 which is the largest permissible error. (Else the procedure would have generated 5.928 or 5.930 instead of 5.929.)
- $\sqrt[3]{17.3}=2.586318666944673+[\ldots]$ where [...] is less than 0.000000000000001 which is the largest permissible error. (Else the procedure would have generated 2.586318666944672 or 2.586318666944674 instead of 2.586318666944673 .)
- $\pi=3.1415+[\ldots]$ where [...] is less than 0.00001 which is the largest permissible error. (Else the procedure would have generated 3.1414 or 3.1416 instead of 3.1415 .)
- $e=2.71828182+[. .$.$] where [...] is less than 0.00000001$ which is the largest permissible error. (Else the procedure would have generated 2.71828181 or 2.71828183 instead of 2.71828182 .)

3. So we have come full circle back to signed decimal numbers and the question then is why should people who want to learn calculus have to use real numbers that they will then have to approximate with signed decimal numbers rather than use signed decimal numbers directly from the start?

Engineers, physicists, chemists, biologists, etc all use signed decimal numbers. After all, and to quote Gowers again, "physical measurements are not real numbers. That is, a measurement of a physical quantity will not be an exactly accurate infinite decimal. Rather, it will usually be given in the form of a finite decimal together with some error estimate: $x=3.14 \pm 0.02$ or something like that." ${ }^{7}$

And, certainly not least, "most calculators do not operate on real numbers. Instead, they work with finite-precision approximations." See "In computation" at https://gowthamweb.wordpress.com/2016/05/01/real-numbers/

The answer to the above question then is: no reason at all. As engineers are fond of saying, the real real numbers are the decimal numbers.

Except possibly if you want to become a mathematician. And even then, having worked with signed decimal numbers can help you learn about real numbers. (See Gowers' https://www.dpmms.cam.ac.uk/~wtg10/decimals. html)

So, in this text, like for engineers, scientists, and calculators, number

[^7](Agreement 1.3, page 9).
We are now, finally, ready to start on the calculus!
$=======$ Begin WORK ZONE $=======$
In ?? ?? of the Introduction of ?? Numbers on ??
In section 3 Plain Decimal Numbers on page 3
In subsection 3.1 Units on page 3
3
3.1
$=======$ End WORK ZONE $========$

Dans $x_{0}+h,|h|<1$ pour que $|h|>\left|h^{2}\right|>\left|h^{3}\right| \ldots$
Quand x_{0} n'est pas trop grand, cela correspond à quelque chose de réel. Par exemple, si x_{0} est un nombre que l'on veut réaliser, h est l'erreur que l'on commettra et $x_{0}+h$ sera ce qu'on obtiendra.

Mais je ne vois pas à quoi de réel h correspond quand x_{0} est grand.

EXAMPLE 1.71.

Lorsque x_{0} est, disons 73 un h de 0.1 correspond, par exemple, à une incertitude de mesure
Lorsque x_{0} est, disons 73000000 , à quoi correspond un h de 0.1 ?
Bien sûr, avec des unitées, on peut remplacer 73000000 mètres par 73 mégamètres et le h devient 0.1 mégamètres. Mais je ne crois pas que ça réponde vraiment à la question.

Functions of various kinds are "the central objects of investigation" in most fields of modern mathematics.
relation

Michael Spivak ${ }^{1}$

Chapter 2

Functions

Relations, 49 - Functions, 51 - Picturing Input-Output Pairs, 55

- Functions Specified By A Global Graph, 59 - Functions Specified By

A Global I-O Rule, 62 • Declaring Inputs, 64 - Returned Outputs, 66

- Onscreen Graph, 69 • Functioning With Infinity, 69 • Computing

Input-Output Pairs, 69 • Fundamental Problem, 71 • Joining Plot Points, 72

As we will see, the CALCULUS is about calculating with "functions" which are entities that "are widely used in science, and in most fields of mathematics." (https://en.wikipedia.org/wiki/Function_(mathematics).)

1 Relations

That a "single point usually does not carry enough information" (?? ??, ??.) is in fact an instance of a general principle, namely that there isn't a thing in the real world that stands alone, all by itself: every single thing in the real world is related to many other things.

EXAMPLE 2.1.

- Everything sits on something: people sit on chairs that sit on floors that sit on joists that sit on walls that sit on ...
- Human beings can only live in a society.

[^8]output
input
relation
pair
table

1. In fact, a thing is known only by the things that are related to it. The thing we want to know about will be the output and the thing that will give us the information about the output is the input.

EXAMPLE 2.2. The following are variants found in many cultures of the same thought:

You tell me: (input)	then	I'll tell you: (output)	
The company you keep		what you are	(Dutch)
Who's your friend	who you are	(Russian)	
What you are eager to buy	what you are	(Mexican)	
With whom you go	what you do	(English)	
Who your father is	who you are	(Philippine)	
What you eat	what you are	(French)	

(https://answers.yahoo.com/question/index?qid=
20090403194549AAYzSEr)
2. More precisely, a relation is specified by whatever process, device, procedure, agency, converter, exchanger, translator, etc, that pairs each input to the related output(s). See https://en.wikipedia.org/wiki/ Binary_relation

For instance, in disciplines like psychology, sociology, business, accounting, etc but also in the experimental part of physics, chemistry, biology, engineering, etc relations are often specified by tables.

EXAMPLE 2.3. The table

People: (input)	Thing(s) people like to do: (output(s))	
Andy	walking	playingi music
Beth		
Cathy	reading	walking learning calculus

specifies a relation in which Andy is paired (among others) to playing music, Beth is paired to nothing, and Cathy is paired (among others) to learning calculus.
3. Given a relation, there will be
call for

DEFINITION 2.1 Two kinds of problems :

- Direct problems where an input is given and we have to find all the outputs that the given input is paired to.
- Reverse problems where an output is given and we have to find all the inputs that are paired to the given output.

EXAMPLE 2.4. Given the relation in Example 2.3 (Page 50)

- A direct problem might be: What are all the things Andy likes doing?

Answer: walking, playing music

- A reverse problem might be: What are all the people who like walking ?

Answer: Andy, Cathy

2 Functions

To see if something is changing qualitatively we must look at it in relation to something else.

EXAMPLE 2.5. The only way to realize we are moving when we are in an airplane is to look out the window. Which is why, similarly, it took a long time for people to realize the earth is moving around the sun. Which is why to realize the entire galaxy we are in is moving is even harder.

This is even more the case for quantitative information.

EXAMPLE 2.6. We might say that someone's income tax was $\$ 2270$ but, by itself, that would not really be much information.
For instance, \$2270 was a lot less money in, for instance, Year 2013 than it was a century earlier, in Year 1913 —the year income tax was first established. Similarly, $\$ 2270$ would not be much money for a billionaire but would be a lot of money for a working stiff.
So, for saying that someone's income tax is $\$ 2270$ to be real information, there would have to be some table pairing Years or Incomes with Income Tax.

1. However, the fact that there is nothing to prevent a relation from pairing one input to many outputs can make seeing changes quite difficult.

EXAMPLE 2.7. That a slot machine can pair a number of coins with just about any number of coins makes the gambler's life quite hard. That a parking meter pairs a number of coins with only one parking time makes life a lot easier.
2. So we will restrict ourselves to functions, that is relations that satisfy the

DEFINITION 2.2 Functional requirement

No input can be paired to more than one output.
or, to put it as mathematicians would,
An input can be paired to at most one output.

EXAMPLE 2.8. In Example 2.7 (Page 52)
The slot machine does not satisfy the functional requirement because even when two persons input the same amount of money the slot machine can output different amounts of money.
The parking meter does satisfy the functional requirement because whenever two persons input the same amount of money the parking meter will always output the same amount of parking time.

EXAMPLE 2.9. The relation specified by the table

People (Input)	Things people like to do (Output)
Dave	skating
Eddy	driving
Fran	singing

satisfies the functional requirement

3. According to definition 2.2 , given an input, a function may return one output but

NOTE 2.1 A function may return no output. ${ }^{2}$

EXAMPLE 2.11. The relation specified by the table

People (Input)	Things people like to do (Output)
Guy	
Hazel	skiing
Izzy	

satisfies the functional requirement.

EXAMPLE 2.12. The relation specified by income tax tables is a function even though incomes below the minimum owe no income tax. (On the other hand, one might argue that the tax they owe is $\$ 0.00$ so this is perhaps not really quite a good example.)
4. On the other hand, it is quite possible for a function to pair many inputs to one same output. In other words, the very same output may be returned by a function for many inputs.

EXAMPLE 2.13. A business may be looked upon as the function specified by the input-output table of its profits/losses over the years:

[^9]for
at
direct problem
reverse problem

Fiscal Year	Profit/Loss
1998	+5000
1999	-2000
2000	
2001	+5000
2002	-2000
2003	-1000
2004	
2005	+5000

In 1998, 2001, and 2005 the business returned the same profit/loss namely $+5000$

AGREEMENT 2.1 "at" versus "for" We will often say "the output at the given input" as a shorthand for "the output returned by the function for the given input". .
5. In the case of a function, the two kinds of problems (Definition 2.1, page 51) become

Definition 2.1 (Restated) Two kinds of problems:

- Direct problems where an input is given and we have to find the single output (if any) that the function returns for the given input,
- Reverse problems where an output is given and we have to find all the (possibly several) inputs for which the function will return the given output.

EXAMPLE 2.14. Given the business in Example 2.13 (Page 53),

- A direct problem might be: What was the profit/loss in 1999?

Answer: - 2000

- A reverse problem might be: In what year(s) (if any) did the business return +5000 ?
Answer: 1998, 2001, 2005.

We will see that direct problems are usually easy to solve but, as might be expected, it is solving reverse problems, which is what solving "equations" is all about, that matters most in the real world.

EXAMPLE 2.15. Solving the direct problem of how much parking time three quarters will buy you is easy: just put three quarters in the parking meter and see how much parking time you get!
But in the real world, what we need to solve is the reverse problem of, when we want, say, two hours parking time, figuring how many quarters we need to put in the parking meter.
6. Given a function, an input-output pair is an input together with the (there can be at most one) output that the function returns for the input. It is standard to write input-output pairs within parentheses with a comma to separate the input from the output: (input, output).

EXAMPLE 2.16. Given the business in Example 2.13 (Page 53),

- ($1998,+5000$) and ($2002,-2000$) are input-output pairs,
- $(1999,+3000)$ is not an input-output pair because the table does not pair 1999 with +3000 ,
- There is no input-output pair involving 2000
- There is no input-output pair involving +3000

3 Picturing Input-Output Pairs

Given a function, we will often want to picture input-output pairs.

1. A simple-minded way to picture an input-output pair would be to:

- Tickmark the input on a quantitative input ruler as in section 10, (Page 26),
- Tickmark the output on a quantitative output ruler as in section 10 , (Page 26),
- Draw an input-output link from the input on the input ruler to the output on the output ruler.
plot
Cartesian setup screen

EXAMPLE 2.17. The input-output pair (Year 2003, \$-1000) in Example 2.13 (Page 53) could thus be pictured as follows:

Obviously, though, picturing input-output pairs that way is not going to work very well with more than a very few input-output pairs.
2. So, in order to plot input-output pairs, we will use:
A. A quantitative Cartesian setup, that is:

- A rectangular area which we will call screen.
- A quantitative input ruler placed horizontally below the screen
- A quantitative output ruler placed vertically left of the screen

EXAMPLE 2.18.

B. The following

Procedure 2.1 To get the plot point for an input-output pair

i. Tickmark the input on the input ruler,
ii. Draw an input level line, that is a vertical line through the input,
iii. Tickmark the output on the output ruler,
iv. Draw an output level line, that is a horizontal line through the output,
v. Then use:

- A solid dot to indicates that the intersection of the input level line and the output level line is a plot point, (The input-output link then goes from the marked input to the plot point to the marked output.)
or, as we wll need occasionally,
- A hollow dot to indicates that the intersection of the input level line and the output level line is not a plot point.

Temo 2.1 Plot the input-output pair $(-3,+40)$,
i. We tickmark the input -3 on the input ruler,
ii. We draw the input level line through -3 ,
iii. We tickmark the output +40 on the output ruler, iv. We draw the output level line through +40 ,
v. We plot the intersection of the input level line with the output level line.
(The plot point is the elbow of the input-output link)

LaNGUAGE 2.1 This setup is not the one used in most textbooks but in the real world it is standard practice to keep the rulers out of the way:

4. From a plot point, we can get back the input-output pair using:

PROCEDURE 2.2 To get the input-output pair from a plot point
i. Draw an input level line through the plot point,
ii. The input is where the level line intersects the input ruler,
iii. Draw an output level line through the plot point,
iv. The output is where the level line intersects the output ruler.

TEMO 2.2 Get the input-output pair from the plot-point

4 Functions Specified By A Global Graph

On the experimental side of engineering and the sciences, relations are also often specified by a curve drawn across a screen by some instrument.

1. These relation though are not necessarily functions because there might very well be input level lines with more than one intersection with the curve.

EXAMPLE 2.19. Given the curve

the input-level lines for inputs between -1 and +2 intersect the
curve in more than one point:

So the curve does not specify a function
2. But if it so happens that the curve meets the

Definition 2.2 (Restated) Functional requirement

No input level line intersects the curve in more than one point.
then the curve will specify a function and we will say that the curve is the graph of that function.

EXAMPLE 2.20. Given the curve

no input-level line intersects the
curve in more than one point:

So the curve specifies a function
3. When a function is specified by a graph, we get the plot point at a given input using:

Procedure 2.3 To get the plot point at x_{0} for a function specified by a global graph
i. Tickmark the given input on the input ruler,
ii. Draw the input level line through the given input,
iii. The plot point is the intersection of the input level line with the graph,

Temo 2.3 Get the plot point at -3 for the function specified by

i. We tickmark the input -3 on the input ruler,
ii. We draw the input level line through
-3
iii. The plot point is at the intersection of the input level line with the graph,

4. When a function is specified by a global graph, then, for a given input, we get the output using:

Procedure 2.4 To get the output at x_{0} for a function specified by a global graph.

i. Tickmark the giveninput on the input ruler,
ii. Get the plot point with ?? (??)
iii. Draw the output level line through the plot point,
iv. The output is at the intersection of the output level line with the output ruler.

TEMO 2.4 Get the output at -3 for the function specified by

i. We tickmark the input -3 on the input ruler,
ii. We use ?? to get the plot point,
iii. We draw the output level line through the plot point,
iv. The output is at the intersection of the output level line with the output ruler: +20

5 Functions Specified By A Global I-O Rule

Nevertheless, both in engineering and the sciences, the name of the game is functions specified "mathematically" rather than by tables or curves.

1. Functional symbols. The following is completely standard:
a. We will use f as name of a generic function.
b. We will use:

- \boldsymbol{x} as an unspecified input which is like an empty box waiting for $u s$ to specify the input,
and therefore
- $\boldsymbol{f}(\boldsymbol{x})$, to be read f of x, as the unspecified output which is like an empty box waiting for the function to return the output.

EXAMPLE 2.21. Say $J O E$ is the name of our favorite parking meter. Then x represents the slot waiting for us to put the coins and $\operatorname{JOE}(x)$ represents the display where the parking time that $J O E$ will give us in return for our coins will appear.
c. We will then use \xrightarrow{f} to write the so-called arrow notation

$$
x \xrightarrow{f} f(x)^{3}
$$

EXAMPLE 2.22. In Example 3.11 we can write the arrow notation

$$
x \xrightarrow{J O E} \operatorname{JOE}(x)
$$

2. The first of the two "mathematical" ways engineers and scientists use to specify a function is the way used for the functions to be investigated in this volume, namely:

Definition 2.3 Explicit Functions are functions specified by a global input-output rule in which $f(x)$ is specified in terms of x by some output-specifying code:

[^10](The reason we have to say "global" is that later we will have to distinguish global input-output rules from "local" input-output rules.)

EXAMPLE 2.23. In the global input-output rule

$$
x \xrightarrow[J I L L]{ } J I L L(x)=\frac{-2.71(x+54.23)}{-5.68 x^{3}+217.43}
$$

the output-specifying code is $\frac{-2.71(x+54.23)}{-5.68 x^{3}+217.43}$

From now on,
AGREEMENT 2.2 Function will be short for explicit function but only in this volume.

6 Declaring Inputs

Since explicit functions involve output-specifying code, our first step in inputting something will always be, as programmers do and no matter what the something, to declare the something by writing the declaration
$x \leftarrow$ something
to the right of anything in the arrow notation involving x.

EXAMPLE 2.24. Say $J O E$ is the parking meter in Example 3.14 so that the arrow notation is as in Example 4.15:

$$
x \xrightarrow{J O E} J O E(x),
$$

To declare that we put 3 Quarters in the slot, we write the declaration

to the right of anything in the arrow notation that involves x :

Then, after the replacement is done, we have

$$
3 \text { Quarters } \xrightarrow{J O E} J O E(3 \text { Quarters })
$$

where $J O E(3$ Quarters $)$ stands for what shows on the display.

The something can be a givable number x_{0} but most of the time, the something will be a neighborhood of a point.
$=========$ OK SO FAR $=========$

1. Given a function f, in order to input a givable number x_{0}, we declare that the unspecified input x is to be replaced by the givable number x_{0} which we do by writing the declaration
```
x}\leftarrow\mp@subsup{x}{0}{
```

to the right of anything in the arrow notation that involves x :

Then, after the replacement has been done, we have

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)
$$

EXAMPLE 2.25. Given the function $F R A N$, in order to declare the givable number -31.76 we write

Then, after the replacement has been done, we have

$$
-31.76 \xrightarrow{F R A N} F R A N(-31.76)
$$

2. Given a function f, in order to input a neighborhood of a givable number x_{0}, we will declare the generic nearby number $x_{0} \oplus h$ which we do by writing the declaration

$$
\left.\right|_{x \leftarrow x_{0} \oplus h}
$$

to the right of anything in the arrow notation that involves the unspecified input x :

so that, after the replacement has been done, we have

$$
x_{0} \oplus h \xrightarrow{f} f\left(x_{0} \oplus h\right)
$$

EXAMPLE 2.26. Given the function MIKE, to thicken the given input -31.76 , we declare the actual input $-31.76 \oplus h$

Then, after the replacement has been done, we have

$$
-31.76 \oplus h \xrightarrow{\text { MIKE }} \operatorname{MIKE}(-31.76 \oplus h)
$$

3.
4.

7 Returned Outputs

Given a function f, after we have declared whatever thing we want to input, the output-specifying code will usually return something . (But not necessarily, see Note 2.1, page 53.)
1.
qualitative Cartesian setup
Given a function f, after we have declared the given number x_{0}, the output-specifying code will usually return a resulting number. (But not necessarily, see Note 2.1, page 53.)

Using $\boldsymbol{y}_{\mathbf{0}}$ as generic code for a resulting number, we can write:

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=y_{0}
$$

or just

$$
x_{0} \xrightarrow{f} y_{0}
$$

which, inasmuch as it involves the name of the function, is a more precise way to write the input-output pair

$$
\left(x_{0}, y_{0}\right)
$$

one which we will use especially when there is more than one function involved in a situation.

EXAMPLE 2.27. Say $J O E$ is the function in Example 3.14 so that the arrow notation is as in Example 4.15

$$
x \xrightarrow{J O E} \operatorname{JOE}(x),
$$

and that we put 3 Quarters in the slot as in Example 2.25 so that we have:

$$
3 \text { Quarters } \xrightarrow{J O E} J O E(3 \text { Quarters })
$$

Now say JOE showed 45 Minutes on the display. (The internal mechanism of the parking meter is the real world equivalent of the output-specifying code.)
Then we would write

$$
3 \text { Quarters } \xrightarrow{J O E} J O E(3 \text { Quarters })=45 \text { Minutes }
$$

or just

$$
3 \text { Quarters } \xrightarrow{J O E} 45 \text { Minutes }
$$

which, inasmuch as it involves the name of the parking meter, is a more precise way to write the input-output pair
(3 Quarters, 45 Minutes)
one which we would use when, say, comparing different parking meters.
2. Given a function f, after we have thickened the given number x_{0}, the output can turn out to be quite complicated. In fact, dealing with $f\left(x_{0} \oplus h\right)$ is going to be a major part of our investigations. This is because $f\left(x_{0} \oplus h\right)$ is going to depend on h and what the output-specifying code is going to do with h is going to depend very much on the kind of function f is.
is sometimes used as a short for outputs for nearby inputs but doing so would risk being extremely misleading because

Note 2.2 Nearby outputs are not necessarily near the output for the given input.

EXAMPLE 2.28. Given the function $J I L L$ whose global graph is,

graph onscreen graph offscreen graph

- For nearby inputs left of +5.4 JILL returns outputs near +12.7 . For instance, $J I L L(+5.38)=+12.68$
- For nearby inputs right of +5.4 JILL returns outputs near +14.3 . For instance, $J I L L(+5.43)=+14.41$
and neither +12.68 nor +14.41 are near $J I L L(+5.4)=+13.8$

So:
Agreement 2.3 Nearby output will never be used in this text.
$=======$ Begin WORK ZONE $=======$ graph point will be used with qualitative Cartesian setup and global graph for qualitative graphs that include large inputs and small inputs
3. Of course, even though we can only draw on the screen, there are inputs too large to be drawn on the screen so that the global graph of a function really consists of two parts:

- The onscreen graph which is the part of the global graph that ...shows on the screen,
- An offscreen graph which is the part of the global graph that ... does not show on the screen and for which we reserved the offscreen space.

EXAMPLE 2.29.

8 Onscreen Graph

The onscreen graph involves the medium inputs for which the function returns medium outputs

$=======$ End WORK ZONE========

9 Functioning With Infinity

Obviously, because The tolerance is a plain decimal number (Page 8),
NOTE 2.3∞ can neither:
i. be declared as an input in output-specifying code,
nor
ii. result as an output from output-specifying code.

However this is not going to cause us any trouble because we will be able to thicken ∞ to large with

THEOREM 2.1 large

i. x can be declared to be large
ii. large can result from output-specifying code.

EXAMPLE 2.30. Let $R E C$ be the function specified by the global inputoutput rule:

$$
x \xrightarrow{R E C} R E C(x)=\text { Reciprocal of } x
$$

Then we get from Theorem 1.2 Reciprocal of qualitative sizes (Page 38):

input	output
large	small
small	large

10 Computing Input-Output Pairs

1. We can now show how we get input-output pairs using a global input-output rule:
execute
decode
perform format

PROCEDURE 2.5 To get the output at the given input x_{0}

i. Declare the unspecified input x to be the given number x_{0}
$\left.\left.x\right|_{x \leftarrow x_{0}} \stackrel{f}{\longrightarrow} f(x)\right|_{x \leftarrow x_{0}} \underbrace{\text { Code specifying } f(x) \text { in terms of } x}_{\text {Output-specifying code }}$
$\left.\right|_{x \leftarrow x_{0}}$
so that, after the replacement is done, we have

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\underbrace{\text { Code specifying } f\left(x_{0}\right) \text { in terms of } x_{0}}_{\text {Output-specifying code }}
$$

ii. Execute the output-specifying code that is:
a. Decode the output-specifying code which means write out the computations specified by the output-specifying code.
b. Perform the computations specified by the output-specifying code and thus get the number y_{0} which $f\left(x_{0}\right)$ is.
iii. Format the input-output pair according to the purpose:

- For computational purposes, use the equality

$$
f\left(x_{0}\right)=y_{0}
$$

- For graphic purposes, use the pair:

$$
\left(x_{0}, y_{0}\right)
$$

- For conceptual purposes, use the arrow notation:

$$
x_{0} \xrightarrow{f} y_{0}
$$

Temo 2.5 Get the output at -3 for the function specified by $x \xrightarrow{J A C K} J A C K(x)=-4 x \oplus+7$

i. We declare that x is to be replaced by -3 :

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{J A C K} J A C K(x)\right|_{x \leftarrow-3}=-4 x+\left.7\right|_{x \leftarrow-3}
$$

so that, after the replacement is done, we have

$$
-3 \xrightarrow{J A C K} J A C K(-3)=\underbrace{-4(-3) \oplus+7}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code which says to multiply the number -4 by a copy of the input -3 and then to \oplus the number +7

$$
=-4(-3) \oplus+7
$$

b. We perform the computations:

$$
\begin{aligned}
& =+12 \oplus+7 \\
& =+19
\end{aligned}
$$

iii. Format the input-output pair:

- For computational purposes: $\operatorname{JACK}(-3)=+19$
- For graphic purposes: $(-3,+19)$
- For conceptual purposes: $-3 \xrightarrow{\text { JACK }}+19$

2. Graphically, we can then use

Procedure 2.6 To get the plot point at a given input for an algebraic function

1. Get the output returned for the given input by the function with ?? (??),
2. Get the plot point for the input-output pair with ?? (??)

11 Fundamental Problem

Our overall goal in this text will be, roughly speaking, the investigation of various, very different, ways that functions can return outputs. But it is often useful to see on a global graph those inputs for which the function will return outputs that meet some requirement we are interested in.

EXAMPLE 2.31. Given the function $M I L T$ specified by the global graph

find the inputs whose output is less than +20 . From the onscreen graph,

we see that the answer is "All inputs between -2 and +1 "

So, in fact, we will devote quite a bit of time and energy to the
Definition 2.4 Fundamental Problem To get the global graph of a function specified by a global input-output rule.

12 Joining Plot Points

Indeed, solving the Fundamental Problem is almost never a simple matter because declaring given inputs can almost never get us a global graph any more than given numbers can specify an amount of stuff. Yet, chances are you were once told that to get the global graph of a function specified by a global input-output rule, you "just" had to:
i. Declare a few inputs and compute the outputs returned by the function for these inputs.
ii. Plot these input-output pairs,
iii. Join the plot points.

However, this so-called "procedure" is in fact total garbage which we therefore have to "dispose of properly":

1. Narrow mindedness To begin with, this so-called "procedure" cannot possibly get us the offscreen graph since the only input-output pairs we can plot are those for medium inputs as medium inputs are the only inputs we can declare in a global input-output rule. Which is already regrettable since just because something is offscreen doesn't mean it is not interesting.

EXAMPLE 2.32. "Many ancient civilizations collected astronomical information in a systematic manner through observation." See https://en. wikipedia.org/wiki/History_of_science

But what is most regrettable is that much of what happens onscreen is caused by what happens offscreen.

EXAMPLE 2.33. Even though what happens on earth is what we are immediately concerned with, much of what happens on earth depends on what happens very far away: tides are due to the pull of the moon and all the energy we use originates, one way or the other, from the sun and life on earth would cease instantly if the sun were to black out.

So:
Question i. How do we know what's onscreen is all there is to see? ${ }^{4}$ This is in fact a complicated question which we will address in Chapter 4 Features Near ∞.
2. Incomprehensibility But this so-called "procedure" is not likely to get us the onscreen graph either because of three additional questions ${ }^{5}$:

Question ii. How do we know which medium inputs we are to declare in the global input-output rule?

Question iii. How do we know which way to join the plot points?
Question iv. How do we know, after we have somehow joined whatever plot points we somehow got, if the curve we get is the onscreen graph?

EXAMPLE 2.34. Given a function specified by some global input-output rule, suppose we somehow got the following input-output pairs and therefore the plot:

[^11]| Inputs | -4 | -3 | -2 | +1 | +2 | +4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs | -1 | +3 | 0 | -1 | -2 | +3 |

Which of the following would you then say is the onscreen graph of the function:

As Example 2.34 demonstrates the answers to the above questions are:
Question ii. How do we know which medium inputs we are to declare in the global input-output rule?
Answer: At the very least, which inputs we declare will have to depend on the nature of the particular function we are trying to graph,

Question iii. How do we know which way to join the plot points?
Answer: Other than very exceptionally, there cannot possibly be a set way to join smoothly a plot,

Question iv. How do we know, after we have somehow joined whatever plot points we somehow got, if the curve we get is the onscreen graph?
Answer: On the basis of only a number of plot points, there is no way we
can decide what the global graph is going to look like.
As always in the real world, recreating an analog entity (a global graph) from a discrete sampling (a plot) is nowhere near simple.

EXAMPLE 2.35. Ask a sound engineer: how do you recreate from, say, a CD (discrete sampling) a music performance (analog signal)?
3. At this point, we were usually told "just get more plot points" but too many plot points can in fact make it impossible to join smoothly.

EXAMPLE 2.36. The function SINE belongs to the next volume, Transcendental Functions, but the point here is Strang's Famous Computer Plot of SINE ${ }^{6}$:

How are we to "join smoothly"?

And even computer generated graphs cannot always be taken at face value.
EXAMPLE 2.37. Given the function specified by the global input-output rule

$$
x \xrightarrow{C A T} C A T(x)=\frac{x^{3}-1}{x-2}
$$

which of the following computer generated graphs is the right one?

[^12]
4. Since we cannot rely on declaring Inputs (Page 64) to get the global graph of a function specified by a global input-output rule, we will have to develop:
i. What to use instead of plot points to get an onscreen graph which we will do in Chapter 3 Features Near x_{0}
ii. How to get the offscreen graph, which we will do in Chapter 4 Features Near ∞,
iii. How to put all this together to get a global graph which we will do in Chapter 5 Global Analysis
In those three chapters, though, our goal will only be:

- To introduce and discuss graphically the necessary concepts and
- To provide the reader with the means for picturing the "why" and the "how" of the computations we will need to do later when we investigate given algebraic functions.
Then, with ?? ??, we will finally start on our systematic investigation of increasingly complicated algebraic functions in which, of course, we will get their global graph.

In a crime novel, the victim is not the story. The story is around the victim.

Anonymous crime writer

Chapter 3

Features Near x_{0}

Local Place, 77 • Local graph, $80 \bullet$ Local code, $81 \bullet$ Local Height, 82

- Local extreme, 84 - Zeros And Poles, 87 - Conclusive information,

89 - Local Slope, 92 - Local Concavity, 94 - Pointwise Continuity, 96

- Local Smoothness, 100

You may recall that:
i. We saw in ?? ??that when we specify in the real world a given amount of stuff x_{0}, the number we get when we measure the actual amount of stuff will always differ from x_{0} by an error h so that the actual amount of stuff is described by $x_{0}+h$
ii. We saw in section 10 that just getting $f\left(x_{0}\right)$ can almost never get us any information about $f\left(x_{0+h}\right)$.
So, given a function f and given an input x_{0}, we now have two reasons for wanting to thicken the given input x_{0} into a neighborhood of x_{0}, that is into $x_{0}+h$ and then investigating $f\left(x_{0}+h\right)$.

1 Local Place

Thickening input numbers into input neighborhoods implies that we first need to do a thick equivalent of picturing Input-Output Pairs (Section 3, page 55.)

1. We will thicken input level lines into input level bands, that is into vertical bands through the input neighborhoods.
output neighborhood output level band

EXAMPLE 3.1. We will thicken the input level line

into the input level band

2. On the other hand, we won't always be able to thicken an output into an output neighborhood because it is the function which returns the nearby outputs and $f\left(x_{0}+h\right)$ is not necessarily going to be near $f\left(x_{0}\right)$ (nearby outputs are not necessarily going to be near the resulting output) which, in fact, may not even exist. See note 2.1 We will discuss this in Section 8 Smoothness near ∞. (Page 131)

But should we somehow know that $f\left(x_{0}+h\right)$ is near $f\left(x_{0}\right)$ (that is that nearby outputs are near the resulting output), then we will thicken the output level line into an output level band that is a horizontal band through the neighborhood of $f\left(x_{0}\right)$.

EXAMPLE 3.2. We will thicken into the output level band the output level line

3. Since a plot point is at the intersection of an input level line and an output level line, we will thicken a plot point into a local graph place, that is into the rectangle at the intersection of an input level band near x_{0} and an output level band near $f\left(x_{0}\right)$.
$======$ Begin WORK ZONE $=======$
However, inasmuch as we will usually deal separately with each one of the two
??
(??),
we will usually know which side of the input is linked to which side of the output
$=======$ End WORK ZONE $========$
and the sided local graph place will then consist of two smaller rectangles, one on each side of the input level line. To get a sided local graph place then,
we just thicken
Procedure 3.1 To get the sided local graph place for an input-output pair knowing which side of the input neighborhood is paired with which side of the output neighborhood.
i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The place for the given input - output pair is at the intersection of the corresponding sides of the level bands.

Temo 3.1 Get the sided place for $(+3,-5)$ given that:

- $+3^{-} \longrightarrow-5^{+}$
- $+3^{+} \longrightarrow-5^{-}$
i. We mark a neighborhood of +3 on the input ruler,
ii. We draw the input level band through the neighborhood of +3 ,
iii. We mark a neighborhood of -5 on the output ruler,
iv. We draw the output level band through the neighborhood of -5 ,
v. Mark: • left of $+3 \rightarrow$ above -5
- right of $+3 \rightarrow$ below -5

vi. The sided graph place for $(+3,-5)$ is at the intersection of the corresponding sides of the level bands.

2 Local graph

In some cases, depending on the kind of information we want, we will be able to get this information from the local graph place but in most cases we will need the local graph near x_{0}, that is the part of the global graph in the local graph place. To get the local graph near a bounded input then, we just thicken ?? (??):

Procedure 3.2 To get the local graph near x_{0} of a function specified by a global graph

i. Mark a neighborhood of x_{0} on the input ruler,
ii. Draw the input level band through the neighborhood of x_{0},
iii. The local graph near x_{0} is the intersection of the input level band with the global graph.

Temo 3.2 Get the local graph near -3 of the function whose global graph is

3 Local code

In order to describe separately what happens on each side of the given input, we will need:

Definition 3.1 Local Code near x_{0}
i. We will use a pair of angles, \rangle, to stand for the input neighborhood with a comma, between \langle and \rangle to stand for x_{0}.
ii. We will have to face x_{0} when coding local features.
iii. Then, the code that will record the local feature for

height
Height-sign

TEMO 3.3 Set up for the local code to record the local behavior near +3.27

Since the local graph is near a bounded input, we are facing it and we will code the local feature as we see it onscreen:

4 Local Height

Given a function f and a given input x_{0}, we will thicken the output at x_{0} into the height near x_{0}. As the use of the word "near" indicates, the height is a local feature and we will occasionally remind the reader of that by saying "local height" instead of just "height".

EXAMPLE 3.3.

The output at +3

is -12

The Height near +3

is $-12 \pm$ small

1. The Height-sign of f near x_{0} is the sign, + or - , of the outputs for nearby inputs on each side of the given input.

Procedure 3.3 To get the Height-sign near a given input of a function from its global graph,
i. Get from the local graph the sign, + or - , of the outputs for nearby inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)

Temo 3.4 Get Height-sign near +5 for the function IAN from the local graph near +5

i. We get from the local graph the sign of the outputs for nearby inputs on each side of +5 :

- The sign of the outputs left of +5 is -
- The sign of the outputs right of +5 is +

2. The height-size of f near a given input is the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of the given input.

Procedure 3.4 To get the Height-size near a given input of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of the given input,
ii. Code Height-size f according to Definition 3.1 (Page 81)

Temo 3.5 Get Height-size near +5 for the function IAN from the local graph near +5

i. We get from the local graph the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of +5 :
ii. We code the Height-size:

Height-size $I A N$ near $+5=\langle$ large, small \rangle

- The size of the outputs left of +5 is large
- The size of the outputs right of +5 is small

Temo 3.6 Get Height-size near ∞ for the function $I A N$ from the local graph near ∞

i. We get from the local graph the qualitative
ii. We code the Height-size: size, large, bounded or small, of the outputs for nearby inputs on each side of ∞ :

Height-size $I A N$ near $\infty=\langle l a r g e$, small \rangle

- The size of the height left of ∞ is large
- The size of the height right of ∞ is small

5 Local extreme

We will often compare the output at a given bounded input with the height near the given bounded input.

1. A local maximum-height input is a bounded input whose output is larger than the height near the bounded input. In other words, the output at a local maximum-height input is larger than the outputs for all nearby inputs.
local maximum-height input
$x_{\text {maxi-height }}$
local minimum-height input
x_{0} is al local maximum-height input whenever $f\left(x_{0}\right)>f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {max-height }}$ as a name for a local maximum-height input.
LANGUAGE $3.1 x_{\text {max }}$ is the usual name for a local maximum-height input but $x_{\text {max }}$ tends to suggest that it is the input x that is maximum while it is the output, $f\left(x_{\max }\right)$, which is "maximum".

Graphically, the local graph near $x_{\text {max-height }}$ is below the output-level line for $x_{\text {max-height }}$.

EXAMPLE 3.4. The function

EXAMPLE 3.5. The function

has a local maximum at -23.07 because the output at -23.07 is larger than the outputs for nearby inputs
has a local maximum at +4.32 because the output at +4.32 is larger than the outputs for nearby inputs
2. A local minimum-height input is a bounded input whose output is smaller than the height near the given input. In other words, the
$x_{\text {min-height }}$
local extreme-height input
output at a local minimum-height input is smaller than the outputs for all nearby inputs.
x_{0} is al local minimum-height input whenever $f\left(x_{0}\right)<f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {min-height }}$ as name for a local minimum-height input.
LANGUAGE $3.2 x_{\min }$ is the usual name for a local minimum-height input but $x_{\text {min }}$ tends to suggest that it is the input x that is minimum while it is its output, $f\left(x_{\text {min }}\right)$, which is "minimum".

Graphically, the local graph near $x_{\text {min-height }}$ is above the output-level line for $x_{\text {min-height }}$.

EXAMPLE 3.6. The function

Example 3.7. The function

has a local minimum at +81.35 because the output at +81.35 is smaller than the outputs for nearby inputs.
has a local minimum at +37.41 because the output at +37.41 is smaller than the outputs for nearby inputs.
3. Local extreme-height input are bounded inputs which are either a local maximum-height input or a local minimum-height input.

Note 3.1 Local extreme-height inputs can only be bounded inputs.
4. Minimization problems and maximization problems (https://en. wikipedia.org/wiki/Mathematical_optimization) as well as min-max problems (https://en.wikipedia.org/wiki/Minimax) are of primary importance in real life. So,

- It would be pointless to allow ∞ as a local extreme-height input since it cannot be reached in the real world,
- It would be meaningless to allow $+\infty$ as a locally largest output since $+\infty$ is always larger than any output or to allow $-\infty$ as a locally smallest output since $-\infty$ is always smaller than any output.

6 Zeros And Poles

1. Given a function f, a zero of f is a bounded input whose Heightsize is \langle small, small \rangle. We will distinguish two kinds of zeros according to their parity:

- An even zero is a zero whose Height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.

EXAMPLE 3.8. For the function f the bounded input +6 is an even
specified by the global graph

zero because:

- the outputs for inputs near +6 are all small,
- Height-sign f near $+6=\langle-,-\rangle$ (Same signs.)
- An odd zero is a zero whose Height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.
pole
parity
even pole odd pole

EXAMPLE 3.9. For the function f specified by the global graph

the bounded input +6 is an odd zero because:

- the outputs for inputs near +6 are all small,
- Height-sign f near $+6=\langle+,-\rangle$ (Opposite signs.)

2. Given a function f, a pole of f is a bounded input whose Heightsize is 〈large, large〉. We will distinguish two kinds of poles according to their parity:

We will distinguish two kinds of poles according to their parity:

- An even pole is a pole whose Height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.

EXAMPLE 3.10. For the function f specified by the global graph

the bounded input +6 is an even pole because:

- the outputs for inputs near +6 are all large,
- Height-sign f near $+6=\langle-,-\rangle$ (Same signs.)
- An odd pole is a pole whose Height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.

7. Conclusive information

EXAMPLE 3.11. For the function f specified by the global graph

the bounded input +-4 is an odd pole because:

- the outputs for inputs near -4 are all large,
- Height-sign f near $-4=\langle+,-\rangle$ (Opposite signs.)

7 Conclusive information

Inasmuch as we can see the Magellan input and the Magellan output, a Magellan view is conclusive while a Mercator view may often be inconclusive.

EXAMPLE 3.12. The Mercator view

is inconclusive regarding the outputs for inputs near +6 because when zooming out we could get something like

But

- While the Mercator view on the left would be conclusive regarding the outputs for inputs near +6 ,
- The Mercator view on the right would still be inconclusive.

On the other hand, the Magellan view

would be conclusive as we would see that the input +6 is a pole.

For the sake of simplicity, from now on

Agreement 3.1 Mercator view The Mercator view will always be assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a continuation of the onscreen graph. Of course, this begs the question: What is a continuation? For the time being we will just give a couple of examples and leave the answer for when we have local features with which to describe things.

EXAMPLE 3.13. To assume that the Mercator view
7. Conclusive information

is conclusive regarding the outputs returned for inputs near +6 is to assume that when zooming out we would get something like

Inasmuch as we can see the Magellan input and the Magellan output, a Magellan view is .

EXAMPLE 3.14. The Mercator view

is inconclusive regarding the outputs for inputs near +6 because when zooming out we could get something like
slope
slope-sign

But

- While the Mercator view on the left would be conclusive regarding the outputs for inputs near +6 ,
- The Mercator view on the right would still be inconclusive.

On the other hand, the Magellan view

would be conclusive as we would see that the input +6 is a pole.

8 Local Slope

1. Inasmuch as, in this text, we will only deal with qualitative information we will be mostly interested in the slope-sign: .

Procedure 3.5 To get Slope-sign near a given input for a

 function specified by a global graphi. Mark the local graph near the given input
ii. Then the slope-sign is:
/ when the local graph looks like $ノ$ or \ulcorner, that is when the outputs are increasing as the inputs are going the way of the input ruler,
\when the local graph looks like \or
, that is when the outputs are decreasing as the inputs are going the way of the input ruler.
iii. Code Slope-sign f according to Definition 3.1 (Page 81)

LANGUAGE 3.3 Slope-sign The usual symbols are + Instead of / and - instead of \ but, in this text, in order not to overuse + and - , we will use / and $\backslash .{ }^{1}$

Temo 3.7 Let $H I C$ be the function whose Mercator graph is

and let the given input be +2 . Then to get Slope-sign HIC near +2
i. We get the local graph near the given input:

ii. We then get
-The slope sign left of +2 is \backslash
The slope sign right of +2 is \backslash
which we code as:
Slope-sign $H I C$ near $+2=\langle\backslash\rangle$,

Temo 3.8 Let HIP be the function whose Mercator graph is

and let the given input be ∞. Then to get Slope sign HIP near ∞

[^13]slope-size
concavity
concavity-size
concavity-sign
i. We get the local graph near the given input:

ii. We then get that:
-The slope sign left of ∞, that is near $+\infty$, is /
-The slope sign right of ∞, that is near $-\infty$, is \backslash
which we code as:
Slope-sign HIP near $\infty=\langle/, \backslash\rangle$
2. In this text, we will not deal with slope-size other than in the case of a 0 -slope input that is an input, be it x_{0} or ∞, near which slopesize is small. This is because 0 -slope inputs will be extremely important in global analysis as finding 0-slope inputs comes up all the time in direct "applications" to the real world:

EXAMPLE 3.15. The function

EXAMPLE 3.16. The function

has both -17 and ∞ as 0 -slope inputs Only +3.4 is a 0 -slope input.

9 Local Concavity

1. Inasmuch as, in this text, we will be only interested in qualitative analysis we will not deal with the concavity-size but only with the concavity-sign:

Procedure 3.6 To get Concavity-sign near a given input for a function specified by a global graph
i. Mark the local graph near the given input
ii. Then the concavity-sign is:
\cup when the local graph is bending up like \or \nearrow,
\cap when the local graph is bending down like ζ or \.
iii. Code Slope-sign f according to Definition 3.1 (Page 81)

Language 3.4 Concavity-sign The usual symbols are + Instead of \cup and - instead of \cap but, in this text, in order not to overuse + and - , we will use \cup and \cap. ${ }^{2}$

Temo 3.9 Let $K I P$ be the function whose Mercator graph is

and let the given input be -1 . Then to get Concavity sign KIP near -1

2. Given a function f, the inputs whose Concavity-size is 0 will be particularly important in global analysis:

A bounded input x_{0} is a 0 -concavity input if inputs that are near x_{0} have small concavity. We will use $x_{0 \text {-concavity }}$ to refer to 0 -concavity inputs.

[^14]continuous at x_{0} continuous

EXAMPLE 3.17. Given the functionEXAMPLE 3.18. Given the function whose Mercator graph is

whose Mercator graph is

10 Pointwise Continuity

The use of nearby inputs instead of the given input raises a most important question: To what extent are the nearby outputs (outputs for nearby inputs) all near the output at the given input? And, as it turns out, the question has no simple answer. So, as a backdrop to what will be the case with Algebraic Functions, we will just illustrate some of the many different possible answers.

1. Continuity at $\boldsymbol{x}_{\mathbf{0}}$. Given a bounded input x_{0}, a function f is continuous at $\boldsymbol{x}_{\mathbf{0}}$ when all the outputs for nearby inputs are themselves near $f\left(x_{0}\right)$, the output at x_{0}.

EXAMPLE 3.19. The function

is continuous at +13.06 because:

- the output at +13.06 is -52.42 and
- the outputs for all nearby Inputs, both left of +13.06 and right of +13.06 , are themselves near -52.42 .

EXAMPLE 3.20. The function

is continuous at -18.71 because

- the output at -18.71 is -12.28
and
- the outputs for all nearby Inputs, both left of -18.71 and right of -18.71 , are themselves near -12.28.
discontinuous
discontinuous at x_{0}
jump
hollow dot

2. Discontinuity at x_{0}. Given a bounded input x_{0}, a function is discontinuous at x_{0} when not all the outputs for nearby inputs are near $f\left(x_{0}\right)$, the output at x_{0}.

- A function can be discontinuous at x_{0} because the function has a jump at x_{0}, that is because the outputs for nearby inputs on one side of x_{0} are all near one bounded output while all the outputs for nearby inputs on the other side of x_{0} are near a different bounded output.

Since we use solid dots to picture input-output pairs, we will use hollow dots for points that do not picture input-output pairs.

EXAMPLE 3.21. The function

is discontinuous at +3 because the function has a jump at +3 that is:

- the outputs for nearby inputs right of +3 are all near +15 ,
but
- the outputs for nearby Inputs left of +3 are all near +13 .
gap
cut-off input
on-off function
transition function transition input

EXAMPLE 3.22. The function

is discontinuous at -9 because the function has a double jump at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- the output for -9 itself is +11.6 .
- A function can be discontinuous at x_{0} because the function has a gap at x_{0}, that is because the function does not return a bounded output for x_{0}

EXAMPLE 3.23. The function is discontinuous at -9 because the

function has a gap at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- there is no output for -9 itself.
- Actually, discontinuous functions are quite common in Engineering.

EXAMPLE 3.24. The following on-off functions are both discontinuous but are different since the outputs for the cut-off inputs are different.

EXAMPLE 3.25. The following transition functions are both discontinuous but are different since the outputs for the transition inputs are different.

- And, finally, there are even functions that are discontinuous everywhere! See https://en.wikipedia.org/wiki/Nowhere_continuous_function

3. Quasi-continuity at x_{0}. A function is quasi-continuous at x_{0} if the discontinuity could be removed by overriding or supplementing the global input-output rule with an input-output table.

LANGUAGE 3.5 Removable discontinuity at x_{0} is the standard term but, for the sake of language consistency, rather than saying that a function has (or does not have) a removable discontinuity at x_{0}, we will prefer to say that a function is (or is not) quasi-continuous at x_{0}.

EXAMPLE 3.26. The function in Example 3.22 is discontinuous at -9 but the discontinuity could be removed by overriding the inputoutput pair $(-9,+11.6)$ with the input-output table

Input	Output
-9	+7.2

$=========$ OK SO FAR $========$
$=======$ Begin WORK ZONE $=======$
smoothness
kink
smooth

11 Local Smoothness

For several reasons, smoothness is quite a bit more difficult to pin down than continuity.

1. Roughly, smoothness extends to slope and concavity the requirements that continuity made on the height namely that slope and concavity should not change abruptly. There is a big difference though:

- In the case of continuity, we need to look at what happens at the given input and then to what happens near the given input but only to see if there is a jump and not even when there is a gap at x_{0}.
- In the case of slope and concavity, on the other hand, even with local graphs, neither slope nor concavity makes sense at the given input and what matters is only what happens near the given input.

NOTE 3.2 Smothness near vs. smoothmess at Most unfortunately, the usual mathematical concept of smoothness implies continuity which is not the way we think of smoothness in the real world.

EXAMPLE 3.27. A PVC sewer and drain pipe is usually perceived as being "smooth" regardless of whether or not it is solid or perforated and a smoothly bending copper pipe doesn't stop being so if and when it develops a pinhole.

So, in this text and in trying to picture smoothness, we will go by $f\left(x_{0}+\right.$ h) and not pay any attention to $f\left(x_{0}\right)$.
2. The first degree of smoothness is for the slope to be continuous, that is, to borrow a word from plumbing, we don't want the curve to have any kink. More precisely, we don't want any input x_{0} for which there is a "jump in slope" from one side of x_{0} to the other side of x_{0}. In other words, we don't want any input x_{0} for which the slope on one side differs from the slope on the other side by some bounded number.
3. The second degree of smoothness is for the concavity to be continuous but this is much harder to picture because it is hard to judge by just looking how much a curve is bending.

So, in this text, smoothness will refer to just the first degree of smoothness, that is for the curve to have no kink which, fortunately and as we will see, will make it easy to be "reasonable" about smoothness.

Shoes need feet to walk!
Everything needs something to function!.

Mehmet Murat ildan
compactification
Magellan input
input Magellan circle

Chapter 4

Features Near ∞

```
Compactification, 103 \bullet Local graph place near }\infty,106 \bullet Local graph
near }\infty,108 \bullet Offscreen graph, 111 \bullet Local code near \infty, 115 \bullet Height
near }\infty,117 - Continuity at \infty,125 \bullet Smoothness near \infty,131
```

While what we will do in this chapter near ∞ will essentially be the same as what we did near x_{0} in Chapter 3 Features Near x_{0}, the difficulty near ∞ will be "seeing" large numbers in the Mercator view as they really are.

1 Compactification

This is where the Magellan view will be most helpful because, not only is the information provided by the Mercator view not always conclusive with regards to large numbers, but the Magellan view will often explain what happens offscreen and therefore also what happens onscreen.

1. Magellan inputs So, the first thing we need is the equivalent of a Cartesian setup with an input Magellan circle in place of an input ruler
output Magellan circle thicken
neighborhood of ∞ nearby input

and an output Magellan circle instead of an output ruler

$=========$ OK SO FAR $=========$
2. We will thicken ∞ into a neighborhood of ∞. Then, by nearby inputs, with ∞ going without saying, we will mean large inputs

Since we will use the words near inputs both when the given input is x_{0} and when the given input is ∞, we must clarify:

Note 5.1 (Restated) Location of essential inputs will be short for outputs returned by the function f for nearby inputs that is:

- When the given input is bounded, nearby inputs are bounded inputs near the given input,
- When the given input is ∞, nearby inputs are large bounded inputs near the ∞,
$=======$ Begin WORK ZONE $=======$

3. Magellan views are conclusive.

Any answer, though, will obviously depend on whether or not ∞ is allowed as Magellan input and Magellan output and the reader must be warned that the prevalent stand in this country is that ∞ does not exist and that one should use limits. (For what limits are, see https://en. wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason and certainly for none ever given. ${ }^{1}$

As for us, we will allow ∞ as Magellan input and Magellan output, an old, tried and true approach. See https://math.stackexchange.com/ questions/354319/can_a_function_be_considered_continuous_if_it_ reaches_infinity_at_one_point and, more comprehensively, https:// en.wikipedia.org/wiki/Extended_real_number_line.
$=======$ End WORK ZONE========
$=====$ TRANSFERRED FROM OLD $3======$
Nor can we declare a Magellan input because ∞ can neither: (Page 69).
However, in both cases we can, and will, declare nearby inputs and so, even though the computations will actually be different, the concept will be the same and so it will be convenient to agree that, from now on, a

Agreement 4.1 Given input can be either a bounded input x_{0} or the Magellan input ∞.
$=========$ OK SO FAR $=========$
$=========$ OK SO FAR $=========$
4.
5. We will thicken input level lines into input level bands that is vertical bands through the input neighborhoods.

[^15]output neighborhod=======OK SO FAR========= output level band $=========$ OK SO FAR $=========$
local behavior
local analysis
locate
global analysis
local graph place
6. On the other hand, we won't always be able to thicken an output into an output neighborhood because it is the function which returns the outputs for nearby inputs and the outputs for nearby inputs may not be near the output at the given input. (We will discuss this in the next section, Smoothness near ∞. (Page 131)

Nevertheless, we will often have to use output level bands that is horizontal bands through the neighborhoods of outputs

7. The local behavior of a function f at a given input will then be determined by the outputs returned by f for nearby inputs. The local analysis of f will be the investigation of the local behaviors of f.

In contrast, locating the input(s), if any, at which a function f has a required local behavior will be a problem in global analysis inasmuch as it will involve searching among all possible inputs.

$$
\begin{aligned}
& =========\text { OK SO FAR }========= \\
& =========\text { OK SO FAR }==========
\end{aligned}
$$

2 Local graph place near ∞

$=======$ Begin WORK ZONE $=======$
Since plot points are at the intersection of an input level line and an output level line, we will thicken plot points into local graph places at the intersection of an input level band and an output level band.
$=======$ End WORK ZONE $=======$
But given an input, be it ∞ or x_{0}, we will usually deal separately with each side of the input neighborhood. See ?? ?? (??) and ?? ?? (??.). We will thus know which side of the input is linked to which side of the output
and the sided local graph place will then consist of two smaller local sided local graph place graph places, one on each side of the given input.

1. We obtain the procedure to get a sided local graph place just by thickening ?? (Page 57):

PROCEDURE 4.1 To get the sided local graph place for an input-output pair knowing which side of the input neighborhood is paired with which side of the output neighborhood.
i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The place for the given input - output pair is at the intersection of the corresponding sides of the level bands.

Temo 4.1 Get the sided place for $(-4, \infty)$ given that:

- $-4^{-} \longrightarrow-\infty$
- $-4^{+} \longrightarrow+\infty$
i. We mark a neighborhood of -4 on the input ruler,
ii. We draw the input level band through the neighborhood of -4 ,
iii. We mark a neighborhood of ∞
on the output ruler,
iv. We draw the output level band through the neighborhood of ∞,
v. Mark: • left of $-4 \rightarrow$ near $-\infty$
- right of $-4 \rightarrow$ near $+\infty$

vi. The sided graph place for $(-4, \infty)$ is at the intersection of the corresponding sides of the level bands.

Temo 4.2 Get the sided place for $(\infty,+2)$ given that:

- $-\infty \longrightarrow+2^{+}$
- $+\infty \longrightarrow+2^{-}$
i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞,
iii. We mark a neighborhood of +2 on the output ruler,
iv. We draw the output level band through the neighborhood of +2 ,
v. Mark: • $-\infty \rightarrow+2^{+}$
- $+\infty \rightarrow+2^{-}$

vi. The sided graph place for $(\infty,+2)$ is at the intersection of the corresponding sides of the level bands.

Temo 4.3 Get the sided place for (∞, ∞) given that:

- $-\infty \longrightarrow-\infty$
- $+\infty \longrightarrow-\infty$
i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞,
iii. We mark a neighborhood of ∞ on the output ruler,
iv. We draw the output level band through the neighborhood of ∞,
v. Mark: • $-\infty \rightarrow-\infty$
- $+\infty \rightarrow-\infty$

vi. The sided graph place for (∞, ∞) is at the intersection of the corresponding sides of the level bands.
$========$ OK SO FAR $=========$
$=========$ OK SO FAR $=========$

3 Local graph near

As we will see, the local graph place near ∞ will get us the information we want for some local feature but in most cases we will need the local graph
near ∞ near the given input, that is the part of the global graph which is in the local graph place.
local graph extremity

Later, we will get local graphs from the global input-output rule but for the time being, and since in this chapter we only want to name and describe local features, the global input-output rule will go without saying and, as per ?? (??), we will get local graphs from the global graph of the function.

1. Local graph near ∞ When the given input is ∞, how we proceed depends on whether we have a Mercator view or a Magellan view of the global graph:

- With a Magellan view of the global graph, we proceed pretty much as in $? ?$ and once we imagine facing ∞, we can see which side is which.

EXAMPLE 4.1.

Jack is facing ∞ so the local graph near $+\infty$ which is to his left is left of ∞ and the local graph near $-\infty$ which is to his right is right of ∞.

- With only a Mercator view of the global graph, there is of course no way we can get the whole local graph near ∞ and we will have to content ourselves with just the extremities of the local graph near ∞. However, since we cannot face ∞ and can only face the screen, we have to keep in mind ?? ?? (??) so that
- The extremity of the local graph near $+\infty$ (left of ∞) is to our right,
- The extremity of the local graph near $-\infty$ (right of ∞) is to our left.

EXAMPLE 4.2.

Jill is facing the screen so she can only see the extremities of the local graph near ∞ and she must keep in mind ?? ?? (??) so that the local graph near $+\infty$ (to her right) is left of ∞ and the local graph near $-\infty$ (to her left) is right of ∞.

But then we can still use ?? to get a local graph near ∞.

Temo 4.4 Get the local graph near ∞ of the function whose Mercator graph is

i. We mark a neighborhood of ∞ on the input ruler by marking the part of the input ruler beyond the bounds.,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph near ∞ is the intersection of the input level band with the global graph,

4 Offscreen graph

We come now to ?? which we raised in ????. More precisely, an onscreen graph is very likely to be inconclusive in that the information given by an onscreen graph is most likely to depend on both:

- The input bounds.

EXAMPLE 4.3. The onscreen graph within the input bounds $-200,+200$

is not conclusive because, increasing the input bounds from $-200,+200$ to $-400,+400$ may give the onscreen graph

just as well as the onscreen graph

- The output bounds.

EXAMPLE 4.4. The onscreen graph within the output bounds $-100,+100$

is not conclusive because, increasing the output bounds to $-200,+200$ may give for the very same inputs
 clusive.

So, the offscreen graph can involve two very different kinds of inputs.

1. The offscreen graph always includes the Local graph near ∞, which is the part of the global graph, for large inputs left and right of the screen. Even though the local graph near ∞ is really in one single piece because large inputs are in a neighborhood of ∞, the local graph near ∞ appears to be in two pieces, one piece on each side of the screen:

- The part of the local graph near ∞ for inputs near $-\infty$, that is for inputs
that are -large and which is therefore left of the screen but right of ∞. polar graph
- The part of the local graph near ∞ for inputs near $+\infty$, that is for inputs that are + large and which is therefore right of the screen but left of ∞.

On the other hand, keep in mind that even for large inputs, a function may return outputs of any qualitative size, bounded, large or small.

EXAMPLE 4.5.

The large inputs both left and right of the screen have large outputs.

EXAMPLE 4.6.

- The large inputs left of the screen have small outputs,
- The large inputs right of the screen have bounded outputs,

2. The offscreen graph may include parts, the polar graphs, which are for bounded inputs that are near poles, that is near bounded input(s) for whose nearby inputs the function returns large outputs. A polar graph is in two parts, one on each side of the pole

- The left part of the polar graph, that is the part of the polar graph which is for nearby inputs that are left of the pole,
- The right part of the polar graph, that is the part of the polar graph which is for nearby inputs that are right of the pole,

EXAMPLE 4.7.

- The nearby inputs left of -31.38 have +large outputs,
- The nearby inputs right of -31.38 have -large outputs,

EXAMPLE 4.8.

The nearby inputs both left and right of +18.22 have + large outputs.
3. Kinds of offscreen graphs Because, as we will see, some algebraic functions do not have any pole while some algebraic functions do have pole(s), what the offscreen graph will be in each instance will depend on the answer to what will turn out to be the

Definition 4.1 \$64,000 Question

- Do all bounded inputs have bounded outputs?
or
- Is(Are) there any pole(s)?

So, the first step in our overall approach to the ?? will be:

Procedure 4.2 To get the offscreen graph.

i. Get the local graph near ∞.
ii. Answer the ??:
iii. Get the polar graph(s) if any.

In other words, depending on the answer to the, there will be two kinds of offscreen graphs:

- If the function has no pole, that is if the function returns bounded outputs for all bounded inputs, then the offscreen graph will include just the local graph near ∞.

- If the functional requirement has pole(s), that is if there are bounded input(s) near which the function returns large outputs, then the offscreen graph will include polar graphs in addition to the local graph near ∞.

EXAMPLE 4.10.

5 Local code near ∞

Since there is no reason to expect the local behavior of a function to be the same on both sides of the given input, be it x_{0} or ∞, see ?? ?? (??) and ?? ?? (??), in order to describe separately the local behavior on each side of the given input, we need:

Definition 4.2 Local Code Given an input, be it x_{0} or ∞,
i. We will use a pair of angles to stand for the input neighborhood with a comma in-between the angles to separate the sides: \langle,$\rangle .$
ii. We must face the given input when coding local features.
iii. Then, the code that records the local feature for nearby inputs

(Keep in mind that when the given input is ∞ we must imagine facing ∞ to know which is the left side and which is the right side of ∞.)

TEMO 4.5 Set up for the local code to record the local behavior near ∞ according to the local graph

Since the local graph is near infinity, which we can only imagine facing, to encode the local behavior, the local feature for inputs left of $\infty \quad$ for inputs right of ∞ goes left of the comma. goes right of the comma.

We must imagine facing ∞ :

$=========$ OK SO FAR $=========$

$=========$ OK SO FAR $========$

6 Height near ∞

We will just extend the concept of D for a bounded input x_{0} to the concept of local height for ∞

The Height near ∞

is -large for inputs left of ∞ and - small for inputs right of ∞
Given a function f, we will thicken the output at a given input, be it x_{0} or ∞, into the height near the given input.

EXAMPLE 4.11.

The output at +3

is -12

The Height near +3

is $-12 \pm$ small

The Height near ∞

is -large for inputs left of ∞ and -small for inputs right of ∞
$=========$ OK SO FAR $========$
$=========$ OK SO FAR $=========$

1. The Height-sign of f near a given input is the sign, + or - , of the outputs for nearby inputs on each side of the given input.

Procedure 4.3 To get the Height-sign near a given input of a function from its global graph,
i. Get from the local graph the sign, + or - , of the outputs for nearby inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)

Temo 4.6 Get Height-sign near +5 for the function $I A N$ from the local graph near +5

i. We get from the local graph the sign of the outputs for nearby inputs on each side of +5 :

- The sign of the outputs left of +5 is -
- The sign of the outputs right of +5 is +

TEMO 4.7 Get Height-sign near ∞ for the function $I A N$ from the local graph near ∞

i. We get from the local graph the sign of the outputs for nearby inputs on each side of ∞ :

- The sign of the height left of ∞ is +
- The sign of the height right of ∞ is -
ii. We code the Height-sign:

Height-sign $I A N$ near $\infty=\langle+,-\rangle$
$========$ OK SO FAR $=========$
$=========$ OK SO FAR $=========$
$======$ Begin WORK ZONE $=======$
whose Height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$. In other words, poles and zeros are even
whose Height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$. In other words, poles and zeros are odd
2. The height-size of f near a given input is the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of the given input.

Procedure 4.4 To get the Height-size near a given input of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of the given input,
ii. Code Height-size f according to Definition 3.1 (Page 81)

Temo 4.8 Get Height-size near +5 for the function $I A N$ from the local graph near +5

i. We get from the local graph the qualitative size, large, bounded or small, of the outputs for nearby inputs on each side of +5 :
ii. We code the Height-size:

Height-size $I A N$ near $+5=\langle$ large, small \rangle

- The size of the outputs left of +5 is large
- The size of the outputs right of +5 is small

TEMO 4.9 Get Height-size near ∞ for the function $I A N$ from the local graph near ∞

3. The concept of Height provides us with conveniently systematic names:

- For a pole: $\boldsymbol{x}_{\infty \text {-height }}$
- For a zero: $\boldsymbol{x}_{0 \text {-height }}$
$========$ OK SO FAR $=========$
$=========0$ OK SO FAR $=========$
$=======$ Begin WORK ZONE $=======$
To do for the offscreen graph what we did in Chapter 3 for the onscreen graph requires that we first thicken infinity just the way we thickened bounded inputs in Chapter 3.

Obviously, the means in the case of ∞ will be quite different from the means we used in Chapter 3 for bounded inputs but, interestingly enough, the ends in both cases, that for infinity as well as that for bounded inputs, will be strikingly similar.

In fact, even the means, if not similar, will nevertheless remain in remarkably the same spirit and the reader should make every effort to identify and determine this spirit.

$$
=======\text { End WORK ZONE }========
$$

A function can be discontinuous at x_{0} because the function has a pole at x_{0}.

EXAMPLE 4.12. The function

is discontinuous at -4 because not only does the function have a gap at -4 but the function has a pole at -4 that is:

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large, but - -4 has no bounded output.

4. Conclusive information Inasmuch as we can see the Magellan input and the Magellan output, a Magellan view is conclusive while a Mercator view may often be inconclusive.

EXAMPLE 4.13. The Mercator view

is inconclusive regarding the outpust returned for large inputs because when zooming out we could get something like

which would both still be inconclusive regarding the outputs returned for large inputs. On the other hand, either one of the Magellan views,

and

would be conclusive as we would see:

- from the Magellan view on the left that, for the Magellan input ∞, the function returns the bounded output -7 ,
- from the Magellan view on the right that, for the Magellan input ∞ is a pole.

EXAMPLE 4.14. To assume that the Mercator view

is conclusive regarding the outputs for large inputs is to assume that when zooming out we would get something like

EXAMPLE 4.15. The Mercator view

is inconclusive regarding the outpust returned for large inputs because when zooming out we could get something like

which would both still be inconclusive regarding the outputs returned for large inputs. On the other hand, either one of the Magellan views,
and

would be conclusive as we would see:

- from the Magellan view on the left that, for the Magellan input ∞, the function returns the bounded output -7 ,
- from the Magellan view on the right that, for the Magellan input ∞ is a pole.

For the sake of simplicity, from now on

Agreement 4.2 Mercator view The Mercator view will always be assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a continuation of the onscreen graph. Of course, this begs the question: What is a continuation? For the time being we will just give a couple of examples and leave the answer for when we have local features with which to describe things.

Example 4.16. To assume that the Mercator view

is conclusive regarding the outputs returned for inputs near +6 is to assume that when zooming out we would get something like

EXAMPLE 4.17. douputs To assume that the Mercator view

is conclusive regarding the outputs for large inputs is to assume that when zooming out we would get something like

$=======$ End WORK ZONE $========$

EXAMPLE 4.18. For the function

the Magellan input ∞ is a zero because:
the outputs for nearby inputs, both inputs right of ∞ and inputs left of ∞, are all small,

7 Continuity at ∞

The use of nearby inputs instead of the given input raises a crucial question: Are the outputs for nearby inputs all near the output at the given input?

Any answer, though, will obviously depend on whether or not ∞ is allowed as Magellan input and Magellan output and the reader must be warned that the prevalent stand in this country is that ∞ does not exist and that one should use limits. (For what limits are, see https://en. wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason and certainly for none ever given. ${ }^{2}$

As for us, we will allow ∞ as Magellan input and Magellan output, an old, tried and true approach. See https://math.stackexchange.com/ questions/354319/can_a_function_be_considered_continuous_if_it_

[^16]reaches_infinity_at_one_point and, more comprehensively, https:// en.wikipedia.org/wiki/Extended_real_number_line.

As a backdrop to what we will be doing with Algebraic Functions, we will now show some of the many different possible answers to the above question. For clarity, we will deal with bounded inputs and bounded outputs separately from ∞ as Magellan input and Magellan output.

Keep in mind that we use solid dots to picture input-output pairs as opposed to hollow dots which do not picture input-output pairs.

1. Magellan continuity at x_{0}. A function is Magellan continuous at x_{0} when we could remove the discontinuity at x_{0} by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan output.

EXAMPLE 4.19. The function in Example 4.12 is discontinuous at -4 because the function has a gap at -4 but Magellan continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

2. Magellan continuity at ∞. A function is Magellan continuous at ∞ when we could remove the discontinuity at ∞ by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan input and/or as Magellan output.

EXAMPLE 4.20. The function

is discontinuous at ∞ but is Magellan continuous since we could remove the discontinuity with an input-output table involving ∞ as Magellan input and Magellan out-

put,

EXAMPLE 4.21. The function

is discontinuous at ∞ but is Magellan continuous since we could remove the discontinuity with an input-output table involving ∞ as Magellan input and Magellan output

3. Dealing with poles. The difficulty here stems only from whether or not it is "permisible" to use ∞ as a given input and/or as an output.

Even though, because There are no symbols for size-comparisons of signed-numbers (Page 69), ∞ can neither: we do use ∞ as a (Magellan) input and as a (Magellan) output because, as explained in ?? (??), we will only declare nearby inputs. (Which will shed much light on the local behav-
ior of functions, in particular on the question of continuity.)
However, the reader ought to be aware that many mathematicians in this country, for reasons never stated, flatly refuse to use nearby inputs with their students.

Another reason we do is because Magellan views are a very nice basis on which to discuss the local behavior of functions for inputs near ∞ and when outputs are near ∞. In particular, we can see that discontinuiities caused by poles can be removed using ∞ as a Magellan output.

When ∞ as is not permissible as Magellan input and/or Magellan output, many functions are discontinuous

EXAMPLE 4.22. The discontinuity at -4 of the function in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

Input	Output
-4	∞

If we imagine the Mercator graph compactified into a Magellan graph, we have

EXAMPLE 4.23. The discontinuity at ∞ of the function $B I B$ in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

Input	Output
∞	∞

If we imagine the Mercator graph compactified into a Magellan graph, we have

EXAMPLE 4.24. The function whose the global graph in Mercator view is

is discontinuous at ∞ not only because the global graph has a gap at ∞ since Local extreme-height inputs but also because the global graph has a jump at ∞.

If we imagine the Mercator view compactified into a Magellan view, we have

4. At ∞ The matter here revolves around whether or not ∞ should be allowed as a given input. We did but,

Also, in this section, for a reason which we will explain after we are done, we will have to deal separately with the case when the given input is x_{0} and the case when the given input is ∞.

In accordance with ??, we should say that all functions are discontinuous at ∞ since the outputs for inputs near ∞ cannot be near the output for ∞ for the very good reason that we cannot use ∞ as input to begin with.

Language 4.1 Continuity at ∞ At ∞, things are a bit sticky:

- With a Magellan view, we can see if a function is continuous at ∞ or not.
- Technically, though, to talk of continuity at ∞ requires being able to take computational precautions not worth taking here but many teachers feel uneasy dealing with continuity at ∞ without taking these precautions. So, we will not discuss continuity at ∞ in this text.

EXAMPLE 4.25. The function whose global graph in Mercator view is

is discontinuous at ∞ because, even though the outputs of inputs near ∞ are all large,the global graph has a gap at ∞ since Local extreme-height inputs.

If we imagine the Mercator view compactified into a Magellan view, we have

EXAMPLE 4.26. The function

is discontinuous at -4 because the global graph has a pole at -4 :

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large,
but, since Local extreme-height inputs,
- -4 itself has no output.

5. Magellan continuity at a pole x_{0}. A function is Magellan continuous at x_{0} when we could remove the discontinuity at x_{0} by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan output.
EXAMPLE 4.27. The function in Example 4.12 is discontinuous at -4 because the function has a gap at -4 but Magellan continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

8 Smoothness near ∞

Think globally, act locally. ${ }^{1}$

Chapter 5

Global Analysis

Interpolation, 134 • Feature Sign-Change Inputs, 140 • Essential Feature Sign-Changes Inputs, 142 • Essential Extreme-Height Inputs, 145 - Non-essential Features, 146 - Essential Onscreen Graph, 148.

that is the largest error that will not change the qualitative information we are looking for. The largest permissible error, which is the equivalent of a tolerance, will turn out to be easy to determine.

We can see from Chapter 3 that the reasoncould not possibly give us a global graph is that, if a plot point may tell us where the global graph "is at", a plot point certainly cannot tell us anything about where the global graph "goes from there". And, since the latter is precisely what local graphs do with slope and concavity, we are now in a position to:
i. Describe how to interpolate local graphs into a global graph. This corresponds to the second of the about
ii. Describe and name global features that a function may or may not have. As opposed to local features, which involved only inputs near a given input, global features will involve all inputs.
iii. Discuss questions about interpolating local graphs which correspond to the other two
i. How will we know near which inputs to get the local graphs?
ii. After we have interpolated the local graphs, how will we know if the curve we got is the global graph?

[^17]joining curve
interpolate
transition input
compatible essential interpolation essential
forced

Here again, to help focussing, the functions in the EXAMPLES in this chapter will always be presumed to have been defined by a global inputoutput rule but and the global graph of the function will be provided instead.

1 Interpolation

Interpolating will be for local graphs what joining cannot be for plot points, that is, interpolating local graphs will eventually provide us with global graphs.

1. Just to be part of the graph of a function, the joining curve we draw from one local graph to the other local graph will have to meet
i. The FUndamental Problem.

But, in order for a joining curve to be an interpolation of local graphs of algebraic functions which, as we will see, are continuous at all inputs as well as smooth near all inputs,
ii. The joining curve will itself have to be continuous at, as well as smooth near, all inputs,
iii. The joining curve will also have to be:

- Continuous at, as well as smooth near, the transition inputs, that is the inputs where the joining curve meets the local graphs,
- Compatible with the local graphs, that is the slope-sign and the concavitysign will have to be the same on both sides of the transition inputs.
A particularly important kind of interpolation will be essential interpolations that is interpolations in which
iv. The joining curve is essential, that is has only local features that are forced by the local graphs being interpolated.

Which local graphs we will interpolate will depend on the answer in each case to Explicit Functions.

We will now illustrate these requirements with EXAMPLES that will show what makes a joining curve an interpolation of local graphs and what prevents a joining curve from being an interpolation of local graphs.
2. When the answer to the Explicit Functions is that the function does not have a pole, the offscreen graph consists of just the local graph near ∞ and therefore we interpolate with a joining curve from one end of the local graph near ∞ across the screen to the other end. The transition inputs are thus the lower bound and the upper bound.

In Example 5.1 to Example 5.5 we will examine whether or not the joining curve is an interpolation for the

DATA 5.1 Function with the offscreen graph

EXAMPLE 5.1. For functions whose offscreen graph is as in Data 5.1, the joining curve \quad i. is continuous at all inputs and smooth
 near all inputs,
ii. is continuous at, as well as smooth near, both transition inputs,
iii. is compatible with the offscreen graph near both transition inputs,
iv. is not essential because the local minimum and the local maximum are not forced by the offscreen graph.
So: This joining curve is an interpolation of the offscreen graph but not an essential interpolation.

EXAMPLE 5.2. For functions whose offscreen graph is as in Data 5.1,
the joining curve

i. is continuous at all inputs and smooth near all inputs,
ii. is not smooth near the left transition input and not continuous at the right transition input,
iii. is compatible with the offscreen graph near both transition inputs,
iv. is essential

So: This joining curve is not an interpolation of the offscreen graph and therefore not an essential interpolation either.

EXAMPLE 5.3. For functions whose offscreen graph is as in Data 5.1,
the joining curve

\mathbf{i}. is not continuous at all inputs but is smooth near all inputs,
ii. is continuous at the transition inputs as well as smooth near both transition inputs, iii. is compatible with the offscreen graph near both transition inputs,
iv. is not essential because the jump is not forced by the offscreen graph.

So: This joining curve is not an interpolation of the offscreen graph and therefore not an essential interpolation either.

EXAMPLE 5.4. For functions whose offscreen graph is as in Data 5.1,
the joining curve

introduces a pole in the offscreen graph so the function is not as in Data 5.1 anymore and nothing onscreen matters after that.

So: This joining curve is not an interpolation of the offscreen graph and therefore not an essential interpolation either.

EXAMPLE 5.5. For functions whose offscreen graph is as in Data 5.1, the joining curve $\quad \mathbf{i}$. is continuous at all inputs and is smooth
 near all inputs,
ii. is both continuous at the transition inputs and smooth near the transition inputs, iii. is compatible with the offscreen graph near the right transition input but is not compatible with the offscreen graph near the left transition input (Easy to miss.), iv. is not essential.(Easy to miss.)

So: This joining curve is not an interpolation of the offscreen graph and therefore not an essential interpolation either.
3. When the answer to the Explicit Functions is that the function does have a pole $x_{\infty \text {-height }}$, the offscreen graph consists of the local graph near ∞ together with the local graph near $x_{\infty \text {-height }}$ and therefore we must interpolate with a joining curve in two pieces:

- one piece between:
- the end of the right side of the local graph near ∞
and
- the end of the left side of the local graph near $x_{\infty \text {-height }}$,
and
- another piece between:
- the end of the right side of the local graph near $x_{\infty \text {-height }}$, and
- the end of the left side of the local graph near ∞

The transition inputs are then:

- the lower bound and the extremity of the left side of the neighborhood of $x_{\infty \text {-height }}$
- the extremity of the right side of the neighborhood of $x_{\infty-\text { height }}$ and the upper bound.
In Example 5.6 and Example 5.7 we will examine whether or not the joining curve is an interpolation for the

DATA 5.2 Function with the offscreen graph

EXAMPLE 5.6. For functions whose offscreen graph is as in Data 5.2,
the joining curve

i. is continuous at all inputs and is smooth near all inputs,
ii. is continuous at all transition inputs and smooth near all transition inputs except the leftmost transition input,
iii. is compatible with the offscreen graph near all transition inputs except the leftmost transition input,
iv. is essential.

So: This joining curve is not an interpolation of the offscreen graph and therefore not an essential interpolation either.

EXAMPLE 5.7. the joining curve

For functions whose offscreen graph is as in Data 5.2,
i. is continuous at all inputs and is smooth near all inputs,
ii. is continuous at all transition inputs and smooth near all transition inputs,
iii. is compatible with the offscreen graph near all transition inputs,
iv. is essential because $x_{\text {min-height }}$ is forced by the offscreen graph.
So: This joining curve is an interpolation of the offscreen graph and is an essential interpolation.
4. Occasionally, we will need to interpolate with an onscreeen local graph near a bounded input (As opposed to a local graph near a pole which is offscreen).
5. Occasionally, we will need to fudge the offscreen graph that is .
6. So, based on the preceding EXAMPLES, to draw an interpolation, we proceed as follows

PROCEDURE 5.1 Interpolate an offscreen graph.

i. Going from left to right, mark the features where the offscreen graph enters the screen and where the offscreen graph exits the screen
ii. Draw the joining curve(s) from the point(s) where the offscreen graph enters the screen to the point(s) where the offscreen graph exits the screen making sure that:

- Each joining curve is smooth,
- Each transition between a joining curve and the local graph is smooth
- The joining curves do not introduce any infinite height input.

Temo 5.1 Let f be the function whose offscreen graph is

To interpolate,
i. Mark the features where the offscreen graph enters and exits the screen:

ii. Draw the joining curve(s) smoothly

2 Feature Sign-Change Inputs

We will often need to find bounded inputs such that the outputs for nearby inputs left of x_{0} and the outputs for nearby inputs right of x_{0} have specified feature-signs.

1. An input is a Height sign-change inputwhenever Height sign $=$ $\langle+,-\rangle$ or $\langle-,+\rangle$. We will use $x_{\text {Height sign-changeto refer to a bounded Height }}$ sign-change input.

EXAMPLE 5.8.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-height }}$ is not a Height signchange input,
- $x_{\infty-\text { height }}$ is a Height signchange input.
- ∞ is a Height sign-change input.

EXAMPLE 5.9.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-height }}$ is a Height signchange input,
- $x_{\infty-h e i g h t ~}$ is not a Height signchange input,
- ∞ is a Height sign-change input.

2. An input is a Slope sign-change inputwhenever Slope sign $=$ \langle/\rangle,$\rangle or \langle\backslash, /\rangle$. We will use $x_{\text {Slope sign-changeto }}$ refer to a Slope signchange input.

EXAMPLE 5.10.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-slope }}$ is a Slope sign-change input,
- $x_{\infty \text {-height }}$ is a Slope signchange input,
- ∞ is not a Slope sign-change input.

EXAMPLE 5.11.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-slope }}$ is not a Slope signchange input,
- $x_{\infty-\text {-slope }}$ is not a Slope signchange input,
- ∞ is not a Slope sign-change input.

3. An input is a Concavity sign-change inputwhenever Concavity $\operatorname{sign}=\langle\cup, \cap\rangle$ or $\langle\cap, \cup\rangle$. We will use $x_{\text {Concavity sign-change }}$ to refer to a Concavity sign-change input.

EXAMPLE 5.12.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty \text {-height }}$ is a Concavity signchange input.
- ∞ is not a Concavity signchange input.

Example 5.13.

Let f be the function specified by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty-\text {-height }}$ is not a Concavity sign-change input,
- ∞ is a Concavity sign-change input.

3 Essential Feature Sign-Changes Inputs

1. A feature sign-change input is essential whenever its existenceis forcedby the offscreen graph. So, given the offscreen graph of a function, in order

Procedure 5.2 Establish the existence of essential feature sign change inputs in a joining curve

i. For each piece of the joining curve, check the feature sign at both end of the piece.

- If the feature signs at the two ends of the piece are opposite, there has to be a feature sign change input for that piece.
- If the feature signs at the two ends of the piece are the same, there does not have to be a feature sign change input for that piece.
ii. For each ∞ height input, if any, check the feature sign on either side of the ∞ height input:
- If the feature signs on the two sides of the ∞ height input are opposite, the ∞ height input is a feature sign change input.
- If the feature signs on the two sides of the ∞ height input are the
same, the ∞ height input is not a feature sign change input..
iii. Check the feature sign on the two sides of ∞
- If the feature signs on the two sides of ∞ are opposite, ∞ is a feature sign change input.
- If the feature signs on the two sides of ∞ are the same, ∞ is not a feature sign change input..

TEMO 5.2 Let f be the function whose offscreen graph is

To establish the existence of Height-sign change inputs

- Since the Height signs near $-\infty$ and left of $x_{\infty \text {-height }}$ are opposite there is an essential Height sign-change between $-\infty$ and $x_{\infty-h e i g h t . ~}^{\text {. }}$
- Since the Height signs right of $x_{\infty-\text { height }}$ and near $+\infty$ are the same there is no essential Height sign-change between $x_{\infty-\text { height }}$ and $+\infty$.

TEMO 5.3 Let f be the function whose offscreen graph is

To establish the existence of Slope-sign change inputs

- Since the Slope signs near $-\infty$ and left of $x_{\infty \text {-height }}$ are opposite there is an essential Slope sign-change between $-\infty$ and $x_{\infty \text {-height }}$.
- Since the Slope signs right of $x_{\infty \text {-height }}$ and near $+\infty$ are the same there is no essential Slope sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

Temo 5.4 Let f be the function whose offscreen graph is

To establish the existence of Concavity-sign change inputs

- Since the Concavity signs near $-\infty$ and left of $x_{\infty \text {-height }}$ are opposite there is an essential Concavity sign-change between $-\infty$ and $x_{\infty \text {-height }}$.
- Since the Concavity signs right of $x_{\infty \text {-height }}$ and near $-\infty$ are the same there is no essential Concavity sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

2. However, things can get a bit more complicated.

Temo 5.5 Let f be the function whose offscreen graph is

To establish the existence of Concavity-sign change inputs

- Since the concavity-sign at the transitions from $-\infty$ is \cup and the concavitysign at the transition to $+\infty$ is also \cup, one might be tempted to say that there is no essential concavity sign-change input.
- However, attempting a smooth interpolation shows that things are a bit more complicated than would at first appear.
i. Since the slope-signs at the transition from $-\infty$ is / and the slope-sign at the transition to $+\infty$ is \backslash there has to be an essential Slope sign-change input near which Concavity sign $=\langle\cap, \cap\rangle$

ii. Since the concavity-signs near $-\infty$ and left of $x_{0 \text {-slope }}$ are opposite, there is an essential Concavity

iii. Since the concavity-signs right of $x_{0 \text {-slope }}$ and near $+\infty$ are opposite, there is an essential Concavity sign-change input between $x_{0 \text {-slope }}$ and $+\infty$.

essential $_$local $_$extremeheight input $^{\text {in }}$

3. That there is no essential feature sign-change input does not mean that there could not actually be a non-essential feature sign-change input.

EXAMPLE 5.14.

Let f be the function whose offscreen graph is

- There is no essential Height sign-change input, no essential Slope sign-change input, and no essential Concavity sign-change input.
- However, the actual bounded graph could very well be:

4 Essential Extreme-Height Inputs

An extreme-height input is an essential local extreme-height input if the existence of the local extreme-height input is forced by the offscreen graph in the sense that any smooth interpolation must have a local extremeheight input.

EXAMPLE 5.15.

Let f be a function Then, whose offscreen graph i. Since the Slope signs near $-\infty$ and $+\infty$ are opposite is
 there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. Since the Height of $x_{\text {Slope sign-change }}$ is not infinite, the slope near $x_{\text {Slope sign-change }}$ must be 0

iii. $x_{0 \text {-slope }}$ is a local essential Maximum-Height input.

Example 5.16.
Let f be a function whose offscreen graph is

Then,
i. Since the Slope signs near $-\infty$ and near $+\infty$ are opposite there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. But since there is an ∞-height input, the Height near $x_{\text {slopesign-change }}$ is infinite and there is no essential local maximum height input.

5 Non-essential Features

While, as we have just seen, the offscreen graph may force the existence of certain feature-sign changes in the onscreen graph, there are still many other smooth interpolations of the offscreen graph that are not forced by the onscreen graph.

EXAMPLE 5.17. The moon has an influence on what happens on earthfor instance the tides-yet the phases of the moon do not seem to have an influence on the growth of lettuce (see http://www.almanac.com/content/
farming-moon) or even on the mood of the math instructor.
bump
wiggle

We will say that a global feature is non-essentialif it is not forced by the offscreen graph.

1. As we saw above, feature sign-change inputs can be non-essential.

EXAMPLE 5.18.

Let f be a function whose graph is

Then,
i. The two Height sign-change inputs left of $x_{\infty \text {-height }}$ are non-essential because if the 0 -output level line were higher, there would be no Height sign-change input. For instance:

ii. The Height sign-change input right of $x_{\infty-\text {-height }}$ is essential because, no matter where the 0-output level line might be, the joining curve has to cross it.
2. There other non-essential features:

- A smooth function can have a bump in which the slope does not change sign but the concavity changes sign twice.

EXAMPLE 5.19. The function whose graph is

has a bump.

- A smooth function can also have a wiggle, that is a pair of bumps in opposite directions with the slope keeping the same sign throughout but with three inputs where the concavity changes sign.
max-min_fluctuation min-max_fluctuation

EXAMPLE 5.20. The function whose graph is

has a wiggle.

- A smooth function can also have a max-min fluctuation or a minmax fluctuation that is a sort of "extreme wiggle" which consists of a pair of extremum-heights inputs in opposite directions. In other words, a fluctuation involves:
- two inputs where the slope changes sign
- two inputs where the concavity changes sign

EXAMPLE 5.21. The function whose graph is

has a max-min fluctuation.

6 Essential Onscreen Graph

It should be realized that in each and everyone of the above ExAMPLES we were only able to determine how many essential inputs

Note 5.1 Location of essential inputs Locating essential inputs is a totally different question from finding how many essential inputs there are. Locating essential inputs is usually a much more difficult question which, except in a very few cases, we will not deal with in this text.

We will thus use the following

DEFINITION 5.1 An essential onscreen graph is a simplest possible smooth interpolation of the offscreen graph, that is without any nonessential feature-sign change inputs and without any nonessential features.

EXAMPLE 5.22. Given the offscreen graph,

the following

are all smooth interpolations but only \mathbf{c}. is an essential onscreen graph.

EXAMPLE 5.23. Given the offscreen graph,

are all smooth interpolations but only a. is an essential onscreen graph.

1. The essential onscreen graph will be about the best we will be able to get with the technology in this text and, in order to detect, locate and investigate nonessential features such as bumps, hiccups and fluctuations, one needs the stronger technology of the Differential Calculus
2. There are two ways essential onscreen graphs come up in the real world:

- The essential onscreen graph is how we see the actual graph from "faraway" inasmuch as nonessential features such as bumps, hiccups and fluctuations are too small to be seen from faraway.

EXAMPLE 5.24. Given the global graph,

here is what we see from further and further away:

- The essential onscreen graph is what we would get if the onscreen graph were a wire being pulled out so as to straighten it.

EXAMPLE 5.25. Given the global graph,

we can imagine the non-essential onscreen graph as a "wire" being pulled by the offscreen graph so as to smooth it out into an essential bounded graph.

Chapter 6

Regular Monomial Functions - Local Analysis

Output At $x_{0}, 154 \bullet$ Plot Point, $157 \bullet$ Normalization, $158 \bullet$ Thickening The Plot, $160 \bullet$ Output Near $\infty, 161 \bullet$ Output Near 0, $165 \bullet$ Graph Place Near ∞ and Near 0, $169 \bullet$ Local Graph Near ∞ and Near 0, $174 \bullet$ Local Features Near ∞ and Near 0, 175 .

Monomial functions are functions that multiply or divide a given number, referred to as the coefficient, by a number of copies of the input.

1. More precisely,

DEFINITION 6.1 Monomial Functions are algebraic functions whose global input-output rule is of the form

$$
\underbrace{x}_{\text {input }} \stackrel{f}{\longrightarrow} \underbrace{f(x)}_{\text {output }}=\underbrace{\text { coefficient } x^{\text {exponent }}}_{\text {output-specifying code }}
$$

where:

- The coefficient can be any bounded number.
- The exponent in the power $x^{\text {exponent }}$ is a signed counting number that specifies what the function is to do to the coefficient with the copies of x :
- The size of the exponent specifies how many copies of x are to be made. (If the exponent is 0 , no copy is to be made and the coefficient is to be left alone.)
- The sign of the exponent specifies whether the coefficient is to
power function
regular monomial function exceptional monomial function
be multiplied or to be divided by the copies of x :
+ means the coefficient is to be multiplied by the copies of x, - means the coefficient is to be divided by the copies of x.

> LANGUAGE 6.1 Power Functions is the name that is normally used for those monomial functions whose coefficient is +1 or -1 . Unfortunately, the name power function is often used in place of monomial function and, even more unfortunately, this was the case in the previous editions of this text.
2. For reasons that will appear shortly we will distinguish:

- The regular monomial functions, to be discussed in this and the next chapter, which are those monomial functions whose exponent is any signed counting number other than 0 or +1 .
from
- The exceptional monomial functions, to be discussed in chapter 8, which are those monomial functions whose exponent is either 0 or +1 .

1 Output At x_{0}

Let f be the regular monomial function specified by the global input-output rule

$$
\underbrace{x}_{\text {input }} \stackrel{f}{\longrightarrow} \underbrace{f(x)}_{\text {output }}=\underbrace{a x^{ \pm n}}_{\text {output-specifying code }}
$$

where n is the number of copies used by f, and let x_{0} be the specified input. To get the output of the function f at the specified input x_{0}, we use ?? on ?? which, for regular monomial functions, becomes:

Procedure 6.1 To get the output at x_{0} of a regular monomial function f.
i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \stackrel{f}{\longrightarrow} f(x)\right|_{x \leftarrow x_{0}}=\left.a x^{ \pm n}\right|_{x \leftarrow x_{0}}
$$

which, once carried out, gives:

$$
x_{0} \stackrel{f}{\longrightarrow} f\left(x_{0}\right)=\underbrace{a x_{0}^{ \pm n}}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the computations to be performed according to the output-specifying code.
b. Perform the computations specified by the output-specifying code and thus get the output $f\left(x_{0}\right)$;

- For positive exponents, the code specifies that the output $f\left(x_{0}\right)$ is obtained by multiplying the coefficient a by n copies of the specified input x_{0} :

$$
f\left(x_{0}\right)=a \cdot \underbrace{x_{0} \cdot \ldots \cdot x_{0}}_{n \text { copies of } x_{0}}
$$

- For negative exponents, the code specifies that the output $f\left(x_{0}\right)$ is obtained by dividing the coefficient a by the n copies of the specified input x_{0} :

$$
f\left(x_{0}\right)=\underbrace{\frac{a}{x_{0} \cdot \cdots \cdot x_{0}}}_{n \text { copies of } x_{0}}
$$

Demo 6.1 Let $F L I P$ be the function specified by the global input-output rule

$$
x \xrightarrow{F L I P} F L I P(x)=(+527.31) x^{+11}
$$

To get the output of the function $F L I P$ at -3 :
i. We declare that x is to be replaced by -3
$\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{F L I P} F L I P(x)\right|_{x \leftarrow-3}=\left.(+527.31) x^{+11}\right|_{x \leftarrow-3}$
which, once the replacement has been carried out, gives:

$$
-3 \xrightarrow{F L I P} F L I P(-3)=\underbrace{(+527.31) \cdot(-3)^{\oplus 11}}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a positive exponent, the code specifies that the output $\operatorname{FLIP}(-3)$ is obtained by multiplying the coefficient +527.31 by 11 copies of the specified input -3 :

$$
F L I P(-3)=(+527.31) \cdot \underbrace{(-3) \cdot \ldots \cdot(-3)}_{11 \text { copies of }-3}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

$$
=(527.31) \cdot \underbrace{(-) \cdot \ldots \cdot(-)}_{11 \text { copies of }-} \cdot \underbrace{(3) \cdot \ldots \cdot(3)}_{11 \text { copies of } 3}
$$

and since

- by theorem 19.2 on page 365 , an odd number of copies of - multiply to and we get

$$
\begin{aligned}
& =(527.31) \cdot(-) \cdot(177147) \\
& =-93411384.57
\end{aligned}
$$

The input-output pair is $(-3,-93411384.57)$

Demo 6.2 Let $F L O P$ be the function specified by the global input-output rule

$$
x \xrightarrow{F L O P} F L O P(x)=(+3522.38) x^{-6}
$$

To get the output of the function $F L O P$ at -3 :
i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{F L O P} F L O P(x)\right|_{x \leftarrow-3}=\left.(+3522.38) x^{-6}\right|_{x \leftarrow-3}
$$

which, once carried out, gives:

$$
-3 \xrightarrow{F L O P} F L O P(-3)=\underbrace{(+3522.38) \cdot(-3)^{-6}}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a negative exponent, the code specifies that the output $F L O P(-3)$ is obtained by dividing the coefficient +3522.38 by 6 copies of the specified input -3 :

$$
F L O P(-3)=\underbrace{\frac{+3522.38}{(-3) \cdot \ldots \cdot(-3)}}_{6 \text { copies of }-3}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by theorem 19.2 on page 365, an even number of copies of - multiply to + and we get

$$
\begin{aligned}
& =\frac{+3522.38}{(+) \cdot(729)} \\
& =+4.8317+[\ldots]
\end{aligned}
$$

The input-output pair is $(-3,+4.8317+[\ldots])$

2 Plot Point

Let f be the regular monomial function specified by the global input-output rule

$$
\underbrace{x}_{\text {input }} \stackrel{f}{\longrightarrow} f(x)=\underbrace{a x^{ \pm n}}_{\text {output-specifying code }}
$$

where n is the number of copies used by f, and let x_{0} be the specified input. To plot the input-output pair for the specified input x_{0}, we use ?? on ?? which, in the case of regular monomial functions, becomes

Procedure 6.2 To get the plot point for a specified bounded input

1. To get the output at the specified input using ?? on ?? to get the input-output pair,
2. Locate the plot point with ?? on ??.

Demo 6.3 Let FLIP be the function specified by the global input-output rule

$$
x \xrightarrow{F L I P} F L I P(x)=(+527.31) x^{+11}
$$

To plot the input-output pair for the input -3 :

1. We get the output of the function $F L I P$ at -3 . We found in Example
5.1 above that $F L I P(-3)=-93411384.57$
features, of input-output rule
Coefficient Sign
Exponent Sign
Exponent Parity
even
odd
2. Thus, the input-output pair for the plot point of $F L I P$ at -3 is $(-3,-93411384.57)$ and the plot point is:

Demo 6.4 Let $F L O P$ be the function specified by the global input-output rule

$$
x \xrightarrow{F L O P} F L O P(x)=(+3522.38) x^{-6}
$$

To plot the input-output pair for the input -3 :

1. We get the output of the function $F L O P$ at -3 . We found in Demo 6.2 on page 156 that $\operatorname{FLOP}(-3)=+4.8317+[\ldots]$
2. Thus, the input-output pair for the graph point of $F L O P$ at -3 is $(-3,+4.8317+[\ldots])$ and the plot point is:

3 Normalization

Since in this text we will take a qualitative viewpoint, all the features of the global input-output rule that specifies a regular monomial function will not be equally important for us.

As we will see, the three features that will be important for us are:

- Coefficient Sign which can be + or - .
- Exponent Sign which can be + or - ,
- Exponent Parity which can be even or odd depending on whether the size of the exponent, that is the number of copies, is even or odd.

Demo 6.5 The function specified by the global input-output rule

$$
x \xrightarrow{B L I P} B L I P(x)=(-160.42) x^{+7}
$$

Coefficient Size
Exponent Size
normalize
is a monomial function whose global input-output rule has the following features

- Coefficient Sign BLIP $=-$.
- Exponent Sign BLIP $=+$,
- Exponent Parity BLIP $=o d d$,

But, because, in this text, we are only interested in qualitative analysis, we will not pay any attention to the following two features:

- Coefficient Size (other than the coefficient having to be bounded)
- Exponent Size (other than the size of the exponent being even or odd)

Note 6.1

A deeper analysis would require taking into account the actual number of copies but even then the size of the coefficient would still not matter much.

Accordingly, in order to focus on the important features of regular monomial functions, it will often be helpful to normalize the global input-output rule of a regular monomial function as follows:

PROCEDURE 6.3 Normalize the global I-O rule of a regular monomial function.

i. Replace the Coefficient Size by the word bounded,
ii. Replace the Exponent Size by the Exponent Parity

TEMO 6.1 Let $B L I P$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { BLIP }} B L I P(x)=(-160.42) x^{+7}
$$

To normalize $B L I P$.
i. We replace the Coefficient Size, namely 160.42 , by the word bounded
ii. We replace the Exponent Size, namely 7, by the word odd

The normalized global input-output rule of BLIP is thus

$$
x \xrightarrow{B L I P} B L I P(x)=(- \text { bounded }) \cdot x^{+ \text {odd }}
$$

Temo 6.2 Let $B L O P$ be the function specified by the global input-output rule

$$
x \xrightarrow{B L O P} B L O P(x)=(-365.28) x^{-6}
$$

To normalize $B L O P$,
code
bi－level sign
\pm
干
i．We replace the Coefficient Size，namely 365.28 ，by the word bounded
ii．We replace the Exponent Size，namely 6，by the word even
The normalized global input－output rule of $B L O P$ is thus

$$
x \xrightarrow{B L O P} B L O P(x)=(- \text { bounded }) \cdot x^{- \text {even }}
$$

4 Thickening The Plot

As mentioned in on ，instead of using single inputs to get single plot points， we will＂thicken the plot＂that is we will use neighborhoods of given inputs to get graph places．But to use neighborhoods with global input－output rules， we will first have to introduce code to be able to declare by what to replace x ．And，since this at the very core of what we will be doing in the rest of this text，we want to proceed with the utmost caution．

Since we are dealing here with regular monomial functions we will only be interested in inputs near ∞ and／or inputs near 0 and so here all we will need is the sign－size．

In order to declare by what we want to replace x ，we will use the following code：

Near	Side			Code	
Infinity	Left Right	$\begin{gathered} 0 \cdots \cdots \backsim \sim \cdots \cdots \\ \infty \cdots \cdots \cdots \\ \infty \cdots \cdots \cdots \end{gathered}$	positive negative	$\begin{aligned} & +\infty \\ & -\infty \end{aligned}$	+ large －large
Zero	$\begin{gathered} \hline \text { Left } \\ \text { Right } \end{gathered}$	$\begin{aligned} & \infty \ldots-\ldots 0 \\ & 0 \rightleftharpoons-\ldots \infty \end{aligned}$	negative positive	$\begin{aligned} & 0^{-} \\ & 0^{+} \end{aligned}$	$\begin{aligned} & \hline- \text { small } \\ & + \text { small } \end{aligned}$

For the input－output pairs on one side，we will basically use on but declare that x is to be replaced using the above code for the given input．

For the input－output pairs of both sides，we will use the bi－level signs \pm and \mp as follows：

Instead of		We can just write	and the I－O pair
＋	+ and $-\longrightarrow+$	$\pm \longrightarrow+$	$(\pm,+)$
$+\longrightarrow$	－and－	\pm	$(\pm,-)$
$+$	+ and－	$\pm \longrightarrow \pm$	(\pm, \pm)
$+$	- and $-\longrightarrow+$	$\pm \longrightarrow \mp$	（土，干）

5 Output Near ∞

1. When we want to thicken only one side of ∞, we proceed as follows:

Procedure 6.4 To get the input-output pairs on one side of ∞.

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by +large or -large
3. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the computations to be performed according to the output-specifying code.
b. Perform the computations specified by the code using theorem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on page 39

Demo 6.6 Let $N A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{N A D E} N A D E(x)=(-83.91) x^{-5}
$$

To get the input-output pairs near $+\infty$ for $N A D E$:
i. We normalize $N A D E$:

$$
x \xrightarrow{\text { NADE }} N A D E(x)=(- \text { bounded }) x^{-o d d}
$$

ii. We declare that x is to be replaced by +large

which, once carried out, gives:

$$
+ \text { large } \xrightarrow{N A D E} N A D E(+ \text { large })=\underbrace{(- \text { bounded })(+ \text { large })^{-o d d}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $N A D E(+$ large) by dividing the coefficient -bounded by an odd number of copies of the specified input +large:

$$
=\frac{- \text { bounded }}{\underbrace{(+ \text { large }) \cdot \ldots \cdot(+ \text { large })}_{\text {odd number of copies of }+ \text { large }}}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by theorem 19.2 on page 365, any number of copies of + multiply to + ,
- by the Definition of large, any number of copies of large multiply to large

$$
=\frac{- \text { bounded }}{+\cdot \text { large }}
$$

and by theorem 19.2 on page 365 and theorem 1.3 on page 39 we get

$$
=- \text { small }
$$

iv. The input-output pairs are $(+$ large,- small $)$

Demo 6.7 Let $R A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{R A D E} R A D E(x)=(+45.67) x^{-4}
$$

To get the input-output pairs near $-\infty$ for $R A D E$:
i. We normalize $R A D E$:

$$
x \xrightarrow{R A D E} R A D E(x)=(+ \text { bounded }) x^{- \text {even }}
$$

ii. We declare that x is to be replaced by -large
$\left.\left.x\right|_{x \leftarrow-\text { large }} \xrightarrow{R A D E} R A D E(x)\right|_{x \leftarrow-\text { large }}=\left.(+$ bounded $) x^{- \text {even }}\right|_{x \leftarrow-\text { large }}$
which, once carried out, gives:

$$
\text { -large } \xrightarrow{R A D E} R A D E(\text {-large })=\underbrace{(+ \text { bounded })(- \text { large })^{- \text {even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $R A D E$ (-large) by dividing the coefficient + bounded by an even number of copies of the specified input-large:

$$
=\frac{+ \text { bounded }}{\underbrace{(- \text { large }) \cdot \ldots \cdot(- \text { large })}_{\text {even number of copies of }- \text { large }}}
$$

b. We perform the computations specified by the code:

Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, any even number of copies of - multiply to +
- by the Definition of large, any number of copies of large multiply to arge

$$
=\frac{+ \text { bounded }}{+\cdot \text { large }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=+ \text { small }
$$

iv. The input-output pairs are (-large,+ small $)$
2. When we want to thicken both sides of ∞, we declare that x is to be replaced by \pm large and keep track of the signs as we perform the computations specified by the output-specifying code.

Demo 6.8 Let $D A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{D A D E} D A D E(x)=(-83.91) x^{+5}
$$

To get the input-output pairs near ∞ for $D A D E$:
i. We normalize $D A D E$:

$$
x \xrightarrow{D A D E} D A D E(x)=(- \text { bounded }) x^{+o d d}
$$

ii. We declare that x is to be replaced by \pm large
$\left.\left.x\right|_{x \leftarrow \pm \text { large }} \xrightarrow{D A D E} D A D E(x)\right|_{x \leftarrow \pm \text { large }}=\left.(-$ bounded $) x^{+o d d}\right|_{x \leftarrow \pm \text { large }}$
which, once carried out, gives:

$$
\pm \text { large } \xrightarrow{D A D E} D A D E(\pm \text { large })=\underbrace{(- \text { bounded })(\pm \text { large })^{+ \text {odd }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get that the output $D A D E(\pm$ large $)$ is obtained by multiplying the coefficient -bounded by an odd number of copies of the specified input \pm large:

$$
=(- \text { bounded }) \cdot \underbrace{(\pm \text { large }) \cdot \ldots \cdot(\pm \text { large })}_{\text {odd number of copies of } \pm \text { large }}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

$$
=(- \text { bounded }) \cdot \underbrace{(\pm) \cdot \ldots \cdot(\pm)}_{\text {odd number of copies of } \pm}
$$

and since,

- by the Sign Multiplication Rule, an odd number of copies of + multiply to + and an odd number of copies of - multiply to -
- by the Definition of large, any number of copies of large multiply to large

$$
=(- \text { bounded }) \cdot \pm \cdot \text { large }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=\mp \text { large }
$$

iv. The input-output pairs are $(\pm$ large,\mp large $)$

Demo 6.9 Let $P A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{P A D E} P A D E(x)=(-65.18) x^{+6}
$$

To get the input-output pairs near ∞ for $P A D E$
i. We normalize $P A D E$.

$$
x \xrightarrow{P A D E} P A D E(x)=(- \text { bounded }) x^{+ \text {even }}
$$

ii. We declare that x is to be replaced by \pm large
$\left.\left.x\right|_{x \leftarrow \pm \text { large }} \xrightarrow{P A D E} P A D E(x)\right|_{x \leftarrow \pm \text { large }}=\left.(-$ bounded $) x^{+ \text {even }}\right|_{x \leftarrow \pm \text { large }}$
which, once carried out, gives:

$$
\pm \text { large } \xrightarrow{P A D E} P A D E(\pm \text { large }))=\underbrace{(- \text { bounded })(\pm \text { large })^{\text {+even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get the output $P A D E(\pm$ large $)$ by multiplying the coefficient -bounded by an even number of copies of the specified input \pm large:

$$
=(- \text { bounded }) \cdot \underbrace{(\pm \text { large }) \cdot \ldots \cdot(\pm \text { large })}_{\text {even number of copies of } \pm \text { large }}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, an even number of copies of + multiply to + and an even number of copies of - multiply to +
- by the Definition of large, any number of copies of large multiply to large

$$
=(- \text { bounded }) \cdot+\cdot \text { large }
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=- \text { large }
$$

iv. The input-output pairs are $(\pm$ large,- large $)$

6 Output Near 0

1. When we want to thicken only one side of 0 , we proceed as follows:

PROCEDURE 6.5 To get the input-output pairs on one side of 0 .

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by + small or - small
3. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the computations to be performed according to the output-specifying code.
b. Perform the computations specified by the code using theorem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on page 39

Demo 6.10 Let $M A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{M A D E} M A D E(x)=(+27.61) x^{+5}
$$

To get the input-output pairs near 0^{+}for $M A D E$:
i. We normalize $M A D E$:

$$
x \xrightarrow{M A D E} M A D E(x)=(+ \text { bounded }) x^{+o d d}
$$

ii. We declare that x is to be replaced by + small
$\left.\left.x\right|_{x \leftarrow+\text { small }} \xrightarrow{M A D E} M A D E(x)\right|_{x \leftarrow+\text { small }}=\left.(+$ bounded $) x^{+ \text {odd }}\right|_{x \leftarrow+\text { small }}$
which, once carried out, gives:

$$
+ \text { small } \xrightarrow{M A D E} M A D E(+ \text { small })=\underbrace{(- \text { bounded })(+ \text { small })^{+o d d}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get that the output $M A D E(+$ small $)$ is obtained by multiplying the coefficient + bounded by an odd number of copies of the specified input +small:

$$
=(+ \text { bounded }) \cdot \underbrace{(+ \text { small }) \cdot \ldots \cdot(+ \text { small })}_{\text {odd } \text { number of copies of }+ \text { small }}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, any number of copies of + multiply to +
- by the Definition of small, any number of copies of small multiply to small

$$
=(+ \text { bounded }) \cdot+\cdot \text { small }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=+ \text { small }
$$

iv. The input-output pairs are $(+$ small,- small $)$

Demo 6.11 Let $W A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{W A D E} W A D E(x)=(-28.34) x^{-3}
$$

To get the output of $W A D E$ near 0^{+}
i. We normalize W ADE:

$$
x \xrightarrow{W A D E} W A D E(x)=(- \text { bounded }) x^{- \text {even }}
$$

ii. We declare that x is to be replaced by + small
$\left.\left.x\right|_{x \leftarrow+\text { small }} \xrightarrow{W A D E} W A D E(x)\right|_{x \leftarrow+\text { small }}=\left.(-$ bounded $) x^{- \text {even }}\right|_{x \leftarrow+\text { small }}$
which, once carried out, gives:

$$
+ \text { small } \xrightarrow{W A D E} W A D E(+ \text { small })=\underbrace{(- \text { bounded })(+ \text { small })^{- \text {even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $W A D E(+$ small $)$ by dividing the coefficient -bounded by an even number of copies of the specified input + small:

$$
=\frac{- \text { bounded }}{\underbrace{(+ \text { small }) \cdot \ldots \cdot(+ \text { small })}_{\text {even number of copies of }+ \text { small }}}
$$

iv. b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, any number of copies of + multiply to +
- by the Definition of small, any number of copies of small multiply to small

$$
=\frac{- \text { bounded }}{+\cdot \text { small }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=- \text { large }
$$

iv. The input-output pairs are (+small, -large $)$
2. When we want to thicken both sides, we will declare that x is to be replaced by \pm small and keep track of the signs as we perform the computations specified by the output-specifying code.

Demo 6.12 Let $J A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{J A D E} J A D E(x)=(-65.71) x^{-5}
$$

To get the output of $J A D E$ near 0 ,
i. We normalize $J A D E$:

$$
x \xrightarrow{J A D E} J A D E(x)=(- \text { bounded }) x^{- \text {odd }}
$$

ii. We declare that x is to be replaced by \pm small
$\left.\left.x\right|_{x \leftarrow \pm \text { small }} \xrightarrow{J A D E} J A D E(x)\right|_{x \leftarrow \pm \text { small }}=\left.(-$ bounded $) x^{- \text {odd }}\right|_{x \leftarrow \pm \text { small }}$
which, once carried out, gives:

$$
\pm \text { small } \xrightarrow{J A D E} J A D E(\pm \text { small })=\underbrace{(- \text { bounded })(\pm \text { small })^{-o d d}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $J A D E(\pm$ small $)$ by dividing the coefficient -bounded by an odd number of copies of the specified input \pm small:

$$
=\frac{- \text { bounded }}{\underbrace{(\pm \text { small }) \cdot \ldots \cdot(\pm \text { small })}_{\text {odd number of copies of } \pm \text { small }}}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, an odd number of copies of + multiply to + and an odd number of copies of - multiply to -
- by the Definition of small, any number of copies of small multiply to small

$$
=\frac{- \text { bounded }}{ \pm \cdot \text { small }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=\mp \text { large }
$$

iv. The input-output pairs are $(\pm$ small, \mp large $)$

Demo 6.13 Let $F A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{F A D E} F A D E(x)=(-65.18) x^{+6}
$$

To get the input-output pairs near 0 for $F A D E$:
i. We normalize $F A D E$.

$$
x \xrightarrow{\text { FADE }} F A D E(x)=(- \text { bounded }) x^{+ \text {even }}
$$

ii. We declare that x is to be replaced by \pm small
$\left.\left.x\right|_{x \leftarrow \pm \text { small }} \xrightarrow{F A D E} F A D E(x)\right|_{x \leftarrow \pm \text { small }}=\left.(-$ bounded $) x^{+ \text {even }}\right|_{x \leftarrow \pm \text { small }}$
which, once carried out, gives:

$$
\pm \text { small } \xrightarrow{F A D E} F A D E(\pm \text { small }))=\underbrace{(- \text { bounded })(\pm \text { small })^{+ \text {even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get the output $F A D E(-$ small $)$ by multiplying the coefficient -bounded by an even number of copies of the specified input \pm small:

$$
=(- \text { bounded }) \cdot \underbrace{(\pm \text { small }) \cdot \ldots \cdot(\pm \text { small })}_{\text {even number of copies of } \pm \text { small }}
$$

b. We perform the computations specified by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, an even number of copies of + multiply to + and an even number of copies of - multiply to +
- by the Definition of small, any number of copies of small multiply to small

$$
=(- \text { bounded }) \cdot+\cdot \text { small }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=- \text { small }
$$

iv. The input-output pairs are $(\pm$ small, - small $)$

7 Graph Place Near ∞ and Near 0

Once we have the input-output pairs near ∞ and near 0 , we get the graph places as in ?? ?? on ??. Here again,
i. In the first four demos, Demo 6.14 on page 170 , Demo 6.15 on page 170 , Demo 6.16 on page 171 , Demo 6.17 on page 171 , we will deal with only one side or the other.
ii. In the next four demos, Demo 6.18 on page 172 , Demo 6.19 on page 172 , Demo 6.20 on page 173 , Demo 6.21 on page 173 , we will deal
with both sides at the same time.

Procedure 6.6 Locate the graph place near ∞ or 0

1. Get the input-output pairs using ?? ?? on ?? or ?? ?? on ??.
2. Locate the graph place using ?? ?? on ??.

Demo 6.14 Let $N A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{N A D E} N A D E(x)=(-83.91) x^{-5}
$$

To locate the graph place of $N A D E$ near $+\infty$:

1. We get that the input-output pairs for NADE near $+\infty$ are (+large,--small) (See Demo 6.6 on page 161)
2. The graph place of NADE near $+\infty$ then is:

Demo 6.15 Let $M A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{M A D E} M A D E(x)=(+27.61) x^{+5}
$$

To locate the graph place of $M A D E$ near 0^{+}:

1. We get that the input-output pairs for MADE near 0^{+}are [+small, + small $]($ See Demo 6.10 on page 165)
2. The graph place of $M A D E$ near 0^{+} then is:

Demo 6.16 Let $R A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{R A D E} R A D E(x)=(+45.67) x^{-4}
$$

To locate the graph place of $R A D E$ near $-\infty$:

1. We get that the input-output pairs for $R A D E$ near $-\infty$ are [-large, + small] (See Demo 6.7 on page 162)
2. The graph place near $-\infty$ then is:

Demo 6.17 Let $W A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{W A D E} W A D E(x)=(-28.34) x^{-3}
$$

To locate the graph place of $W A D E$ near 0^{+}:

1. We get that the input-output pairs for $W A D E$ near 0^{+}are [+ small,-large](See Demo 6.17 on page 171)
2. The graph place near 0^{+}then is:

Demo 6.18 Let $P A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{P A D E} P A D E(x)=(-65.18) x^{+6}
$$

To locate the graph place of $P A D E$ near ∞.

1. We get that the input-output pairs for $P A D E$ near ∞ are [\pm large,-large](See Demo 6.9 on page 164)
2. The graph place of $P A D E$ near ∞ then

Demo 6.19 Let $J A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{J A D E} J A D E(x)=(-65.71) x^{-5}
$$

To locate the graph place of $J A D E$ near 0 :

1. We get that the input-output pairs for $J A D E$ near 0 are $[\pm$ small, $\mp l a r g e]$ (See Demo 6.12 on page 167)
2. The graph place of $J A D E$ near 0 then +large is:

Demo 6.20 Let $D A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{D A D E} D A D E(x)=(-83.91) x^{+5}
$$

To locate the graph place of $D A D E$ near ∞ :

1. We get that the input-output pairs for $D A D E$ near ∞ are $[\pm$ large, \mp large $]$ (See Demo 6.8 on page 163)
2. The graph place of $D A D E$ near ∞ then is:

Demo 6.21 Let $F A D E$ be the function specified by the global input-output rule

$$
x \xrightarrow{F A D E} F A D E(x)=(-65.18) x^{+6}
$$

To locate the graph place of $F A D E$ near 0^{-}.

1. We get that the input-output pairs for $F A D E$ near 0 are $[\pm$ small,-small $]$ (See Demo 6.13 on page 168)
shape
forced
2. The graph place of $F A D E$ near 0 then is:

8 Local Graph Near ∞ and Near 0

Regular monomial functions are very nice in that the shapes of the local graphs near ∞ and near 0 are forced by the graph place. In other words, once we know the graph place, there is only one way we can draw the local graph because:
i. The smaller or the larger the input is, the smaller or the larger the output will be,
ii. The local graph cannot escape from the place.

Demo 6.22 Given a monomial function for which the place of a local graph is [+large,+ small $]$, we get the shape of the local graph as follows
i. The slope is forced by the fact that the larger the input is,
the smaller the output will be.
ii. The concavity is forced by the fact that the local graph cannot cross the 0 -output level line.

Demo 6.23 Given a monomial function for which the place of a local graph is [-small,-large], we get the shape of the local graph as follows
i. The slope is forced by the fact that the smaller the input is, the larger the output will be. ii. The concavity is forced by the fact that the local graph cannot cross the 0 -input level line.

9 Local Features Near ∞ and Near 0

1. Given a regular monomial function being specified by a global inputoutput rule, to get the Height sign near ∞ or near 0, we need only compute the sign of the outputs for nearby inputs with the global input-output rule.

Demo 6.24 Let JOE be the function specified by the global input-output rule

$$
x \xrightarrow{J O E} J O E(x)=(-65.18) x^{+6}
$$

To get the Height sign of $J O E$ near 0^{+}
We ignore the size and just look at the sign:

$$
\begin{aligned}
+\xrightarrow{J O E} J O E(+) & =(-)(+)^{+6} \\
& =(-) \cdot(+) \\
& =-
\end{aligned}
$$

and

$$
\begin{aligned}
-\xrightarrow{J O E} \operatorname{JOE}(-) & =(-)(-)^{+6} \\
& =(-) \cdot(+) \\
& =-
\end{aligned}
$$

So, Height sign $J O E$ near 0 is $\langle-,-\rangle$
2. Given a regular monomial function being specified by a global inputoutput rule, to get the Slope sign or the Concavity sign near ∞ or near 0 , we need the local graph near ∞ or near 0 .

Demo 6.25 Let $J I L L$ be the function specified by the global input-output rule

$$
x \xrightarrow{J I L L} J I L L(\pm)=(+32.06)(\pm)^{+6}
$$

To get the Slope sign of $J I L L$ near 0
We need the local graph of $J I L L$ near 0 .
i. We get the output for $J I L L$ near ii. The local graph of $J I L L$ near 0 is 0

$$
\begin{aligned}
& \pm \text { small } \xrightarrow{J I L L} J I L L(\pm \text { small }) \\
&=(+ \text { bounded })(\pm \text { small })^{+ \text {even }} \\
&=(+ \text { bounded })(\pm)^{\text {even }}(\text { small })^{+} \\
&=(+ \text {bounded })(+) \cdot(\text { small }) \\
&=+ \text { small }
\end{aligned}
$$

iii. Slope sign $J I L L$ near $0=\langle\backslash, /\rangle$

Demo 6.26 Let $J I M$ be the function specified by the global input-output rule

$$
x \xrightarrow{J I M} J I M(x)=(-72.49) x^{-5}
$$

To get the Concavity sign of JIM near ∞
We need the local graph of $J I M$ near ∞.
i. We get the output for $J I M$ near ∞ ii. The local graph of $J I M$ near 0 is

$$
\begin{aligned}
\pm \text { large } & \xrightarrow{J I M} J I M(\pm \text { large }) \\
& =(- \text { bounded })(\pm \text { large })^{-o d d} \\
& =\underbrace{\frac{- \text { bounded }}{(\pm \text { large }) \ldots(\pm \text { large })}}_{\text {odd number of copies }} \\
& =\frac{- \text { bounded }}{ \pm \text { large }} \\
& =- \text { bounded } \cdot \pm \text { small } \\
& =\mp \text { small }
\end{aligned}
$$

iii. Concavity sign $J I M$ near $\infty=\langle\cap, \cup\rangle$

Chapter 7

Regular Monomial Functions - Global Analysis

Types of Global Input-Output Rules, $177 \bullet$ Output Sign, 178 • Output Qualitative Size, $184 \bullet$ Reciprocity, $187 \bullet$ Global Graphing, $193 \bullet$ Types of Global Graphs, 198 .

The Global Analysis of regular monomial functions is very systematic because the global input-output rule is very simple.

1 Types of Global Input-Output Rules

1. From the point of view of their global input-output rule, there are eight types of regular monomial functions:

Coefficient Sign	Exponent Sign	Exponent Parity	Output-specifying code
+	$+$	even	$\left(+\right.$ bounded) $x^{+ \text {even }}$
		odd	(+bounded) $x^{+ \text {odd }}$
	-	even	(+bounded) $x^{- \text {even }}$
		odd	(+bounded) $x^{- \text {odd }}$
-	+	even	$\left(-\right.$ bounded) $x^{+ \text {even }}$
		odd	(-bounded) $x^{+ \text {odd }}$
	-	even	(-bounded) $x^{- \text {even }}$
		odd	(-bounded) $x^{- \text {odd }}$

2. There are two kinds of regular monomial functions which come up so often that they have special names:

Definition 7.1 Square Functions are monomial functions with exponent +2 , that is functions specified by $x \xrightarrow{\text { SQUARE }}$ $\operatorname{SQUARE}(x)=a x^{+2}$. (Where Sign a can be either + or - .)

EXAMPLE 7.1. The function specified by $x \xrightarrow{\operatorname{SQU} A R E} \operatorname{SQU} \operatorname{ARE}(x)=$ $-41.87 x^{+2}$ is a square function.

Definition 7.2 Cube Functions are monomial functions with exponent +3 , that is functions specified by $x \xrightarrow{C U B E} C U B E(x)=$ $a x^{+3}$. (Where Sign a can be either + or - .)

EXAMPLE 7.2. The function specified by $x \xrightarrow{C U B E} C U B E(x)=$ $+27.61 x^{+3}$ is a cube function.

2 Output Sign

Since Exponent Sign specifies only whether the coefficient is to be multiplied or divided by the copies of the input and since theorem 19.2 on page 365 says that signs are multiplied and divided the same way, Exponent Sign cannot have any effect on Output Sign.

1. More precisely, since

$$
\text { output }=\text { coefficient multiplied/divided power }
$$

we have
Output Sign $=$ Coefficient Sign multiplied/divided Power Sign
so that only Coefficient Sign and Input Sign can possibly have an effect on Output Sign. But then:

- If Exponent Parity = even, then as a consequence of theorem 19.2 on page 365, Power Sign $=+$ both when Input Sign $=+$ and when Input Sign $=-$
and therefore, when Exponent Parity $=$ even
\triangleright Output Sign $=$ Coefficient Sign both when Input Sign $=+$ and when Input Sign $=-$.
- If Exponent Parity $=o d d$, then as a consequence of theorem 19.2 on page 365,
\triangleright Power Sign $=+$ when Input Sign $=+$,
\triangleright Power Sign $=-$ when Input Sign $=-$,
and therefore, when Exponent Parity $=$ odd
\triangleright Output Sign $=$ Coefficient Sign when Input Sign $=+$,
\triangleright Output Sign $=$ Opposite Coefficient Sign when Input Sign $=-$,

EXAMPLE 7.3. Given the function specified by the global input-output rule

$$
x \xrightarrow{K I P} K I P(x)=(+82.33) \cdot x^{\rrbracket^{-}}
$$

using theorem 19.2 on page 365 , we have

$$
\begin{aligned}
&+\xrightarrow{K I P} K I P(+)=\frac{+}{\underbrace{+\cdot \cdots \cdot+}_{\text {even number of copies of }+}} \\
&=++ \\
&+
\end{aligned}
$$

EXAMPLE 7.4. G iven the function specified by the global input-output rule $x \xrightarrow{K A P} K A P(x)=(-73.93) \cdot x^{+11}$
using theorem 19.2 on page 365 , we have

$$
\begin{aligned}
+\xrightarrow{K A P} K A P(+) & =-\cdot \underbrace{(+) \cdot \ldots \cdot(+)}_{\text {odd number of copies of }+} \\
& =-\cdot+ \\
& =-
\end{aligned}
$$

EXAMPLE 7.5. Given the function specified by the global input-output rule

$$
x \xrightarrow{K A T} K A T(x)=(-25.25) \cdot x^{ \pm 7}
$$

using theorem 19.2 on page 365 , we have

$$
\begin{aligned}
-\xrightarrow{K A T} K A T(-) & =-\cdot \underbrace{(-) \cdot \ldots \cdot(-)}_{\text {odd } \text { number of copies of }-} \\
& =-\cdot- \\
& =+
\end{aligned}
$$

EXAMPLE 7.6. Given the function specified by the global input-output rule

$$
x \xrightarrow{K I T} K I T(x)=(+44.06) \cdot x^{\square}
$$

using theorem 19.2 on page 365 , we have

$$
\begin{aligned}
-\xrightarrow{K I T} K I T(-) & =\frac{+}{\underbrace{-\cdot \cdots \cdot-}_{\text {even number of copies of }-}} \\
& =+\frac{+}{+} \\
& =+
\end{aligned}
$$

We therefore have the following which summarizes the results of the above investigation.

Theorem 7.1 Output Sign (For Regular Monomial Functions.)

- If Input Sign = +,

Output Sign $=$ Coefficient Sign.

- If Input Sign = -,

Output Sign depends on Exponent Parity:
\triangleright If Exponent Parity = even,
Output Sign $=$ Coefficient Sign,
\triangleright If Exponent Parity $=o d d$,
Output Sign $=$ Opposite Coefficient Sign.
2. Then, for

Procedure 7.1 To get the Output Sign for a regular monomial function

Use theorem 7.1 on page 180 .

Demo 7.1 Given the function specified by the global input-output rule

$$
x \xrightarrow{K I P} K I P(x)=(+82.33) \cdot x^{-4}
$$

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

$$
\begin{aligned}
& +\xrightarrow{K I P} K I P(+)=+ \\
& -\xrightarrow{K I P} K I P(-)=+
\end{aligned}
$$

Demo 7.2 Given the function specified by the global input-output rule

$$
x \xrightarrow{K A P} K A P(x)=(-73.93) \cdot x^{+11}
$$

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

$$
\begin{aligned}
& +\xrightarrow{K A P} K A P(+)=- \\
& -\xrightarrow{K A P} K A P(-)=+
\end{aligned}
$$

DEMO 7.3 Given the function specified by the global input-output rule

$$
x \xrightarrow{K A T} K A T(x)=(-25.25) \cdot x^{+7}
$$

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

$$
\begin{aligned}
& +\xrightarrow{K A T} K A T(+)=- \\
& -\xrightarrow{K A T} K A T(-)=+
\end{aligned}
$$

DEMO 7.4 Given the function specified by the global input-output rule

$$
x \xrightarrow{K I T} K I T(x)=(+44.06) \cdot x^{-4}
$$

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

$$
\begin{aligned}
& +\xrightarrow{K I T} K I T(+)=+ \\
& -\xrightarrow{K I T} K I T(-)=+
\end{aligned}
$$

3. In order to graph monomial functions more efficiently, we need to invest a little bit on a couple of graphic maneuvers:
a. If we do a horizontal flip on a first plot point we get a second plot point
vertical flip
diagonal flip
and

- The input of the second plot point will be the opposite of the input of the first plot point
- The output of the second plot point will be the same as the output of the first plot point

EXAMPLE 7.7. If we do a horizontal flip on a the plot point $(+2,-48)$ we will get a second plot point and:

- the input of the second plot point will be -2
- the output of the second plot point will be -48
b. If we follow the horizontal flip on the first plot point by a vertical flip on the second plot point, we will get a third plot point and:
- the input of the third plot point will be the same as the input of the second plot point, that is the opposite of the input of the first plot point
- the output of the third plot point will be the opposite of the output of the second plot point, that is the opposite of the output of the first plot point

In other words, we can get the third plot point by a diagonal flip on the first plot point.

EXAMPLE 7.8. If we do a horizontal flip on the plot point $(+2,-48)$ we get a second plot point and if we follow by a vertical flip on the second plot point, we get a third plot point and:

- the input of the second plot point will be $-2^{\text {opposite input }}$
- the output of the second plot point will be -40 and then
- the input of the third plot point will be -2
- the output of the third plot point will be +40

In other words, both the input and the output of the third plot point are opposite of the input and output of the first plot point and so to get the third plot point directly from the first plot point we can just use a diagonal flip instead of a horizontal flip followed by a vertical flip.
4. So a consequence of theorem 7.1 on page 180 is that once we have the plot point for an input, we can get the plot point for the opposite input, that is for the input with the same size and opposite sign with just one flip:

Theorem 7.2 Symmetry (For Regular Monomial Functions.)
Given the plot point for an input, we get the plot point for the opposite input with:

- A horizontal-flip if Exponent Parity $=$ even,
- A diagonal-flip if Exponent Parity =odd.

EXAMPLE 7.9. Given the function specified by the global input-ouput rule

$$
x \xrightarrow{K A T} K A T(x)=(-3) \cdot x^{+4}
$$

a. For instance

$$
\begin{aligned}
+2 \xrightarrow{K A T} K A T(+2) & =-3 \bullet+2 \bullet+2 \bullet+2 \bullet+2 \\
& =-48
\end{aligned}
$$

and

$$
\begin{aligned}
-2 \xrightarrow{K A T} K A T(-2) & =-3 \bullet-2 \bullet-2 \bullet-2 \bullet-2 \\
& =-48
\end{aligned}
$$

b. We see that we can get the plot point for input -2 by a horizontal flip of the plot point for input +2 :

EXAMPLE 7.10. Given the function specified by the global input-ouput rule

$$
x \xrightarrow{K A T} K A T(x)=(+5) \cdot x^{+3}
$$

a. For instance

$$
\begin{aligned}
+2 \xrightarrow{K A T} K A T(+2) & =+5 \bullet+2 \bullet+2 \bullet+2 \\
& =+40
\end{aligned}
$$

and

$$
\begin{aligned}
-2 \xrightarrow{K A T} K A T(-2) & =+5 \bullet-2 \bullet-2 \bullet-2 \\
& =-40
\end{aligned}
$$

b. We see that we can get the plot point for input -2 by a diagonal flip of the plot point for input +2 :

3 Output Qualitative Size

LANGUAGE 7.1 Size. When it is clear from the context that we refer to Qualitative Size, as in this section, we will just say Size as in, for instance, "Input Size $=$ small" instead of "Input Qualitative Size $=$ small".

Since Exponent Sign specifies if the coefficient is to be multiplied or divided by the copies of the input and since, depending on Exponent Sign, we use either theorem 1.2 or theorem 1.3, Output Size will depend on Exponent Sign.

1. More precisely, Output Size has to depend on both Input Size and Exponent Sign:

- If Exponent Sign is + , the coefficient is to be multiplied by copies of the input then, as a consequence of theorem 1.2 on page 38:
\triangleright If Input Size $=$ large, Output Size $=$ bounded \times large $=$ large
\triangleright If Input Size $=$ small, Output Size $=$ bounded \times small $=$ small
- If Exponent Sign $=-$, then the coefficient is to be divided by copies of the input so that, as a consequence of theorem 1.3 on page 39:
\triangleright If Input Size $=$ large, Output Size $=$ bounded \div large $=$ small
\triangleright If Input Size $=$ small, Output Size $=$ bounded \div small $=$ large

EXAMPLE 7.11. Given the function specified by the global input-output rule

$$
x \xrightarrow{K I P} K I P(x)=(+82.33) \cdot x^{\square 4}
$$

Using theorem 1.3, we have

$$
\begin{aligned}
\text { small } \xrightarrow{K I P} K I P(\text { small }) & =\frac{\text { bounded }}{\frac{\text { small } \cdot \ldots \cdot \text { small }}{\text { bounded }}} \\
& =\frac{\text { small }}{\text { sma }} \\
& =\text { large }
\end{aligned}
$$

EXAMPLE 7.12. Given the function specified by the global input-output rule

$$
x \xrightarrow{K A P} K A P(x)=(-73.93) \cdot x^{+11}
$$

Using theorem 1.2, we have

$$
\begin{aligned}
\text { large } \xrightarrow{K A P} K A P(\text { large }) & =\text { bounded } \cdot \text { large } . . . \text { large } \\
& =\text { bounded } \cdot \text { large } \\
& =\text { large }
\end{aligned}
$$

EXAMPLE 7.13. Given the function specified by the global input-output rule

$$
x \xrightarrow{K A T} K A T(x)=(-25.25) \cdot x^{ \pm 7}
$$

Using theorem 1.2, we have

$$
\begin{aligned}
\text { small } \xrightarrow{K A T} K A T(\text { small }) & =\text { bounded } \cdot \text { small } \cdot \ldots \text { small } \\
& =\text { bounded } \cdot \text { small } \\
& =\text { small }
\end{aligned}
$$

EXAMPLE 7.14. Given the function specified by the global input-output rule

$$
x \xrightarrow{K I T} K I T(x)=(+44.06) \cdot x^{\square}
$$

Using theorem 1.3, we have

$$
\begin{aligned}
\text { large } \xrightarrow{K I T} K I T(\text { large }) & =\frac{\text { bounded }}{\text { large } \cdot \ldots \cdot \text { large }} \\
& =\frac{\text { bounded }}{\text { large }} \\
& =\text { small }
\end{aligned}
$$

We therefore have the following which summarizes the results of the above investigations

Theorem 7.3 Output Size (For Regular Monomial Functions)

- If Exponent Sign $=+$,
Output Size = Input Size.
- If Exponent Sign = -,

Output Size $=$ Reciprocal Input Size.
(For "Reciprocal" see theorem 15.12 on page 318.)
2. Then, for

Procedure 7.2 To get the Output Size for a regular monomial function

Use theorem 7.3 on page 186.

Demo 7.5 Given the function specified by the global input-output rule

$$
x \xrightarrow{K I P} K I P(x)=(+82.33) \cdot x^{-4}
$$

get the Output Size.
Using theorem 7.3 on page 186 we get

$$
\begin{aligned}
& \text { large } \xrightarrow{K I P} \text { small } \\
& \text { small } \xrightarrow{K I P} \text { large }
\end{aligned}
$$

Demo 7.6 Given the function specified by the global input-output rule

$$
x \xrightarrow{K A P} K A P(x)=(-73.93) \cdot x^{+11}
$$

get the Output Size.
Using theorem 7.3 on page 186 we get

$$
\begin{gathered}
\text { large } \xrightarrow{K A P} \text { large } \\
\text { small } \xrightarrow{K A P} \text { small }
\end{gathered}
$$

Demo 7.7 Given the function specified by the global input-output rule

$$
x \xrightarrow{K A T} K A T(x)=(-25.25) \cdot x^{+7}
$$

get the Output Size.
Using theorem 7.3 on page 186 we get

$$
\begin{aligned}
& \text { large } \xrightarrow{K A T} \text { large } \\
& \text { small } \xrightarrow{K A T} \text { small }
\end{aligned}
$$

Demo 7.8 Given the function specified by the global input-output rule

$$
x \xrightarrow{K I T} K I T(x)=(+44.06) \cdot x^{-4}
$$

get the Output Size.
Using theorem 7.3 on page 186 we get

$$
\begin{aligned}
& \text { large } \xrightarrow{\text { KIT }} \text { small } \\
& \text { small } \xrightarrow{\text { KIT }} \text { large }
\end{aligned}
$$

4 Reciprocity

1. Another way to look at theorem 7.3 on 186 is to realize that, for a monomial function,

- If Output Size $=$ Input Size, this can only be because Exponent Sign $=$ $+$,
- If Output Size $=$ Reciprocal Input Size, this can only be because Exponent Sign $=-$.
Which gives us the following which we will use to graph regular monomial functions efficiently:

THEOREM 7.4 Reciprocity (For Regular Monomial Functions.)

- If large \rightarrow large, then small \rightarrow small (And vice versa.)
- If large \rightarrow small, then small \rightarrow large (And vice versa.)

EXAMPLE 7.15.

After we have found, for instance,

EXAMPLE 7.16.
After we have found, for instance, We get from theorem 7.4

2. The relationship between ∞ and 0 is not only important but also fascinating.
a. Even though, as an input, 0 is usually not particularly important, there is an intriguing "symmetry" between ∞ and 0 namely:

More precisley, small numbers are some sort of inverted image of large numbers since the reciprocal of a large number is a small number and vice versa.

EXAMPLE 7.17.

The opposite of the reciprocal of -0.001 is +1000 . In a Magellan view, we have

b. Here is yet another way to look at reciprocity. We start with the graph of a monomial function and we "turn" it so as to see it while facing ∞ and we then compare it with the graph near 0 of the reciprocal function.

EXAMPLE 7.18.

Let the monomial function specified by the global input-output rule

$$
x \xrightarrow{R A I N} \operatorname{RAIN}(x)=(+1) x^{+4}
$$

the local graph near 0 of $R A I N$ is:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut open the cylinder along the input level line for 0

Finally we widen

The local graph near ∞ that we got for $R A I N$ is:

It is the same as the local graph near 0 of the reciprocal function specified by the global input-output rule

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞. So the graphs on the positive sides are the same and the local graphs on the negative sides are also the same.)

EXAMPLE 7.19.

Given the monomial function specified by the global input-output rule

$$
x \xrightarrow{\text { MIKE }} \operatorname{MIKE}(x)=(+1) x^{-3}
$$

the local graph near 0 of $M I K E$ is:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more closing down the gap until the edges touch:

Then we rotate the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut open the cylinder along the input level line for 0

Finally we widen the cut and unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we just got for MIKE is:

It is the same as the local graph near 0 of the reciprocal function specified by the global input-output rule $x \xrightarrow{\text { JANE }}$ JANE $(x)=(+1) x^{+3}$

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞. So the graphs on the positive sides are the same and the local graphs on the negative sides also are the same.)

5 Global Graphing

We can of course get the global graph the way we will get the global graph of all the other functions in this text, that is as described in ??, but, in the case of regular monomial functions, we will be taking advantage of the following Theorems which we must become completely familiar with-but which we certainly must not memorize:

- The first part of theorem 7.1 on page 180 namely:

THEOREM 7.5 Output Sign for positive inputs. (For Regular Monomial Functions.)

Output Sign for positive inputs $=$ Coefficient Sign.

- Theorem 7.3 on page 186
- Theorem 7.4 on page 188
- Theorem 7.2 on page 183

Then, after a little bit of practice, we will be able to get the global graph very rapidly:

Procedure 7.3 Graph a regular monomial function:

a. Locate the graph place for inputs near $+\infty$ as follows:
i. Determine if the graph place for inputs near $+\infty$ is above or
below the 0-output level line.
(Use theorem 7.5 on page 180)
ii. Determine if the graph place for inputs near $+\infty$ is near the 0 -output level line or near the ∞-output level line, (Use theorem 7.3 on page 186)
b. Locate the graph place for inputs near 0^{+}.
(Use theorem 7.4 on page 188).
c. Locate the graph places for inputs near $-\infty$ and inputs near 0^{-}.
(Use theorem 7.2 on page 183)
d. Draw the global graph through the graph places.

Demo 7.9 Get the global graph of the function specified by the global inputoutput rule

$$
x \xrightarrow{K I R} K I R(x)=(+52.92) \cdot x^{-13}
$$

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=+$,

$$
+\xrightarrow{K I R}+
$$

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign $=-$,
large $\xrightarrow{\text { KIR }}$ small
(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near 0^{+}.
(Using theorem 7.4 on page 188.)

3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using theorem 7.2 on page 183.)

4. We draw the global graph through the graph places. And, to the right is a Magellan view of the global graph.

Demo 7.10 Get the global graph of the function specified by the global inputoutput rule

$$
x \xrightarrow{K I M} K I M(x)=(-40) x^{+6}
$$

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=-$,

$$
+\xrightarrow{K I M}+
$$

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign $=+$,
large $\xrightarrow{\text { KIM }}$ large
(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near 0^{+}.
(Using theorem 7.4 on page 188.)

3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using theorem 7.2 on page 183.)

4. We draw the global graph through the graph places. And, to the right is a Magellan view of the global graph.

DEMO 7.11 Get the global graph of the function specified by the global inputoutput rule

$$
x \xrightarrow{K I N} K I N(x)=(-40.87) x^{+5}
$$

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=-$,

$$
+\xrightarrow{K I N}-
$$

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign $=+$,

$$
\text { large } \xrightarrow{\text { KIN }} \text { large }
$$

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near 0^{+}.
(Using theorem 7.4 on page 188.)

3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using theorem 7.2 on page 183.)

4. We draw th global graph through the graph places. And, to the right is a Magellan view of the global graph.

Demo 7.12 Get the global graph of the function specified by the global inputoutput rule

$$
x \xrightarrow{K I B} K I B(x)=(+77.03) \cdot x^{-8}
$$

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=+$,

$$
+\xrightarrow{K I B}+
$$

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign $=-$,

$$
\text { large } \xrightarrow{K I B} \text { small }
$$

(Using theorem 7.3 on page 186.)
2. We locate the graph place for inputs near 0^{+}.
(Using theorem 7.4 on page 188.)

3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using theorem 7.2 on page 183.)

4. We draw the global graph through the graph places. And, to the right is a Magellan view of the global graph.

6 Types of Global Graphs

Each type of global input-output rule corresponds to a type of global graph. The global graphs are shown both from "close-up" to see the bounded graph and from "faraway" to see how the graphs flatten out.

Chapter 8

Exceptional Monomial Functions

Outputs Of Constant Functions, 202 - Graphs Of Constant Functions, 203 - Features Of Constant Functions, 205 - Output Of Linear Functions at $x_{0}, 207 \bullet$ Outputs Of Linear Functions near ∞ and $0,208 \bullet$ Graphs Of Linear Functions, 209 - Features Of Linear Functions, 212 .

We now investigate the exceptional monomial functions, that is the monomial functions with exponent 0 and the monomial functions with exponent +1 . Even though they are ... exceptionally simple, they are ... exceptionally important, the monomial functions with exponent 0 because they are used to approximate other functions in Integral Calculus and the monomial functions with exponent +1 because they are at the basis of Applied Mathematics.

FUNCTIONS

Definition 8.1 Constant Functions are monomial functions with exponent 0 , that is functions specified by $x \xrightarrow{\text { CONSTANT }}$ $\operatorname{CONSTANT}(x)=a x^{0}$. (Where a, called the constant coefficient, is the bounded number that specifies the function CONSTANT.)

EXAMPLE 8.1. The constant function FLAP specified by the constant
abuse of language UNIT + UNIT-
coefficient +5273.1 is the function specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow[F L A P]{P L A P}(x) & =\underbrace{+5273.1}_{\text {constant coefficient }} x^{0} \\
& =\underbrace{+5273.1}_{\text {constant coefficient }}
\end{aligned}
$$

LANGUAGE 8.1 The name constant functions is an abuse of language because it is not the function itself which is constant but its output which is constant in the sense that, since the coefficient is neither multiplied nor divided by any copy of x and thus to be left alone, the output remains constantly equal to the coefficient no matter what the input is.

NOTE 8.1 x^{0} must absolutely not be read " x multiplied by 0 " because that would give the output 0 no matter what. (This is a very common error among beginners.)

Contrary to what we did with regular monomial functions we will not normalize constant functions. In fact, the constant functions with constant coefficients +1 and -1 have special names:

- The constant function with coefficient +1 is usually called $\boldsymbol{U} \boldsymbol{N I T} \boldsymbol{T}_{+}$. In other words, $U N I T_{+}$is the function specified by the global input-output rule

$$
x \xrightarrow{\text { UNIT }_{+}} U N I T_{+}(x)=+1
$$

- The constant function with coefficient -1 is usually called $\boldsymbol{U} \boldsymbol{N I T} \boldsymbol{T}_{-}$. In other words, $U N I T_{-}$is the function specified by the global input-output rule

$$
x \xrightarrow{\text { UNIT-- }} U N I T_{-}(x)=-1
$$

1 Outputs Of Constant Functions

1. In order to get the output at a given bounded input x_{0} of a monomial function with exponent 0 , we still use ?? on ?? which, in the case of constant functions, boils down to nothing.

PROCEDURE 8.1 To get the output at x_{0} of the constant function specified by the global input-output rule $x \xrightarrow{\text { CONSTANT }}$ CONSTANT $(x)=a$
i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{C O N S T A N T} C O N S T A N T(x)\right|_{x \leftarrow x_{0}}=\left.a\right|_{x \leftarrow x_{0}}
$$

which however, since there is nothing to replace with x_{0}, gives:

$$
x_{0} \xrightarrow{\text { CONSTANT }} \operatorname{CONSTANT}\left(x_{0}\right)=\underbrace{a}_{\text {output-specifying code }}
$$

ii. There is nothing to execute and the output number is:

$$
=a
$$

which gives the input-output pair

$$
\left(x_{0}, a\right)
$$

Temo 8.1 To get the output at -3 of the function specified by the global input-output rule

$$
x \xrightarrow{F L A P} F L A P(x)=\underbrace{+5273.1}_{\text {output specifying code }}
$$

This is short for

$$
=\underbrace{+5273.1 x^{0}}_{\text {output specifying code }}
$$

and since the exponent is 0 so that we do not multiply or divide the coefficient by any copy of the input there is no point declaring that the input is -3 and nothing to execute and the output of the function $F L A P$ at -3 is just the coefficient:

$$
=+5273.1
$$

In other words, ... just as stated by the output-specifying code to begin with!
2. Since the output of a constant function is the coefficient no matter what the input, the size of the output does not matter and the outputs, both for inputs near ∞ and for inputs near 0 , are again going to be the coefficient.

2 Graphs Of Constant Functions

Constant functions are the first of the only three kinds of functions for which we can get the global graph directly because the global graph is a straight
line.

1. Since the output of a constant function is equal to the constant coefficient no matter what the input is, the quantitative global graph will be the output level line of the constant coefficient.
Procedure 8.2 Graph the function
$x \xrightarrow{\text { CONSTANT }} C O N S T A N T(x)=a$
i. Mark the constant coefficient a on the output ruler
ii. Draw the output level line through the tickmark

EXAMPLE 8.2. Here is the global graph of the function $U N I T_{+}$:

EXAMPLE 8.3. Here is the global graph of the function $U N I T_{-}$:

In Mercator view:

In Magellan view:

2. Since the global graph is so easy to get, we get the local graphs from the global using?? on ??. In fact, we will usually need only the local graph near ∞ and the local graph near 0 .

EXAMPLE 8.4.
Local graph of $U N I T_{+}$near ∞ :

EXAMPLE 8.5.

3 Features Of Constant Functions

What makes constant functions exceptional among monomial functions is that they lack both local slope and local concavity and have only local height.

But then, since for a constant function the local height is the same everywhere, we can talk of the global height of a constant function.

EXAMPLE 8.6. Let f be the function specified by the global input-output
rule

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =(-31.72) x^{0} \\
& =-31.72
\end{aligned}
$$

the global height of f is -31.72 :

LINEAR FUNCTIONS

DEFINITION 8.2 Linear Functions are monomial functions with exponent +1 , that is functions specified by $x \xrightarrow{\text { LINEAR }}$ $L I N E A R(x)=a x^{+1}$. (Where a, called the linear coefficient, is the bounded number that specifies the function $L I N E A R$.)

EXAMPLE 8.7. The constant function $F L O P$ specified by the constant coefficient +5273.1 is the function specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{F L O P} F L O P(x) & =\underbrace{+5273.1}_{\text {linear coefficient }} x^{+1} \\
& =\underbrace{+5273.1}_{\text {linear coefficient }} x
\end{aligned}
$$

LANGUAGE 8.2 The reason monomial functions with exponent +1 are called linear functions is that they are (the simplest instance of) a kind of functions with an extremely desirable but extremely rare feature, namely linearity. (See https://en.wikipedia.org/wiki/ Linearity.) However, one should be careful because the name linear function is also used in Precalculus textbooks for a different kind of functions, which we will investigate in chapter 9 and chapter 10 under the name of affine functions.

Contrary to what we did with regular monomial functions - and just like what we did with constant functions, we will not normalize linear functions. In fact, the linear functions with linear coefficients +1 and -1 have special

IDENTITY OPPOSITE opposite of x names:

- The linear function with coefficient +1 is usually called IDENTITY because the output is identical with the input. In other words, IDENTITY is the function specified by the global input-output rule

$$
x \xrightarrow{\text { IDENTITY }} \operatorname{IDENTITY}(x)=x
$$

- The linear function with coefficient -1 is usually called OPPOSITE. In other words, OPPOSITE is the function specified by the global inputoutput rule
$x \xrightarrow{\text { OPPOSITE }}$ OPPOSITE $(x)=-x \quad($ Where $-x$ is read opposite of $x)$

4 Output Of Linear Functions at x_{0}

In order to get the output at a given bounded input x_{0} of a linear function, we proceed exactly as with regular monomial functions, that is we still use ?? on ?? but, in the case of linear functions, the execution boils down to just one multiplication.

Temo 8.2 To get the output at -3 of the function specified by the global input-output rule

$$
x \xrightarrow{B I N K} B I N K(x)=\underbrace{(-26.18) x^{+1}}_{\text {output-specifying code }}
$$

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{B I N K} B \operatorname{INK}(x)\right|_{x \leftarrow-3}=\left.(-26.18) x^{+1}\right|_{x \leftarrow-3}
$$

which gives:
ii. We execute the output-specifying code into an output number:

$$
=-26.18 \cdot-3
$$

and, using theorem 19.2 on page 365 , we get:

$$
=+78.54
$$

which gives the input-output pair

$$
(-3,+78.54)
$$

5 Outputs Of Linear Functions near ∞ and 0

In order to get the output near ∞ or near 0 of a linear function, we proceed exactly as in the case of regular monomial functions but, in the case of linear functions, the execution boils down to just one multiplication.

Temo 8.3 To get the output near ∞ of the function specified by the global input-output rule

$$
x \xrightarrow{B I N K} B I N K(x)=\underbrace{(-26.18) x^{+1}}_{\text {output-specifying code }}
$$

i. We declare that x is to be replaced by \pm large

$$
\left.\left.x\right|_{x \leftarrow \pm \text { large }} \xrightarrow{B I N K} B I N K(x)\right|_{x \leftarrow \pm \text { large }}=\left.(-26.18) x^{+1}\right|_{x \leftarrow \pm \text { large }}
$$

which gives:

$$
\pm \text { large } \xrightarrow{B I N K} B I N K(-3)=\underbrace{(-26.18) \cdot(\pm \text { large })^{+1}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code

$$
=-26.18 \cdot \pm \text { large }
$$

Since 26.18 is bounded, theorem 1.2 on page 38 gives $26.18 \cdot$ large $=$ large and, using theorem 19.2 on page 365 , we get:

$$
=\mp l a r g e
$$

which gives the input-output pair
(\pm large,\mp large $)$

Temo 8.4 To get the output near 0 of the function specified by the global input-output rule

$$
x \xrightarrow{J I N K} J I N K(x)=\underbrace{(+45.57) x}_{\text {output-specifying code }}
$$

i. We declare that x is to be replaced by \pm small

which gives:

$$
\pm \text { small } \xrightarrow{J I N K} J I N K(\pm \text { small })=\underbrace{(+45.57) \cdot(\pm \text { small })^{+1}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code

$$
=+45.57 \cdot \pm \text { small }
$$

Since 45.57 is bounded, theorem 1.2 on page 38 gives $45.57 \cdot$ small $=$ small and, using theorem 19.2 on page 365 , we get:

$$
= \pm \text { small }
$$

which gives the input-output pair
(\pm small,\pm small $)$

6 Graphs Of Linear Functions

After the constant functions, the linear functions are the second of only three kinds of functions for which we can get the global graph directly because the global graph is a straight line.

With linear functions, though, it is not as easy to make the case that the global graph is a straight line as with constant functions because making the case requires having a geometric definition of what a straight line is. So, here we will take for granted that the global graph of a linear function is a straight line.

1. Given a linear function specified by a global input-output rule, the key to finding the quantitative global graph is another theorem from GEOMETRY, namely that a straight line is specified once we know two of its points. (Which, in the real world, corresponds to the fact that all we need to draw a straight line through two points is a straightedge.) As a consequence, the quantitative global graph of a linear function will be specified by two input-output pairs.
There is no restriction as to what bounded inputs to use but given the linear function specified by the global input-output rule

$$
x \xrightarrow{f} f(x)=a \cdot x
$$

there are two bounded inputs that make it very easy namely 0 and +1 because:

- Inputting 0 gives:

$$
\begin{aligned}
\left.\left.x\right|_{x \leftarrow 0} \xrightarrow{f} f(x)\right|_{x \leftarrow 0} & =\left.a \cdot x\right|_{x \leftarrow 0} \\
0 \xrightarrow{f} f(0) & =a \cdot 0
\end{aligned}
$$

and, because any number multiplied by 0 gives 0

$$
=0
$$

So, $(0,0)$ is an input-output pair.

- Inputting +1 gives:

$$
\begin{aligned}
\left.\left.x\right|_{x \leftarrow+1} \xrightarrow{f} f(x)\right|_{x \leftarrow+1} & =\left.a \cdot x\right|_{x \leftarrow+1} \\
+1 \longrightarrow & f(+1)
\end{aligned}=a \cdot(+1)
$$

and, because any number multiplied by +1 gives that number

$$
=a
$$

So, $(+1, a)$ is an input-output pair.
2. Given a function specified by a global input-output rule, we will use:

PROCEDURE 8.3 Graph the function specified by $x \xrightarrow{L I N E A R}$

$\operatorname{LINEAR}(x)=a \cdot x$
i. Plot the input-output pairs for two inputs, for instance 0 and 1
ii. Draw a straight line through the two plot points

EXAMPLE 8.8. Let f be the function specified by the global input-output rule

$$
x \xrightarrow{f} f(x)=-2.5 x
$$

in order to get the quantitative global graph,
i. We plot the input-output pairs
$(0,0)$ and $(1,-2.5)$

ii. We draw a straight line through the input-output pairs $(0,0)$ and $(1,-2.5)$

EXAMPLE 8.9. Here is the global graph of the function IDENTITY:

EXAMPLE 8.10. Here is the global graph of the function OPPOSITE:

In Mercator view:

In Magellan view:

3. Since the global graph is so easy to get, we get the local graphs near 0 and near ∞ using ?? on ??. In the rest of this text, though, given a linear function, we will usually need only the local graph near ∞ and the local graph near 0 .

EXAMPLE 8.11.

global slope
run
rise

EXAMPLE 8.12.
Local graph of IDENTITY_ near

Local graph of IDENTITY Y_{+}near 0::

Local graph of $I D E N T I T Y_{-}$near 0: :

7 Features Of Linear Functions

What makes linear functions exceptional among monomial functions is that they lack local concavity and have only local height and local slope.

But then, since for a linear function the local slope is the same everywhere, the graph of a linear function has a global slope, that is the fraction $\frac{\text { Rise }}{\text { Run }}$ where, given two input-output pairs, the run is the difference from one input to the other and the rise is the corresponding difference from one output to the other.

In fact, the reason we like to use the inputs 0 and 1 is that they make
it easy to see that the global slope of the global graph of a linear function is dilation function the linear coefficient of the global input-output rule.

EXAMPLE 8.13. Let f be the function specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =(+0.5) x^{+1} \\
& =+0.5 x
\end{aligned}
$$

the global slope of f is $\frac{\text { Rise }}{\text { Run }}=\frac{+0.5}{+1}=+0.5$

LANGUAGE 8.3 Another name for linear function is dilation function because it is easy to prove that the distance between any two outputs is obtained by just "dilating" the distance between the two inputs by the coefficient. (See https://en.wikipedia.org/wiki/Dilation_ (metric_space).)

Chapter 9

Prelude To Polynomial Functions

Adding Functions, 215 • Binomial Functions, 217 • Graphs of Binomial
Functions, $219 \bullet$ Trinomial Functions, $222 \bullet$ Comparing Monomial
Functions, 223 .

As already mentioned, monomial functions will be the building blocks from which all the functions we will be investigating in this text are built from. So we will always have to use more than a single monomial function at a time.

1 Adding Functions

1. Given a function, to which we will refer as base function, one often needs to add a number to each output that the base function returns. Whether or not this add-on number remains the same regardless of the input or differs depending on the input, we can look upon the add-on number as being itself the output returned for the same input by some other function to which we will refer as add-on function. (If the add-on number is the same regardless of the input this just means that the add-on function is a constant function.)
There is then going to be a third function, to be referred as sum function, which, for each input, will return the output returned by the base function plus the add-on number returned by the add-on function for that input.
In other words, given the two functions
bar graph bar

$$
x \xrightarrow{B A S E} B A S E(x)
$$

and

$$
x \xrightarrow{A D D-O N} A D D-O N(x)
$$

there will be a third function specified as

$$
x \xrightarrow{S U M} S U M(x)=B A S E(x)+A D D-O N(x)
$$

2. In sciences such as textscBiology, textscPsychology and textscEconomics the three functions are often in tabular form.

EXAMPLE 9.1. When we shop online for, say for a textbook, we first see a price list —the base function. However, a shipping charge, which might or might not depend on the textbook, is usually added-on to the list price and is given by the Shipping charge list -the add-on function. The price we end-up having to pay is thus given by the actual price list-the sum function.

	$x \quad L I S$	$\xrightarrow{\text { IST }} \operatorname{LIST}(x)$
	English	h 140
	History	y y 80
	Biology	y 130
	Math	10
	Poetry	70
x	$\xrightarrow{P A Y} P A Y(x)$	
English	$140+13$	$3.15=153.15$
History	$80+3$	$3.45=83.45$
Biology	$130+7$	$7.35=137.25$
Math	$10+3$	$3.75=13.75$
Poetry	$70+5$	$5.32=75.32$

$\xrightarrow{\text { SHIP }}$ SHIP (x)		
English	13.15	
History	3.45	
Biology	7.25	
Math	3.75	
Poetry	5.32	

which says, for instance, that while the list price of the English textbook is $\$ 140$, a shipping charge of $\$ 13.15$ brings the price to be paid to $\$ 140+$ $\$ 13.15=\$ 153.15$.
3. Instead of representing the functions by tables, one might want to represent them by graphs. Rather than to use plots, though, one often uses bar graphs in which the pieces of input level lines that are between the 0 -output level line and the plot point are highlighted into bars.

EXAMPLE 9.2. The situation in the above example would be represented by the following bar graphs.

2 Binomial Functions

1. Given a base function which is a monomial function, when we addon a monomial function with the same exponent, the sum is a monomial function with the same exponent.

EXAMPLE 9.3. Given the base function MINT specified by the global input-output rule

$$
x \xrightarrow{M I N T} M I N T(x)=-12.82 x^{+4}
$$

and given the add-on function TEA specified by the global input-output rule

$$
x \xrightarrow{T E A} T E A(x)=+49.28 x^{+4}
$$

then the sum function will be specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{\text { SUM }} \operatorname{SUM}(x) & =M I N T(x)+T E A(x) \\
& =-12.82 x^{+4} \oplus+49.28 x^{+4} \\
& =[-12.82 \oplus+49.28] x^{+4} \\
& =+36.46 x^{+4}
\end{aligned}
$$

2. However, when the exponent of the add-on function is different from the exponent of the base function, then the sum function is not a monomial function but what is called a binomial function.

EXAMPLE 9.4. Let $B A S E$ be specified by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{+2}
$$

and let $A D D-O N$ be specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{A D D-O N} A D D-O N(x) & =(+5) x^{0} \\
& =+5
\end{aligned}
$$

then the $S U M$ function is specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{+2} \oplus(+5) x^{0} \\
& =(-3) x^{+2}+5
\end{aligned}
$$

To see that SUM cannot be replaced by a single monomial function, we first evaluate all three functions at some input, for instance +2 :

$$
\begin{aligned}
+2 \xrightarrow{B A S E} B A S E(+2) & =(-3)(+2)^{+2} \\
& =-12
\end{aligned}
$$

and

$$
\begin{aligned}
+2 \xrightarrow{A D D-O N} A D D-O N(+2 & =(+5)(+2)^{0} \\
& =+5
\end{aligned}
$$

then

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3)(+2)^{+2} \oplus(+5)(+2)^{0} \\
& =-12 \oplus+5 \\
& =-7
\end{aligned}
$$

The question then is what monomial function could return the output -7 for the input +2 .

Of course, we can easily find a monomial function that would return the output -7 for the input +2 . For instance, the dilation function $x \xrightarrow{f} f(x)=$ $-\frac{7}{2} x$ does return the output -7 for the input +2 . But f is not going to return the same output as $S U M$ for other inputs, say, $+3,+4$, etc which it should. So, the binomial function

$$
x \xrightarrow{S U M} \operatorname{SUM}(x)=(-3) x^{+2}+5
$$

cannot be replaced by the single monomial function

$$
x \xrightarrow{f} f(x)=-\frac{7}{2} x
$$

Note 9.1

We noted at the beginning of Chapter 5 that monomial functions were only rarely called monomial functions and that this was unfortunate: indeed, it would be nicer to say that a binomial function cannot be replaced by a single monomial function. (We cannot have two for the price of one.)

3 Graphs of Binomial Functions

1. When the exponent of the add-on function is the same as the exponent of the base function, the bar graphs show exactly why the sum function will have again the same exponent.
a. Given a constant base function, adding-on a constant function:

EXAMPLE 9.5.

b. Given a dilation base function, adding-on a dilation function:

2. When the exponent of the add-on function is not the same as the exponent of the base function, the bar graphs show clearly why the sum function cannot be a monomial function.
a. Given a constant base function,

- Adding-on a dilation function:

EXAMPLE 9.7.

- Adding-on an even positive exponent monomial function:

EXAMPLE 9.8.

- Adding-on an odd positive exponent monomial function:

EXAMPLE 9.9.

b. Given a dilation base function,

- Adding-on an even monomial function:

EXAMPLE 9.10.

- Adding-on an odd monomial function:

EXAMPLE 9.11.

4 Trinomial Functions

There is of course no reason why the base function could not itself be a binomial function. In fact, this can very well be the case and the sum function will then be called a trinomial function.

EXAMPLE 9.12. Let $B A S E$ be specified by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{0} \oplus(+7) x^{+1}
$$

and let $A D D-O N$ be specified by the global input-ouput rule

$$
x \xrightarrow{A D D-O N} A D D-O N(x)=(+5) x^{+3}
$$

then the $S U M$ function is specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{0} \oplus(+7) x^{+1} \oplus(+5) x^{+3} \\
& =-3+7 x+5 x^{+3}
\end{aligned}
$$

EXAMPLE 9.13. Let $B A S E$ be specified by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{+1} \oplus(+7) x^{0}
$$

and let $A D D-O N$ be specified by the global input-ouput rule

$$
x \xrightarrow{A D D-O N} A D D-O N(x)=(+5) x^{-2}
$$

then the $S U M$ function is specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{+1} \oplus(+7) x^{0} \oplus(+5) x^{-2} \\
& =-3 x+7+5 x^{-2}
\end{aligned}
$$

5 Comparing Monomial Functions

Chapter 10

Affine Functions: Local Analysis

Output at x0, $226 \bullet$ Output near $\infty, 228 \bullet$ Output near $x_{0}, 230 \bullet$ Local graphs, $234 \bullet$ Local Feature-signs, 237.

Affine functions are specified by global input-output rules like the generic global input-output rule:

$$
x \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{a x^{+1} \oplus b x^{0}}_{\text {output-specifying code }}
$$

which we usually write

$$
=\underbrace{a x+b}_{\text {output-specifying code }}
$$

where a, called the linear coefficient, and b, called the constant coefficient, are the bounded numbers that specify the function AFFINE.

EXAMPLE 10.1. The affine function $N I N A$ specified by the linear coefficient -31.39 and the constant coefficient +5.34 is the function specified by

$$
x \xrightarrow{\text { NINA }} N I N A(x)=\underbrace{-31.39}_{\text {linear coefficient }} x+\underbrace{5.34}_{\text {constant coefficient }}
$$

It is worth noting that
term
linear term
constant term
x_{0}
generic given input

Note 10.1 The terms in the global input output rule need not be written in order of descending exponent. This is just a habit we have.

EXAMPLE 10.2. The function specified by the global input-output rule

$$
x \xrightarrow{N I N A} N I N A(x)=-31.39 x+5.34
$$

could equally well be specified by the global input-output rule

$$
x \xrightarrow{N I N A} N I N A(x)=+5.34-31.39 x
$$

We now introduce some standard terminology to help us describe very precisely what we we will be doing.

The output-specifying code of the affine function specified by

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=\underbrace{a x+b}_{\text {output-specifying code }}
$$

consists of two terms:

- ax which is called the linear term.
- b which is called the constant term.

EXAMPLE 10.3. The output-specifying code of the function specified by the global input-output rule

$$
x \xrightarrow{\text { NINA }} N I N A(x)=\underbrace{-31.39 x+5.34}_{\text {Output specifying formula }}
$$

consists of two terms:

$$
=\underbrace{-31.39 x}_{\text {linear term constant term }} \underbrace{+5.34}_{\text {ter }}
$$

LANGUAGE 10.1 Whether we look upon b as the constant coefficient, that is as the coefficient of x^{0} in the constant term $b x^{0}$ or as the constant term $b x^{0}$ itself with the power x^{0} "going without saying" will be clear from the context.

1 Output at x0

We will use $\boldsymbol{x}_{\mathbf{0}}$ as a generic given input, that is x_{0} is a bounded input that has been given but whose identity remains undisclosed for the time being.

Procedure 10.1 To evaluate at x_{0} the function specified by $x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b$
i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)\right|_{x \leftarrow x_{0}}=a x+\left.b\right|_{x \leftarrow x_{0}}
$$

which gives:

$$
x_{0} \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}\right)=\underbrace{a x_{0}+b}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}+b
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}+b\right)
$$

Temo 10.1 To evaluate at -3 the function specified by

$$
x \xrightarrow{A L D A} A L D A(x)=-32.67 x+71.07
$$

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{A L D A} A L D A(x)\right|_{x \leftarrow-3}=-32.67 x+\left.71.07\right|_{x \leftarrow-3}
$$

which gives

$$
-3 \xrightarrow{A L D A} A L D A(-3)=\underbrace{-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =+98.01+71.07 \\
& =+169.08
\end{aligned}
$$

which gives the input-output pair

$$
(-3,+169.08)
$$

However, as already discussed in ?? ?? and as has already been the case with monomial functions, instead of getting the output of an affine function at a given input, be it ∞ or x_{0}, we will usually get the output of the affine function near that given input.
jet
local input-output rule near ∞

2 Output near

In order to get the output near ∞, we could proceed as we did in section 5 Output Near ∞ with monomial functions, that is we could declare " x is \pm large" and replace x everywhere in the output-specifying code by \pm large. However, the output-specifying code of affine functions and all functions thereafter will involve more than just one term and using \pm large would become more and more time consuming.

So, in conformity with universal practice, we will declare " x near ∞ " but write just x after that. This, though, is extremely dangerous as it is easy to forget that what we write may be TRUE only because x has been declared to be near ∞.

1. We will execute the output-specifying code, here $a x+b$, into a jet, that is with the terms in descending order of sizes, which, because x is large, means that the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{a x+b}_{\text {output jet near } \infty}
$$

EXAMPLE 10.4. Given the function specified by

$$
x \xrightarrow{B I B A} B I B A(x)=-61.03-82.47 x
$$

To get the jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded • large $=$ large, $-82.47 \cdot x$ is large
Then, in the jet near $\infty,-82.47 x$ must come first and -61.03 comes second So, we get the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{B I B A} B I B A(x)=\underbrace{-82.47 x-61.03}_{\text {output jet near } \infty}
$$

2. Altogether, then:

PROCEDURE 10.2 To evaluate near ∞ the function specified

 by $x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b$i. Declare that x is near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{A F F I N E} A F F I N E(x)\right|_{x \text { near } \infty}=a x+\left.b\right|_{x \text { near } \infty}
$$

which gives:

$$
x \text { near } \infty \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{a x+b}_{\text {output-specifying code }}
$$

linear coefficient in the jet near ∞
constant coefficient in the jet near ∞
where

- a is the linear coefficient in the jet near ∞
- b is the constant coefficient in the jet near ∞.
which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{[a] x \oplus[b]}_{\text {output jet near } \infty}
$$

(Here the jet near ∞ looks the same as the given global input-output rule but that is only because the output-specifying code happened to be written in descending order of exponents.)

TEMO 10.2 To evaluate near ∞ the function specified by

$$
x \xrightarrow{N I N A} N I N A(x)=-61.03-82.47 x
$$

i. We declare that x is near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{N I N A} N I N A(x)\right|_{x \text { near } \infty}=-61.03-\left.82.47 x\right|_{x \text { near } \infty}
$$

which gives:

$$
x \text { near } \infty \xrightarrow{N I N A} N I N A(x)=\underbrace{-61.03-82.47 x}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code into a jet near ∞ :

$$
=[-82.47] x \oplus[-61.03]
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{N I N A} N I N A(x)=\underbrace{[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

where:

- -82.47 is the linear coefficient in the jet near ∞
- -61.03 is the constant coefficient in the jet near ∞.
(Here the jet near ∞ does not look the same as the global input-output rule because the output-specifying code happened not to be in descending order of exponents.)

3. The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

Theorem 10.1 Approximate output near ∞. For affine functions, the term in the jet that contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=[a] x+[\ldots]
$$

EXAMPLE 10.5. Given the function specified by

$$
\begin{gathered}
x \xrightarrow{\text { NINA }} N \text { INA }(x)=-61.03-82.47 x \\
x \text { near } \infty \xrightarrow{\text { NINA }} N I N A(x)=[-82.47] x+[-61.03]
\end{gathered}
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{\text { NINA }} \text { NIN } A(x)=[-82.47] x+[\ldots]
$$

3 Output near x_{0}

While with monomial functions 0 played just as important a role as ∞ (Section 4 Reciprocity), this will not at all be the case with affine functions and all functions thereafter as we will very often be interested in the neighborhood of some given bounded input(s) other than 0 . As a matter of fact, the input 0 will usually not be of much more interest than other bounded inputs. (But we will often be concerned with the output 0 .)

1. In order to "thicken the plot" near a given bounded input, we could proceed basically just as we did in section 6 Output Near 0 with monomial functions, that is declare " $x \leftarrow x_{0}+$ small" or " $x \leftarrow x_{0}-$ small" and replace x everywhere in the output-specifying code by " $x_{0} \oplus+$ small"

EXAMPLE 10.6. The input +2.5 is near the given input +2 :

or by " $x \leftarrow x_{0}-$ small".

EXAMPLE 10.7. The input +17.4 is near the given input +18 :

However, as already pointed out in ?? ??, unlike monomial functions the
h
output jet near x_{0}
output-specifying code of affine functions and all functions thereafter will involves more than just one term. So, using " $x_{0} \oplus+$ small" or " $x_{0} \oplus-$ small" would become more and more time consuming and instead we will use " $x_{0}+$ h " where the letter \boldsymbol{h} is universally accepted as standing for + small or -small. In other words, h already includes the sign.
Of course, in order to input a neighborhood of 0 , we will declare that $x \leftarrow h$, aka $x \leftarrow 0+h$, in other words that x is to be replaced by h.
2. We can then execute the input-output specifying phrase into a jet that is with the terms in descending order of sizes which here, since h is small, means that the powers of h will have to be in ascending order of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { AFFINE }}$ AFFINE $\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$
3. We will therefore use:

PROCEDURE 10.3 To evaluate near x_{0} the function specified

$$
\text { by } x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b
$$

i. Declare that x is to be replaced by $x_{0}+h$

$$
\left.\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{A F F I N E} A F F I N E(x)\right|_{x \leftarrow x_{0}+h}=a x+\left.b\right|_{x \leftarrow x_{0}+h}
$$

which gives:

$$
x_{0}+h \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)+b}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near x_{0} :

$$
\begin{aligned}
& =a x_{0}+a h+b \\
& =\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
\end{aligned}
$$

which gives the local input-output rule near x_{0} :

$$
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right)=\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
$$

Temo 10.3 To evaluate near -3 the function specified by

$$
x \xrightarrow{A L D A} A L D A(x)=-32.67 x+71.07
$$

i. We declare that x is to be replaced by $-3+h$

$$
\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{A L D A} A L D A(x)\right|_{x \leftarrow-3+h}=-32.67 x+\left.71.07\right|_{x \leftarrow-3+h}
$$

which gives

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{-32.67(-3+h)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into a jet near -3 :

$$
\begin{aligned}
& =-32.67(-3)-32.67 h+71.07 \\
& =+98.01-32.67 h+71.07 \\
& =+98.01+71.07-32.67 h \\
& =\underbrace{[+169.08] \oplus[-32.67] h}_{\text {output jet near }-3}
\end{aligned}
$$

which gives the local input-output rule near -3 :

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{[+169.08] \oplus[-32.67] h}_{\text {output jet near }-3}
$$

4. When all we want is a feature-sign, though, the above procedure is inefficient and we will then use the following procedure based directly on the fact that an affine function is the addition of:

- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=\underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:

$$
x \xrightarrow{\text { AFFINE }} \text { AFFINE }(x)=\underbrace{c\left(x_{0}+h\right)}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

The output of the local input-output rule near x_{0} will have to be a jet:

$$
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right)=[] \oplus[] h
$$

and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want.

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:

$$
\begin{gathered}
\text { ave: } \\
x_{0}+h \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}+h\right)=\left[c x_{0}+d\right] \oplus[\quad] h
\end{gathered}
$$

ii. If we want the coefficient of h^{1} in the output jet:

- The linear monomial function contributes c
- The constant monomial function contributes nothing
so we have:

$$
x_{0}+h \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}+h\right)=[\quad] \oplus[c] h
$$

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input, we get the local graph near any input, be it bounded or infinity, from the jet near that input.

Procedure 10.4 To graph near ∞ the function specified by $x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b$

1. Get the jet near ∞ using ?? ?? on ??

$$
x \text { near } \infty \xrightarrow{\text { AFFINE }} A F F I N E(x)=[a] x+[b]
$$

2. Get the local graph near ∞ of each term:
a. Get the graph of the linear term near ∞ by graphing near ∞ the monomial function $x \rightarrow a x$ using ?? ?? on ??.
b. Get the graph of the constant term near ∞ by graphing near ∞ the monomial function $x \rightarrow b$ using ?? ?? on ??.
3. Get the local graph near ∞ of AFFINE by adding-on the constant term to the linear term using chapter 9.

Temo 10.4 To graph near ∞ the function specified by

$$
x \xrightarrow{\text { NINA }} N I N A(x)=-61.03-82.47 x
$$

1. We get the jet near ∞ : (See Demo 10.2 on page 229)

$$
x \text { near } \infty \xrightarrow{\text { NINA }} \text { NINA }(x)=[-82.47] x+[-61.03]
$$

2. Get the local graph near ∞ of each term:

3. We get the local graph near ∞ of NINA by adding-on to the graph of the linear term the graph of the constant term. (See Demo 6.24 on page 175)

Procedure 10.5 To graph near x_{0} the function specified by the generic global input-output rule $x \xrightarrow{A F F I N E}$ $\operatorname{AFFINE}(x)=a x+b$
i. Get the jet near x_{0} of $A F F I N E$ using ?? ?? on ??
ii. Get the graph of the constant term in the jet near x_{0} namely of $\left[a x_{0}+b\right]$
iii. Add-on the graph of the linear term in the jet near x_{0} namely of $[a] h$

Temo 10.5 To graph near -3 the function specified by

$$
x \xrightarrow{A L D A} A L D A(x)=-32.67 x+71.07
$$

i. We get the jet near -3 of $A L D A$ by evaluating $A L D A$ near -3 : (See Demo 10.3 on page 232)

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{[+169.08] \oplus[-32.67] h}_{\text {output jet near }-3}
$$

ii. We get the graph of the constant term near -3: (See Demo 6.24 on page 175)

iii. We get the graph of the linear term near -3 is: (See Demo 6.24 on page 175)

iv. We add-on the graph of the linear term near -3 to the graph of the linear term near -3 . (See Demo 6.24 on page 175)

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so all we need to do is:
i. Get the output jet from the global input-output rule. (See ?? on ?? when the given input is ∞ or ?? on ?? when the given input is x_{0}.)
ii. Get the local graph from the output jet. (See ?? on ?? when the given input is ∞ or ?? on ?? when the given input is x_{0}.)
iii. Get the feature-sign from the local graph(See ??

However, with a little bit of reflection, it is faster and much more useful to read the feature-signs directly from the jet in the local input-output rule. But since, in order for the terms in the jet to be in descending order of sizes,

- In the case of infinity, the exponents of x have to be in descending order.
- In the case of a bounded input, the exponents of h have to be in ascending order.
we will deal with ∞ and with x_{0} separately.

1. Nearinfinity things are quite straightforward:

PROCEDURE 10.6 To get the feature-signs near ∞ of the function specified by $x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b$
i. Get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x) & =a x+b \\
& =\underbrace{[a] x \oplus[b]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. Then, in the jet near ∞ :

- Get both the Height-sign and the Slope-sign from the linear term [a] x because the next term $[b]$ is too small to matter.
- Since both the linear term and the constant term have no concavity, AFFINE has no Concavity-sign near ∞.

Temo 10.6 Get the Height-sign near $\infty=$ of the function specified by

$$
x \xrightarrow{J U L I E} J U L I E(x)=-2 x+6
$$

i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { JULIE }} J U L I E(x) & =-2 x+6 \\
& =\underbrace{[-2] x \oplus[+6]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Height-sign from the linear term $[-2] x$ because the constant term $[+6]$ is too small to matter.
Since the linear coefficient -2 is negative, we get that Height-sign JULIE near $\infty=\langle-,+\rangle$. (Seen from ∞.)

Temo 10.7 Get the Slope-signs near ∞ of the function specified by

$$
x \xrightarrow{\text { PETER }} \operatorname{PETER}(x)=+3 x-8
$$

i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { PETER }} \operatorname{PETER}(x) & =+3 x-8 \\
& =\underbrace{[+3] x \oplus[-8]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Slope-sign from the linear term $[+3] x$ because the constant term $[-8]$
slope.) Since the linear coefficient +3 is positive, we get that Slope-sign PETER near $\infty=\langle/, /\rangle$. (Seen from ∞.)
2. In the case of a bounded input, things are a bit more complicated because the bounded input may turn out to be ordinary or critical for the height. But it will always be ordinary for the slope.

Procedure 10.7 To get the feature-signs near x_{0} of the function specified by $x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b$

i. Get the local input-output rule near x_{0} :

$$
\begin{aligned}
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right) & =a\left(x_{0}+h\right)+b \\
& =a x_{0}+a h+b \\
& =a x_{0}+b+a h \\
& =\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
\end{aligned}
$$

ii. Then, in the jet near x_{0} :

- If x_{0} is ordinary, that is if $\left[a x_{0}+b\right] \neq 0$, get the Height-sign from the sign of the constant term $\left[a x_{0}+b\right]$ because the next term $[a] h$ is too small to matter. In other words, Height-sign AFFINE near $x_{0}=$ Height-sign of the monomial function $h \rightarrow a x_{0}+b$ near 0 . But if x_{0} is critical, that is if $\left[a x_{0}+b\right]=0$, the next term, namely
the linear term $[a] h$, now does matter even though it is small. In other words, now Height-sign AFFINE near $x_{0}=$ Height-sign of the monomial function $h \rightarrow a h$ near 0 .
- Since the constant term has no slope, get the Slope-sign from the next smaller term in the jet, namely the linear term. In other words, Slope-sign AFFINE near $x_{0}=$ Slope-sign of the monomial function $h \rightarrow a h$ near 0 .
- Since both the constant term and the linear term have no concavity, AFFINE has no Concavity-sign near x_{0}.

Temo 10.8 Get the feature-signs near +2 of the function specified by

$$
x \xrightarrow{\text { JULIE }} J U L I E(x)=-2 x-6
$$

i. We get the local input-output rule near +2 :

$$
\begin{aligned}
+2+h \xrightarrow{J U L I E} J U L I E(+2+h) & =-2(+2+h)-6 \\
& =-2(+2)-2 h-6 \\
& =-4-2 h-6 \\
& =-4-6-2 h \\
& =\underbrace{[-10] \oplus[-2] h}_{\text {output jet near }+2}
\end{aligned}
$$

ii. Then, from the jet:

- We get the Height-sign of $J U L I E$ from the constant term $[-10]$ and since the Height-sign of the monomial function $h \rightarrow-10$ near 0 is $\langle-,-\rangle$, we get that Height-sign JULIE near $+2=\langle-,-\rangle$.
- Since the constant term $[-10]$ has no slope we get Slope-sign from the next term, namely the linear term $[-2] h$, and since the Slope-sign of the monomial function $h \rightarrow-2 h$ near 0 is $\rangle\rangle$,$\rangle , we get that Slope-sign$ $J U L I E$ near $+2=\langle\backslash\rangle$,$\rangle .$
- Since the constant term $[-10]$ and the linear term $[-2 h]$ both have no concavity, JULIE has no Concavity-sign near +2 .

Temo 10.9 Get the feature-signs near -2 of the function specified by

$$
x \xrightarrow{\text { PETER }} \operatorname{PETER}(x)=+3 x+6
$$

i. We get the local input-output rule near -2 :

$$
\begin{aligned}
-2+h \xrightarrow{\text { PETER }} \text { PETER }(-2+h) & =+3(-2+h)+6 \\
& =+3(-2)+3 h+6 \\
& =-6+3 h+6 \\
& =-6+6+3 h \\
& =\underbrace{[0] \oplus[+3] h}_{\text {output jet near }-2}
\end{aligned}
$$

ii. Then, from the jet:

- Since the constant term is 0 , we get Height-sign of PETER from the next term, namely the linear term $[+3] h$ even though it is small. Since the Height-sign of the monomial function $h \rightarrow+3 h$ near 0 is $\langle-,+\rangle$ we get that Height-sign PETER near $-2=\langle-,+\rangle$.
- Since the constant term $[0]$ has no slope we get Slope-sign from the next term, namely the linear term $[+3] h$, and since the Slope-sign of the monomial function $h \rightarrow+3 h$ near 0 is $\langle/, \nearrow\rangle$ we get that Slope-sign PETER near $-2=\langle/, /\rangle$
- Since the constant term $[0]$ and the linear term $[+3 h]$ both have no concavity, PETER has no Concavity-sign near -2 .
EVERYTHING IN THE SOURCE AFTER THIS BELONG ELSEWHERE AND IS COMMENTED OUT THREE TIMES HERE.

Chapter 11

Affine Functions: Global Analysis

Smoothness, 241 - The Essential Question, 242 - Slope-sign, $244 \bullet$ Extremum, $245 \bullet$ Height-sign, $245 \bullet$ Bounded Graph, 246 • 0-Slope Location, $248 \bullet$ Locating Inputs Whose Output $=y_{0}, 248 \bullet$ Locating Inputs Whose Output $>y_{0}$ Or $<y_{0}, 248 \bullet$ Initial Value Problem, 249 - Boundary Value Problem, 251.

In contrast with local analysis which involves only inputs that are near a given input, be it ∞ or x_{0}, global analysis involves, one way or the other, all inputs. We will see that, while the local analysis of all algebraic functions will turn out to remain essentially the same, the global analysis of each kind of algebraic functions will turn out to be vastly different.

In fact, with most functions, we will be able to solve only some global problems and mostly only approximately so. Affine functions, though, are truly exceptional in that we will be able to solve all global problems exactly.

Anyway, the first step in investigating the global behavior of a kind of algebraic function will always be to do the general local analysis of that kind of algebraic function, that is the local analysis of the generic algebraic function of that kind near ∞ and near a generic input x_{0}.

1 Smoothness

Given the function specified by the generic global input-output rule

$$
x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b
$$

generic local input-output
rule
first derivative
the generic local input-output rule is:

$$
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right)=\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {jet near } x_{0}}
$$

1. The constant term in the jet near x_{0}, namely $\left[a x_{0}+b\right]$, is just the output at x_{0}. (See ?? on ??). In other words:

THEOREM 11.1 The function which outputs at the given input the constant coefficient in the jet of a given affine function near a given bounded input is the given affine function itself.

EXAMPLE 11.1. Observe that in the local input-output rule in Demo 10.3 on page 232 the constant coefficient in the jet near -3 , namely +169.08 , is just the output at-3. (See Demo 12.1 on page 255)
2. Since the linear term in the jet of an affine function near x_{0}, namely $[a] h$, is small, we have:

THEOREM 11.2 Approximate output near x_{0}. For affine functions, inputs near x_{0} have outputs that are near the output at x_{0}.
which, with the language we introduced in ??, we can rephrase as:
THEOREM ?? (Restated) ?? All affine functions are continuous at all inputs.
(In fact, we will see that this will also be the case for all the functions which we will be investigating in this text.)
3. The function which outputs the linear coefficient in the jet of a given affine function near a given input is called the first derivative of the given function.

2 The Essential Question

As always when we set out to investigate any kind of functions, the first thing we must do is to find out if the offscreen graph of an affine function consists of just the local graph near ∞ or if it also includes the local graph near one or more ∞-height inputs.
In other words, we need to ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs that are ∞-height inputs, that is are there inputs whose nearby inputs have unbounded outputs?

Now, given a bounded input x, we have that:

- since a is bounded, $a x$ is also bounded
- b is bounded
and so, altogether, we have that $a x+b$ is bounded and that the answer to the Essential Question is:

ThEOREM 11.3 Approximate output near ∞. Under an affine function, all bounded inputs return bounded outputs.
and therefore
Theorem 11.4 Offscreen Graph. The offscreen graph of an affine function consists of just the local graph near ∞.

Existence Theorems

The notable inputs are those

- whose existence is forced by the offscreen graph which, by the Bounded Height Theorem for affine functions, consists of only the local graph near ∞.
- whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only way a feature can change sign is near an input where the feature is 0 . Thus, with affine functions, the feature-change inputs will also be 0 -feature inputs.

None of the theorems, though, will indicate where the notable inputs are. The Location Theorems will be dealt with in the last part of the chapter.

EXAMPLE 11.2. When somebody has been shot dead, we can say that there is a murderer somewhere but locating the murderer is another story.

3 Slope-sign

Given the affine function $A F F I N E_{a, b}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b
$$

recall that when x is near ∞ the Slope-sign Near ∞ Theorem says that:

- When a is + , Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, /)$
- When a is - , Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, \backslash)$

1. Since the slope does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the slope need not change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded Slope-sign change input:
EXAMPLE 11.3. Given an affine function whose offscreen graph is

Mercator view

Magellan view
we don't need a bounded slope-sign change input to join smoothly the local graphs near ∞ :

2. In fact, not only does there not have to be a bounded slope-sign change input, there cannot be a bounded slope-sign change input since the local linear coefficient is equal to the global linear coefficient a and the slope must therefore be the same everywhere:

THEOREM 11.5 Slope-Sign Change Non-Existence. An affine function has no bounded Slope-Sign Change input.
3. Another consequence of the fact that the local slope does not depend global slope on x_{0}, and is thus the same everywhere, is that it is a feature of the function $A F F I N E_{a, b}$ itself and so that the function $A F F I N E_{a, b}$ has a global slope specified by the global linear coefficient a.
4. Moreover, the slope cannot be equal to 0 somewhere because the slope is equal to a everywhere. So, we also have:

ThEOREM 11.6 0-Slope Input Non-Existence. An affine function has no bounded 0 -slope input.

4 Extremum

From the optimization viewpoint, an affine function has no extremum input, that is no bounded input whose output would be larger (or smaller) than the output of nearby inputs.

Theorem 11.7 Extremum Non-existence. An affine function has no bounded local extremum input.

5 Height-sign

Given the affine function $\operatorname{AFFINE} E_{a, b}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b
$$

recall that when x is near ∞ the Height-sign Near ∞ Theorem says that:

- When a is + , Height-Sign $\left.\right|_{x \text { near } \infty}=(+,-)$
- When a is - , Height-Sign $\left.\right|_{x \text { near } \infty}=(-,+)$

1. Since the height changes sign as x goes from the left side to the right side of ∞ across ∞, the height must also change sign as x goes from the left side to the right side of ∞ across the screen so there has to be at least one bounded Height-sign change input:

EXAMPLE 11.4. Given the affine function whose offscreen graph is

Mercator view

Magellan view
there has to be a bounded height-sign change input:

2. On the other hand, an affine function can have at most one 0 -height input because, if it had more, it would have to have 0 -slope inputs in-between the 0 -height inputs which an affine function cannot have. So, we have:

Theorem 11.8 0-Height Existence. An affine function has exactly one bounded 0-height input and it is a 0-height input: $x_{\text {Height-sign change }}=x_{0 \text {-height }}$

6 Bounded Graph

There are two ways to look at the shape of the bounded graph.

1. As a consequence of the Bounded Height Theorem for affine functions, the offscreen graph consists only of the local graph near ∞ and we can obtain the forced bounded graph by extrapolating smoothly the local graph near ∞.
There remains however a question namely whether the extrapolated bounded graph is straight that is has no concavity. However, affine functions have no concavity and that settles the mater: the local graph near $-\infty$ and the local graph near $+\infty$ must be lined up and can therefore be joined smoothly with a straight line.
2. In the case of affine functions, it happens that we can also obtain the bounded graph by interpolating local graphs near bounded inputs:
We start from the local graphs near a number of bounded points as follows:

We construct local graphs near, say, three different bounded inputs, x_{1}, x_{2}, x_{3}. They would look something like this:

However, this is not possible because that would mean that inputs such as x_{4} would have two outputs:

As a result, the local graphs near bounded inputs must all line up and so the bounded graph must be a straight line:

Of course, the bounded graph must line up with the local graph near ∞ as, otherwise, there would have to be a jump in the transition zone.

LOCATION THEOREMS

Previously, we only established the existence of certain notable features of affine functions and this investigation was based on graphic considerations. Here we will investigate the location of the inputs where these notable features occur and this investigation will be based on input-output rule considerations.

7 0-Slope Location

We saw earlier that affine functions cannot have a 0 -slope input. On the other hand, since the slope is the same everywhere, it is a global feature of the function itself and we have:

Theorem 11.9 Global Slope-sign. Given the affine function AFFINE $E_{a, b}$,

- When a is positive, Slope-sign AFFINE $=/$.
- When a is negative, Slope-sign AFFINE = \}

8 Locating Inputs Whose Output $=y_{0}$

The simplest global problem is, given a number y_{0}, to ask for the input numbers for which the function returns the output y_{0}.

Procedure 11.1 Find the input(s), if any, whose output under the function specified by

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b
$$

Solve the equation $a x+b=y_{0}$ (See ?? on ??.)

9 Locating Inputs Whose Output $>y_{0}$ Or $<y_{0}$

Given the affine function $\operatorname{AFFINE} E_{a, b}$, we are now ready to deal with the global problem of finding all inputs whose output is smaller (or larger) than some given number y_{0}.

EXAMPLE 11.5. Given the inequation problem in which

- the data set consists of all numbers
- the inequation is

$$
x \geqq-13.72
$$

we locate separately.
i. The boundary point of the solution subset of the inequation problem is the solution of the associated equation:

$$
x=-13.72
$$

which, of course, is -13.72 and which we graph as follows since the boundary
point is a solution of the inequation.

ii. The interior of the solution subset, that is the solution subset of the associated strict inequation

$$
x>-13.72
$$

i. The boundary point -13.72 separates the data set in two intervals, Section A and Section B:

ii. We then test each interval:

- We pick -1000 as test number for Section A because, almost without a glance we know -1000 is going to be in Section A and because it is easy to check in the inequation: we find that -1000 is a non-solution so that, by Pasch Theorem, all numbers in Section A are non-solutions.

- We pick +1000 as test number for Section B because, almost without a glance we know +1000 is going to be in Section B and because it is easy to check in the inequation: we find that +1000 is a solution so that, by Pasch Theorem, all numbers in Section A are solutions.

10 Initial Value Problem

An Initial Value Problem asks the question:

What is the input-output rule of a function F given that:

- The function F is affine
- The slope of the function F is to be a given number a
- The output returned by the function F for a given input x_{0} is to be a given number y_{0}.

EXAMPLE 11.6. Find the global input-output rule of the function $K A T E$ given that it is affine, that its slope is -3 and that the output for the input +2 is +5 .
We use all three given pieces of information:
i. Since we are given that KATE is an affine function, we give temporary names for the dilation coefficient, say a, and for the constant term, say b, and we write the global input-output rule of KATE in terms of these names:

$$
x \xrightarrow{K A T E_{a, b}} K A T E_{a, b}(x)=a x+b
$$

ii. By the Local Slope Theorem, the slope is equal to the dilation coefficient:

$$
-3=a
$$

which give the equation $a=-3$
iii. Since the output for the input +2 is +5 , we write

$$
\begin{aligned}
\left.K A T E_{a, b}(x)\right|_{x:=+2} & =+5 \\
a x+\left.b\right|_{x:=+2} & =+5 \\
a(+2)+b & =+5
\end{aligned}
$$

which give the equation $2 a+b=+5$
iv. So we must solve the system of two equations for two unknowns a and b :
===========

$$
\text { AND }\left\{\begin{array}{l}
a=-3 \\
2 a+b=+5
\end{array}\right.
$$

This kind of system is very simple to solve since we need only replace a by -3 in the second equation to get the equation:

$$
2(-3)+b=+5
$$

which we solve using the Reduction Method:

$$
\begin{aligned}
-6+b & =+5 \\
-6+b+6 & =+5+6 \\
b & =+11
\end{aligned}
$$

v. So, the global input-output rule for KATE is

$$
x \xrightarrow{K A T E_{-3,+11}} \operatorname{KATE}_{-3,+11}(x)=-3 x+11
$$

11 Boundary Value Problem

A Boundary Value Problem asks the question:
What is the input-output rule of a function F, given that:

- The function F is affine
- The output returned by the function F for a given input x_{1} is to be a given number y_{1}.
- The output returned by the function F for a given input x_{2} is to be a given number y_{2}.
In other words, we want to find an affine function F such that:

$$
\text { BOTH }\left\{\begin{array}{l}
x_{1} \xrightarrow{F} F\left(x_{1}\right)=y_{1} \\
x_{2} \xrightarrow{F} F\left(x_{2}\right)=y_{2}
\end{array}\right.
$$

EXAMPLE 11.7. Find the global input-output rule of the function $D A V E$ given that it is affine, that the output for the input +2 is -1 and that the output for the input -4 is -19 .
We use all three pieces of information that we are given:
i. Since we are given that $D A V E$ is an affine function, we give temporary names for the dilation coefficient, say a, and for the constant term, say b, and we write the global input-output rule of $D A V E$ in terms of these names:

$$
x \xrightarrow{D A V E_{a, b}} D A V E a, b(x)=a x+b
$$

ii. Since the output for the input +2 is -1 we write:

$$
\begin{aligned}
\left.D A V E_{a, b}(x)\right|_{x:=+2} & =-1 \\
a x+\left.b\right|_{x:=+2} & =-1 \\
a(+2)+b & =-1
\end{aligned}
$$

which give the equation $+2 a+b=-1$
iii. Since the output for the input -4 is -19 we write:

$$
\begin{aligned}
\left.D A V E_{a, b}(x)\right|_{x:=-4} & =-19 \\
a x+\left.b\right|_{x:=+2} & =-19 \\
a(-4)+b & =-19
\end{aligned}
$$

which give the equation $-4 a+b=-19$
iv. So we must solve the system of two equations for two unknowns a and b :

$$
\left\{\begin{aligned}
+2 a+b & =-1 \\
-4 a+b & =-19
\end{aligned}\right.
$$

This kind of system is a bit more complicated to solve but since b appears in both equations, we replace one of the two equations, say the second one, by "the first one minus the second one":

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
{[+2 a+b]-[-4 a+b]=[-1]-[-19]}
\end{array}\right.
$$

This gives us:

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
+2 a+b+4 a-b=-1+19
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
+6 a=+18
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
\frac{+6 a}{+6}=\frac{+18}{+6}
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
a=+3
\end{array}\right.
$$

and now we replace in the first equation a by +3 :

$$
\left\{\begin{array}{l}
+2 a+b=-\left.1\right|_{a:=+3} \\
a=+3
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2(+3)+b=-1 \\
a=+3
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+6+b=-1 \\
a=+3
\end{array}\right.
$$

and we reduce the first equation

$$
\left\{\begin{array}{l}
+6+b-6=-1-6 \\
a=+3
\end{array}\right.
$$

which gives us, finally

$$
\left\{\begin{array}{l}
b=-7 \\
a=+3
\end{array}\right.
$$

v. So the global input-output rule of $D A V E$ is

$$
x \xrightarrow{D A V E_{+3,-7}} D A V E_{+3,-7}(x)=+3 x-7
$$

Chapter 12

Quadratic Functions: Local Analysis

```
Output at \mp@subsup{x}{0}{},255 \bullet Output near \infty, 256 \bullet Output near x x , 258 \bullet Local
graphs, 261 \bullet Local Feature-signs, 266 .
```

Quadratic functions are specified by global input-output rules like the generic global input-output rule:

$$
x \xrightarrow[\text { QUADRATIC }]{\longrightarrow} Q U A D R A T I C(x)=\underbrace{a x^{+2} \oplus b x^{+1} \oplus c x^{0}}_{\text {output-specifying code }}
$$

which we usually write

$$
=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

where a, called the quadratic coefficient, b, called the linear coefficient, and c, called the constant coefficient, are the bounded numbers that specify the function $Q U A D R A T I C$.

EXAMPLE 12.1. The quadratic function $R I N A$ specified by the quadratic coefficient -23.04 , the linear coefficient -17.39 and the constant coefficient +5.84 is the function specified by the global input-output rule

$$
x \xrightarrow{R I N A} R I N A(x)=\underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-17.39}_{\text {linear coeff. constant coeff. }} x \underbrace{+5.84}_{\text {cher }}
$$

It is worth noting again that
term
quadratic term
linear term
constant term
affine $_$part

Note 12.1 The terms in the global input output rule need not be written in order of descending exponent. This is just a habit we have.

EXAMPLE 12.2. The function specified by the global input-output rule

$$
x \xrightarrow{B I B I} B I B I(x)=+21.03 x^{2}-31.39 x+5.34
$$

could equally well be specified by the global input-output rule

$$
x \xrightarrow{B I B I} B I B I(x)=+5.34+21.03 x^{2}-31.39 x
$$

or by the global input-output rule

$$
x \xrightarrow{B I B I} B I B I(x)=-31.39 x+5.34+21.03 x^{2}
$$

We now introduce some standard terminology to help us describe very precisely what we will be doing. The output-specifying code of the affine function specified by

$$
x \xrightarrow{\text { AFFINE }} Q U A D R A T I C(x)=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

consists of three terms:

- $a x^{2}$ which is called the quadratic term.
- $b x$ which is called the linear term.
- c which is called the constant term,
and there is of course also
- $b x+c$ which is called the affine part

EXAMPLE 12.3. The output-specifying code of the function specified by the global input-output rule

$$
x \xrightarrow[\text { RINA }]{\text { RIN } A(x)=\underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-31.39}_{\text {linear coeff. }} x \underbrace{+5.84}_{\text {constant coeff. }} . .}
$$

consists of three terms:

$$
=\underbrace{-23.04 x^{2}}_{\text {quadratic term }} \underbrace{-31.39 x}_{\text {linear term constant term }} \underbrace{+5.34}
$$

Language 12.1 Whether we look upon c as the constant coefficient, that is as the coefficient of x^{0} in the constant term $c x^{0}$ or as the constant term $c x^{0}$ itself with the power x^{0} "going without saying" will be clear from the context.

1 Output at x_{0}

1. Remember from section 1 that x_{0} is a generic given input, that is that x_{0} is a bounded input that has been given but whose identity remains undisclosed for the time being.
2. We will use

Procedure 12.1 To evaluate at x_{0} the function specified

 by $x \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $(x)=a x^{2}+b x+c$i. Declare that x is to be replaced by x_{0}
$\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left.(x)\right|_{x \leftarrow x_{0}}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0}}$ which gives:

$$
x_{0} \xrightarrow{\text { QUADRATIC }} \text { QUADRATIC }\left(x_{0}\right)=\underbrace{a x_{0}^{2}+b x_{0}+c}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}^{2}+b x_{0}+c
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}^{2}+b x_{0}+c\right)
$$

Demo 12.1 To evaluate at -3 the function specified by

$$
x \xrightarrow{A V I A} A V I A(x)=+21.03 x^{2}-32.67 x+71.07
$$

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{A V I A} A V I A(x)\right|_{x \leftarrow-3}=+21.03 x^{2}-32.67 x+\left.71.07\right|_{x \leftarrow-3}
$$

which gives

$$
-3 \xrightarrow{A V I A} A V I A(-3)=\underbrace{+21.03(-3)^{2}-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =\underbrace{+189.26 \oplus+98.01 \oplus+71.07}_{\text {output number at }-3} \\
& =\underbrace{+358.34}_{\text {output number at }-3}
\end{aligned}
$$

which gives the input-output pair

$$
(-3, \underbrace{+358.34}_{\text {output number at }-3}
$$

3. However, as already discussed in ?? ?? and as has already been the case with monomial functions and affine functions, instead of getting the output number returned by a quadratic function at a given input, we will usually want all the outputs returned by the quadratic function for inputs near that given input. So, instead of getting the single input-output pair at the given input, we will get the local input-output rule with which to get all the input-output pairs near the given input.

2 Output near ∞

As already discussed in ?? ??, in order to input a neighborhood of ∞, we will declare that " x is near ∞ " but write only x after that. This, again, is extremely dangerous as it is easy to forget that what we write may be TRUE only because x has been declared to be near ∞.

1. We will execute the output-specifying code, namely $a x^{2}+b x+c$, into an output jet, that is with the terms in descending order of sizes, which, since here x is large, means that here the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=\underbrace{\text { Powers of } x \text { in descending order of exponents }}_{\text {output jet near } \infty}$
EXAMPLE 12.4. Given the function specified by the global input-output rule

$$
x \xrightarrow{R I B A} R I B A(x)=-61.03-82.47 x+45.03 x^{2}
$$

To get the output jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded \cdot large $=$ large, $-82.47 \cdot x$ is large
iii. +45.03 is bounded and x is large. So, since bounded \cdot large $=$ large, $+45.03 \cdot x$ is large too. But large • large is larger in size than large so $+45.03 \cdot x^{2}$ is even larger than $-82.47 \cdot x$
So, in the output jet near $\infty,+45.03 x^{2}$ must come first, $-82.47 x$ comes second and -61.03 comes third

Then, we can write the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{R I B A} R I B A(x)=\underbrace{+45.03 x^{2}-82.47 x-61.03}_{\text {output jet near } \infty}
$$

2. So, we will use:

PROCEDURE 12.2 To evaluate near ∞ the function specified by $x \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)=a x^{2}+b x+c$
i. Declare that x is near ∞ :
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)\right|_{x \text { near } \infty}=a x^{2}+b x+\left.c\right|_{x \text { near } \infty}$ which gives:

$$
x \text { near } \infty \xrightarrow{\text { QUADRATIC }} \text { QUADRATIC }(x)=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output jet:

$$
=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}
$$

which gives the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$
(The output jet in the local input-output rule near ∞ looks the same as the output-specifying code in the given global input-output rule but that is only because here the output-specifying code happened to be written in descending order of exponents.)

Demo 12.2 To evaluate near ∞ the function specified by

$$
x \xrightarrow{\text { KINA }} K I N A(x)=-61.03+51.32 x^{2}-82.47 x
$$

i. We declare that x is near ∞ :

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { KINA }} K I N A(x)\right|_{x \text { near } \infty}=-61.03+51.32 x^{2}-\left.82.47 x\right|_{x \text { near } \infty}
$$ which gives:

$$
x \text { near } \infty \xrightarrow{\text { NINA }} K I N A(x)=\underbrace{-61.03+51.32 x^{2}-82.47 x}_{\text {output-specifying code }}
$$

addition formula
ii. We execute the output-specifying code into an output jet:

$$
=[55.1 .3]]_{x^{2}} \oplus[82.4] x \oplus\left[\left[\begin{array}{ll}
1.03
\end{array}\right]\right.
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{K I N A} K I N A(x)=\underbrace{[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

(The output jet in the local input-output rule near ∞ does not look the same as the output-specifying code in the global input-output rule because here the output-specifying code happened not to be in descending order of exponents.)
3. The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

THEOREM 12.1 Approximate output near ∞. For quadratic functions, what contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)=[a] x^{2}+[\ldots]
$$

EXAMPLE 12.5. Given the function specified by the global input-output rule

$$
x \xrightarrow{K I N A} K I N A(x)=-61.03+51.32 x^{2}-82.47 x
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{K I N A} K I N A(x)=[+51.32] x^{2} \oplus[\ldots]
$$

3 Output near x_{0}

We now deal with the output of the neighborhood of some given bounded input x_{0}.

1. In order to input a neighborhood of a given input x_{0} we will declare that $x \leftarrow x_{0} \oplus h$ that is that x is to be replaced by $x_{0} \oplus h$. As a result, we will have to compute $\left(x_{0} \oplus h\right)^{2}$ for which we will have to use an addition formula from algebra, namely THEOREM ??? on page.
2. We can then execute the input-output specifying phrase into an output jet that is with the terms in descending order of sizes which here, since h
is small, means that the powers of h will have to be in ascending order output jet near x_{0} of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$
We will therefore use:

Procedure 12.3 To evaluate near x_{0} the function specified

by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$
i. Declare that x is near x_{0} : (So x is to be replaced by $x_{0}+h$.)

$$
\left.\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)\right|_{x \leftarrow x_{0}+h}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0}+h}
$$

which gives:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} \text { QU ADRATIC }\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)^{2}+b\left(x_{0}+h\right)+c}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output jet:

$$
\begin{aligned}
& =a\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+b\left(x_{0}+h\right)+c \\
& =a x_{0}^{2} \oplus 2 a x_{0} h \oplus a h^{2} \\
& \oplus b x_{0} \oplus b h \\
& \oplus c \\
& =\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

which gives the local input-output rule near x_{0} :

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C\left(x_{0}+h\right)=\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}
$$

Demo 12.3 To evaluate near -3 the function specified by

$$
x \xrightarrow{A R N A} A R N A(x)=-32.67 x+71.07+81.26 x^{2}
$$

i. We declare that x is near -3 : (So x is to be replaced by $-3+h$.)

$$
\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{A R N A} A R N A(x)\right|_{x \leftarrow-3+h}=-32.67 x+71.07+\left.81.26 x^{2}\right|_{x \leftarrow-3+h}
$$

which gives

$$
-3+h \xrightarrow{\text { ARNA }} A R N A(-3+h)=\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output jet:

$$
\begin{aligned}
= & -32.67(-3+h)+71.07+81.26\left((-3)^{2}+2(-3) h+h^{2}\right) \\
= & -32.67(-3)-32.67 h \\
& +71.07 \\
& +81.26(-3)^{2}+81.26(2)(-3) h+81.26 h^{2} \\
= & +98.01 \oplus-32.67 h \\
& \oplus+71.07 \\
& \oplus+731.34 \oplus-487.56 h \oplus+81.26 h^{2} \\
= & {[+98.01+71.07+731.34] \oplus[-32.67-487.56] h \oplus[+81.26] h^{2} } \\
= & \underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
\end{aligned}
$$

which gives the local input-output rule near -3 :

$$
-3+h \xrightarrow{\text { ARNA }} A R N A(-3+h)=\underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
$$

3. When all we want is a feature-sign, though, the above procedure is very inefficient and we will then use the following procedure based directly on the fact that a quadratic function is the addition of:

- a square function, (See ?? on ??)
- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=\underbrace{b x^{2}}_{\text {square }} \oplus \underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:

$$
x \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=\underbrace{b\left(x_{0}+h\right)^{2}}_{\text {square }} \oplus \underbrace{c\left(x_{0}+h\right)}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

The output of the local input-output rule near x_{0} will have to be a jet:

$$
x_{0}+h \xrightarrow{Q U A D R A T I C} Q U A D R A T I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus\left[\quad h^{2}\right.
$$

and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want. This requires us to have the addition formula at our finger tips:
a.

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}(\text { See ?? on page } 403)
$$

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The square function contributes $b x_{0}^{2}$
- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} \text { QUADRATIC }\left(x_{0}+h\right)=\left[b x_{0}^{2}+c x_{0}+d\right] \oplus[\quad] h \oplus[\quad] h^{2}
$$

ii. If we want the coefficient of h^{1} in the output jet:

- The square function contributes $2 b x_{0}$
- The linear function contributes c
- The constant function contributes nothing
so we have:
$x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}\left(x_{0}+h\right)=[\quad] \oplus\left[2 b x_{0}+c\right] h \oplus[] h^{2}$
iii. If we want the coefficient of h^{2} in the output jet:
- The square function contributes c
- The linear function contributes nothing
- The constant function contributes nothing
so we have:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[c] h^{2}
$$

4 Local graphs

Just the way we get the plot point at a given bounded input from the output number at that input, we get the local graph near any given input, be it bounded or infinity, from the output jet near that input.

Procedure 12.4 To graph near ∞ the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$

1. Get the local input-output rule near ∞ using ?? on ??: x near $\infty \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)=\underbrace{[\bar{a}] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$
2. Get the local graph near ∞ of each term:
a. For the quadratic term, graph near ∞ the monomial function $x \rightarrow[a] x^{2}$ (See ?? on ??.)
b. For the linear term, graph near ∞ the monomial function $x \rightarrow$ [b]x (See ?? on ??.)
c. For the constant term, graph near ∞ the monomial function $x \rightarrow\left[{ }_{c}\right]$ (See ?? on ??.)
3. Get the local graph near ∞ of $Q U A D R A T I C$ by adding to the local graph of the quadratic term the local graph of the linear term and the local graph of the constant term.(See chapter 9)

Demo 12.4 To graph near ∞ the function specified by

$$
x \xrightarrow{K I N A} K I N A(x)=-61.03+51.32 x^{2}-82.47 x
$$

1. We get the local input-output rule near ∞ : (See Demo 12.2 on page 257)

$$
x \text { near } \infty \xrightarrow{\text { KINA }} K I N A(x)=\underbrace{[+51.32] x^{2}+[-82.47] x+[-61.03]}_{\text {output jet near } \infty}
$$

2. We get the local graph near ∞ of each term:

b. For the graph of the linear term, we graph the monomial function $x \rightarrow[-82.47] x$ near ∞ (See Demo 6.24 on page 175)

c. For the graph of the constant
term, we graph the monomial
function $x \rightarrow[-61.03]$ near ∞
(See Demo 6.24 on page 175)

3. We get the local graph near ∞ of KINA by adding to the local graph of the quadratic term the local graph of the linear term and the local graph of the constant term. (See Demo 6.24 on page 175)

Procedure 12.5 To graph near x_{0} the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$

1. Get the local input-output rule near x_{0} using ?? on ??:
$x_{0}+h \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left(x_{0}+h\right)=\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}$
2. Get the local graphs near 0 of each term:
a. For the constant term, graph near 0 the monomial function $x \rightarrow\left[a x_{0}^{2}+b x_{0}+c\right]$. (See ?? on ??.)
b. For the linear term, graph near 0 the monomial function $x \rightarrow\left[2 a x_{0}+b\right] x$. (See ?? on ??.)
c. For the quadratic term, graph near 0 the monomial function $x \rightarrow[a] x^{2}$. (See ?? on ??.)
3. Get the local graph near x_{0} of $Q U A D R A T I C$ by adding to the local graph of the constant term the local graph of the linear term, the local graph of the quadratic term.

Demo 12.5 To graph near -3 the function specified by

$$
x \xrightarrow{\text { ARNA }} A R N A(x)=-32.67 x+71.07+81.26 x^{2}
$$

1. We get the local input-output rule near -3 . (See Demo 12.3 on page 259):
$-3+h \xrightarrow{\text { ARNA }} A R N A(-3+h)=\underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}$
2. We get the local graph near -3 of each term:

3. We get the local graph near -3 of $A R N A$ by adding to the local graph of the constant term the local graph of the linear term and the local graph of the quadratic term. (See Demo 6.24 on page 175)

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so we already know how to proceed:
i. Get the local input-output rule near the given input (See ?? on ?? when the given input is ∞ or ?? on ?? when the given input is x_{0}.)
ii. Get the local graph from the local input-output rule (See ?? on ??.)
iii. Get the feature-sign from the local graph. (See ?? ??.)

However, things are in fact much simpler: Given an input, be it ∞ or a bounded input x_{0}, to get a required feature-sign near that given input, we look for the term in the output jet near that input that
i. Has the required feature.
and
ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a quadratic function, the first term in the output jet near ∞ is both the largest-in-size and a regular monomial so that it has all three features:

PROCEDURE 12.6 To get the feature-signs near ∞ of the function specified by $x \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)=$ $a x^{2}+b x+c$
i. Get the approximate local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$

$$
=\underbrace{[a] x^{2} \oplus[\ldots]}_{\text {approximate output jet near }}
$$

ii. Then, in the approximate output jet near ∞ :

- Get the Height-sign, the Slope-sign and the Concavity-sign all from the quadratic term $[a] x^{2}$ because the next terms, $[b] x$ and $[c]$ are too small to matter. (Not to mention the fact that a linear term has no concavity and a constant term has neither concavity nor slope.)

Temo 12.1 L et $C E L I A$ be the function specified by

$$
x \xrightarrow{\text { CELIA }} C E L I A(x)=-2 x^{2}+63 x-155
$$

Get Height-sign near ∞.
i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { CELIA }} C E L I A(x) & =-2 x^{2}+63 x-155 \\
& =\underbrace{[-2] x^{2} \oplus[+63] x \oplus[-155]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Height-sign from the quadratic term $[-2] x^{2}$ because the linear term $[+63] x$ and the constant term $[-155]$ are too small to matter.
iii. Since the quadratic coefficient $[-2]$ is negative, we get that Height-sign $C E L I A$ near $\infty=\langle-,-\rangle$. (Seen from ∞.)

TEMO 12.2 L et PETER be the function specified by the global input-output rule

$$
x \xrightarrow{\text { DIETER }} D \operatorname{IETER}(x)=+3.03 x^{2}-81.67 x+46.92
$$

Get Slope-signs near ∞.
critical for the Height critical for the Slope
i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow[\text { DIETER }]{\text { DIETER }(x)} & =+3.03 x^{2}-81.67 x+46.92 \\
& =\underbrace{[+3.03] x^{2} \oplus[-81.67] x \oplus[+46.92]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Slope-sign from the quadratic term $[+3.03] x^{2}$ because the linear term $[-81.67]$ is too small to matter and the constant term has no slope. Since the linear coefficient +3 is positive, we get that Slope-sign DIETER near $\infty=\langle/, /\rangle$. (Seen from ∞.)
2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it gives the Height-sign. However, the first term usually has neither Slope nor Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change the Height-sign as given by the first term but it is usually the largest-insize term that can give the Slope-sign. However, the second term has no Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change the Height-sign given by the first term and the Slope-sign given by the second term but it is usually the only term that can give the Concavity-sign.

So we can usually read each feature-sign directly from the appropriate term in the output jet - keeping in mind that the exceptional monomial functions do not have all the features.
However, near a bounded input, the given bounded input may turn out to be critical for the local feature:
i. If the constant term in the output jet is 0 , then the term which gives the Height-sign can be either the linear term or even the quadratic term if the linear term is 0 . The bounded input is then said to be critical for the Height.
ii. If the linear term in the output jet is 0 , then the term which gives the Slope-sign is the quadratic term. The bounded input is then said to be critical for the Slope.
So, we usually need to compute only one coefficient in the output jet. But if the given bounded input turns out to be critical for that feature, then we need to compute the next coefficient: So we use

Procedure 12.7 To get the feature-signs near x_{0} of the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=a x^{2}+$ $b x+c$
i. Get the local input-output rule near x_{0} :
$x_{0}+h \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left(x_{0}+h\right)=a\left(x_{0}+h\right)^{2}+b\left(x_{0}+h\right)+c$

$$
\begin{aligned}
& =a\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+b\left(x_{0}+h\right)+c \\
& =\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

ii. Then, in the output jet near x_{0} :

- Get the Height-sign from the constant term $\left[a x_{0}^{2}+b x_{0}+c\right]$ (The linear term and the quadratic term are too small to matter.)
If the constant coefficient is 0 , get the Height-sign from the linear term $\left[2 a x_{0}+b\right] h$. (The quadratic term is too small to matter.) If the linear coefficient is 0 , get the Height-sign from the quadratic term $[a] h^{2}$.
- Since the constant term has no slope, get the Slope-sign from the linear term $\left[2 a x_{0}+b\right] h$.
If the linear coefficient is 0 , get the Slope-sign from the quadratic term $[a] h^{2}$
- Since both the constant term and the linear term have no concavity, we get Concavity-sign from the quadratic term..

Temo 12.3 L et $A R N A$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { ARNA }} \text { ARN } A(x)=-32.67 x+71.07+81.26 x^{2}
$$

Get the feature-signs near -3 .
i. We get the local input-output rule near -3 as in Demo 12.3 on page 259:

$$
\begin{aligned}
-3+h \xrightarrow{\text { ARNA }} A R N A(-2+h) & =\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }} \\
& =\underbrace{[+900.428] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
\end{aligned}
$$

ii. Then, from the $j e t$:

- Since the constant term $[+900.428]$ is positive, we get that Height-sign $A R N A$ near $-3=\langle+,+\rangle$.
- Since the linear term $[-519.63] h$ is negative. we get that Slope-sign ARNA near $-3=\langle\backslash$, \rangle
- Since the quadratic term $[+81.26] h^{2}$ is positive, we get that Concavitysign $A R N A$ near $-3=\langle\cup, \cup\rangle$

Chapter 13

Quadratic Functions: Global Analysis

The Essential Question, 272 • Concavity-sign, 274 • Slope-sign,
275 • Extremum, 276 • 0-Concavity Location, 277 • 0-Slope Location,
277 • Extremum Location, 278 • 0-Height Location, 279 .

$=======$ Begin WORK ZONE $======$
The "style" of this chapter is going to be very different from the "style" of the other chapters because we want to take the occasion to give the reader an idea of what happens when a research mathematician is facing a "new problem", that is a problem that no one else has solved before so that s / he cannot just look somewhere or ask someone "how to do it". So, in this chapter, instead of showing how to determine the global behavior of a quadratic function $x \xrightarrow{q} q(x)=a x^{2}+b x+c$, we will pretend that this is a "research problem".

The first thing we do is to think about the problem itself: What do we mean by "global behavior"? Exactly what are we after? The idea is to see what a precise statement of the problem might suggest.

One answer might be that "we want to know everything there is to know about a quadratic function". But that is still much too vague to give us any hint as to what to do. Another answer might be "We want to see how the global graph of $x \xrightarrow{q} q(x)=a x^{2}+b x+c$ looks?" This is already much better because it specifies the function we want to know about - even if the coefficients a, b, c remain to be specified later. But we really should say what we mean by "global graph", in particular what we want the global graph to
show as opposed to what we don't expect the global graph to show.
On the other hand, we care about the global graph only inasmuch as it makes information "graphic" and it is really the information itself that we are after. So, what might this information be that we want? Exactly as with power functions, we will want to know about 0 -feature inputs, namely:

- 0-height inputs,
- 0-slope inputs,
- 0-concavity inputs
and about feature-sign change inputs, namely
- height-sign change inputs,
- slope-sign change inputs,
- concavity-sign change inputs.

There still remains a question about what we want to know about these inputs. Do we want to know about:

- The existence or non-existence of these inputs,
or
- The location of these inputs-assuming they exist.

Let us say we want to know everything (But now, as opposed to before, we know exactly what "everything" covers.).

So, now that we know exactly what we want, what do we do to get it? First, though, let us review the equipment we have available:
$=======$ End WORK ZONE======
In the case of quadratic functions, we will still be able to solve some global problems exactly but since everything begins to be computationally more complicated, we will deal with only a few types of global problems.

1 The Essential Question

As usual, the first thing we do is to find out if the offscreen graph of a quadratic function consists of just the local graph near ∞ or if it also includes the local graph near one or more ∞-height inputs.
In other words, given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)=a^{2} x+b x+c
$$

we ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs that have ∞-height, that is are there inputs whose nearby inputs have large outputs?

Now, given a bounded input x, we have that:

- since a is bounded, $a x^{2}$ is also bounded
- since b is bounded, $b x$ is also bounded
- c is bounded
and so, altogether, we have that $a x^{2}+b x+c$ is bounded and that the answer to the Essential Question is:

Theorem 13.1 Bounded Height Under a quadratic functions, all bounded inputs have bounded outputs.
and therefore that
TheOrem 13.2 Offscreen Graph The offscreen graph of a quadratic function consists of just the local graph near ∞.

Existence Theorems

The notable inputs are those

- whose existence is forced by the offscreen graph which, by the Bounded Height Theorem for quadratic functions, consists of only the local graph near ∞.
- whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only way a feature can change sign is near an input where the feature is 0 . Thus, with quadratic functions, the feature-change inputs will also be 0 -feature inputs.

None of the theorems, though, will indicate where the notable inputs are. The Location Theorems will be dealt with in the last part of the chapter.

2 Concavity-sign

Given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a^{2} x+b x+c
$$

recall that when x is near ∞ the Concavity-sign Near ∞ Theorem for quadratic functions says that:

- When a is + , Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cup, \cup)$
- When a is - , Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cap, \cap)$

1. Since the concavity does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the concavity does not have to change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded Concavity-sign change input:

EXAMPLE 13.1. Given a quadratic function whose offscreen graph is

there is no need for a bounded concavity-sign change input, $x_{\text {Concavity-sign change }}$ and therefore we can have

2. In fact, not only does there not have to be a bounded concavity-sign change input, there cannot be a bounded concavity-sign change input since the local square coefficient is equal to the global square coefficient a and the concavity must therefore be the same everywhere:

Theorem 13.3 Concavity-sign Change Non-Existence A quadratic function has no bounded Concavity-sign change input.
3. Another consequence of the fact that the local concavity does not depend on x_{0}, and is thus the same everywhere, is that it is a feature of the function $Q U A D R A T I C_{a, b, c}$ itself and so that the function $Q U A D R A T I C_{a, b, c}$ has a global concavity specified by the global square coefficient a.
4. Moreover, the concavity cannot be equal to 0 somewhere because the concavity is equal to a everywhere. So, we also have:

Theorem 13.4 0-Concavity Input Non-Existence A quadratic function has no bounded 0-concavity input.

3 Slope-sign

Given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a^{2} x+b x+c
$$

recall that when x is near ∞ the Slope-sign Near ∞ Theorem for quadratic functions says that:

- When a is + , Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, \backslash)$
- When a is -, Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, /)$

1. Since the slope changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the slope has also to change sign as x goes from the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded slope-sign change input.

EXAMPLE 13.2. Given a quadratic function whose offscreen graph is

Mercator view

Magellan view
there has to be a bounded slope-sign change input to make up.

So we have

Theorem 13.5 Slope-sign Change Existence A quadratic function must have at least one bounded Slope-sign change input.
2. On the other hand, a quadratic function can have at most one 0 -slope input because, if it had more, it would have to have 0 -concavity inputs inbetween the 0 -slope inputs which a quadratic function cannot have. So we have

TheOrem 13.6 0-Slope Existence A quadratic function has exactly one slope-sign change input and it is a 0 -slope input: $x_{\text {Slope-sign change }}=x_{0 \text {-slope }}$

4 Extremum

From the optimization viewpoint, a quadratic function has an extreme input, that is an bounded input whose output is larger (or smaller) than the output of nearby inputs

EXAMPLE 13.3. Given a quadratic function whose offscreen graph is

and since quadratic function cannot have an ∞-height input, we cannot have

Theorem 13.7 Extremum Existence A quadratic function has a single extremum input

5 0-Concavity Location

6 0-Slope Location

Given a quadratic function, the global problem of locating an input where the local slope is 0 is still fairly simple.

More precisely, given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} \text { QUADRATIC }(x)=a x^{2}+b x+c
$$

since the slope near x_{0} is the local linear coefficient $2 a x_{0}+b$, in order to find the input(s) where the local slope is 0 , we just need to solve the equation

$$
2 a x+b=0
$$

which is an affine equation that we solve by reducing it to a basic equation:

$$
\begin{aligned}
2 a x+b-b & =0-\mathrm{b} \\
2 a x & =-b \\
\frac{2 a x}{2 a} & =\frac{-b}{2 a} \\
x & =\frac{-b}{2 a}
\end{aligned}
$$

So, we have:

TheOrem 13.8 0-slope Location For any quadratic function QUADRATIC ${ }_{a, b, c}$,

$$
x_{0-\text { slope }}=\frac{-b}{2 a}
$$

In fact, we also have:
THEOREM 13.9 Global Slope-sign Given a quadratic function QUADRATIC $C_{a, b, c}$,

- When a is positive,

$$
\begin{aligned}
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }<\frac{-b}{2 a}}=(\backslash, \backslash) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\frac{-b}{2 a}}=(\backslash, /) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }>\frac{-b}{2 a}}=(/, /)
\end{aligned}
$$

- When a is negative,

$$
\begin{aligned}
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }<\frac{-b}{2 a}}=(/, /) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\frac{-b}{2 a}}=(/, \backslash) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }>\frac{-b}{2 a}}=(\backslash, \backslash)
\end{aligned}
$$

The case is easily made by testing the corresponding inequations near ∞.

7 Extremum Location

From the Extremum Existence Theorem, we know that

$$
x_{\text {extremum }}=x_{0 \text {-slope }}
$$

and so we have that

$$
x_{\text {extremum }}=\frac{-b}{2 a}
$$

We now want to compute the extremum output which is the output for $x_{0 \text {-slope }}$:

$$
\begin{aligned}
\operatorname{QU} A D R A T I C\left(x_{0 \text {-slope }}\right) & =a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c \\
& =a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c \\
& =a\left(\frac{(-b)^{2}}{(2 a)^{2}}\right)+b\left(\frac{-b}{2 a}\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& =a\left(\frac{b^{2}}{4 a^{2}}\right)+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{a b^{2}}{4 a^{2}}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{4 b^{2}}{4 \phi a}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{b^{2}}{4 a}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{b^{2}}{4 a}+\frac{-2 \cdot b^{2}}{2 \cdot 2 a}+c \\
& =\frac{b^{2}}{4 a}+\frac{-2 b^{2}}{4 a}+c \\
& =\frac{-b^{2}}{4 a}+c \\
& =\frac{-b^{2}}{4 a}+\frac{4 a \cdot c}{4 a} \\
& =\frac{-b^{2}+4 a c}{4 a}
\end{aligned}
$$

8 0-Height Location

Given a quadratic function, the global problem of locating a given local height is the problem of locating the input(s), if any, whose output is equal to the given height.

More precisely, given the quadratic function $Q U A D$ RATIC $_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c
$$

and given the local height H_{0}, what we are looking for are the input(s), if any, whose output is equal to H_{0}, that is:

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=H_{0}
$$

In other words, we must solve the equation

$$
a x^{2}+b x+c=H_{0}
$$

This is called a quadratic equation. Since we are looking for the 0 -height inputs, we let H_{0} be 0 and we will want to solve the equation

$$
a x^{2}+b x+c=0
$$

1. Solving a quadratic equation is quite a bit more complicated than solving an affine equation because we cannot reduce a quadratic equation to a basic equation the way we reduce an affine equation to a basic equation. The reason is that affine equations have two terms and the = sign has two sides so that we could separate the terms by having an x-term on the left side of the $=$ sign and a constant term on the right side of the $=$ sign which gave us a basic equation.
However, we cannot separate the terms in a quadratic equation because the output $\operatorname{QUADRATIC}(x)$ has three terms while the $=$ sign has only two sides.
This, though, may have something to do with the fact that inputs are counted from the 0 on the ruler which can be anywhere in relation to the global graph of the function, rather than from an input which is meaningful for the global graph of that function.
What we will do then is to try to use, instead of the inputs themselves, the location of the inputs relative to an input that is meaningful for the function at hand and the obvious thing is to try is $x_{0 \text {-slope }}$ and so we will try to use:

$$
u=x-x_{0-\text { slope }}
$$

so that

$$
x=x_{0 \text {-slope }}+u
$$

and therefore, instead of using the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=a x^{2}+b x+c
$$

we will use the global input-ouput rule

$$
\left.\left.x\right|_{x \leftarrow x_{0-\text { slope }+u}} \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)\right|_{x \leftarrow x_{0-\text { slope }}+u}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0 \text {-slope }}+u}
$$

that is

$$
\begin{aligned}
& u \xrightarrow{\text { QUADRATIC }_{\left(x_{0 \text {-slope }}\right)}} \text { QU AD RATIC }\left(x_{0 \text {-slope }}+u\right) \\
& \quad=[a] u^{2}+\left[2 a x_{0 \text {-slope }}+b\right] u+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
\end{aligned}
$$

By the way, note that we will continue to count the outputs from the 0 on the output ruler. (Some people don't and prefer to count the outputs from QU ADRATIC($\left.\left.x_{0 \text {-slope }}\right).\right)$
2. But since $x_{0 \text {-slope }}=\frac{-b}{2 a}$, this reduces to
$u \xrightarrow{\text { QUADRATIC }_{\left(x_{0-\text {-slope }}\right)}} Q U \operatorname{ADRATIC}\left(x_{0 \text {-slope }}+u\right)$

$$
=[a] u^{2}+[0] u+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
$$

that is to only two terms

$$
=[a] u^{2}+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
$$

and the equation we want to solve, then, is

$$
[a] u^{2}+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]=H_{0}
$$

that is

$$
[a] u^{2}=H_{0}-\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
$$

that is

$$
u^{2}=\frac{H_{0}-\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]}{a}
$$

in which everything on the right-hand side is known so that we have separated the known from the unknown.
3. Since we are trying to locate the 0 -height inputs, we let $H_{0}=0$.

In that case, the equation reduces to

$$
\begin{aligned}
u^{2} & =\frac{-\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]}{a} \\
& =\frac{-Q U A D R A T I C\left(x_{\text {extremum }}\right)}{a}
\end{aligned}
$$

and, using the Extremum Location Theorem,

$$
\begin{aligned}
& =\frac{-\frac{- \text { Discriminant }_{Q U A D R A T I C}}{4 a}}{a} \\
& =\frac{\text { Discriminant }_{Q U A D R A T I C}}{4 a^{2}}
\end{aligned}
$$

Altogether then, instead of the original equation

$$
a x^{2}+b x+c=0
$$

we have the rather nice (nicer?) equation

$$
u^{2}=\frac{\text { Discriminant }_{\text {QU ADRATIC }}}{4 a^{2}}
$$

4. Now, of course, whether or not we can solve depends on whether or not the right hand side is positive and since the denominator is a square, and therefore always positive, whether or not we can solve depends only on the sign of $\operatorname{Disc}_{Q U A D R A T I C}$ (hence the name "discriminant"):

- If $\operatorname{Disc}_{Q U A D R A T I C}$ is negative, the equation has no solution,
- If $\operatorname{Disc}_{Q U A D R A T I C}$ is 0 , the equation has one solution, namely 0 ,
- If $\operatorname{Disc}_{Q U A D R A T I C}$ is positive, the equation has two solutions, namely
- $u=-\frac{\sqrt{\text { Disc }_{Q U A D R A T I C}}}{2 a}$
- $u=+\frac{\sqrt{D_{\text {Disc }}^{Q U A D R A T I C}}}{2 a}$

This, of course, is hardly surprising inasmuch as the discriminant is intimately tied with the extremum output and thus this theorem fits very well with the 0-height Existence Theorem.
5. It remains only to de-locate, that is to return to the input x. For that, we need only use the fact that

$$
u=x-x_{0 \text {-slope }}
$$

to get

- $x-x_{0-\text { slope }}=-\frac{\sqrt{D_{\text {Disc } Q U A D R A T I C}}}{2 a}$
- $x-x_{0-\text { slope }}=+\frac{\sqrt{\text { Disc }_{Q U A D R A T I C}}}{2 a}$
that is
- $x=x_{0 \text {-slope }}-\frac{\sqrt{D_{\text {Disc } Q U A D R A T I C}}}{2 a}$
- $x=x_{0 \text {-slope }}+\frac{\sqrt{\text { Disc }_{Q U A D R A T I C}}}{2 a}$
and thus the celebrated "quadratic formula":
- $x=x_{0 \text {-slope }}-\frac{\sqrt{b^{2}-4 a c}}{2 a}$
- $x=x_{0 \text {-slope }}+\frac{\sqrt{b^{2}-4 a c}}{2 a}$
which, by the way, shows that, when they exist, the two 0-height inputs are symmetrical with respect to $x_{0 \text {-slope }}$

6. Altogether, then, we have

THEOREM 13.10 0-height Location For any quadratic function QU ADRATIC $C_{a, b, d}$,

- If $\operatorname{Disc}_{Q U A D R A T I C}$ is negative, $Q U A D R A T I C$ has no 0-height input,
- If $\operatorname{Disc}_{Q U A D R A T I C}$ is $0, Q U A D R A T I C$ has one 0-height input, namely $\frac{-b}{2 a}$,
- If $\operatorname{Disc}_{Q U A D R A T I C}$ is positive, QUADRATIC has two solutions, namely
- $\frac{-b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}$
- $\frac{-b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}$

7. Finally, here are a couple of examples.

EXAMPLE 13.4. To find the 0-height inputs of the quadratic function specified by the global input-output rule

$$
x \xrightarrow{\text { Rick }} \operatorname{Rick}(x)=+4 x^{2}-24 x+7
$$

we can proceed as follows:
i. Either we remember that $x_{0-\text { slope }}=\frac{-b}{2 a}$ so that we get $x_{0-\text { slope }}=\frac{+12}{2(+4)}=$ +3 , or, if worse comes to worst, we look for the 0 -slope input by localizing at an undisclosed input x_{0} and then setting the coefficient of u equal to 0 to get $x_{0-\text { slope }}$.
ii. Then, we get the u-equation by setting $x=x_{0-s l o p e}+u$, that is, here, by setting $x=+3+u$:

$$
\begin{aligned}
+3+\left.u \xrightarrow{\text { Rick }} \operatorname{Rick}(x)\right|_{\text {when } x=+3+u} & =+4 x^{2}-24 x+\left.7\right|_{\text {when } x=+3+u} \\
& =+4[+3+u]^{2}-24[+3+u]+7 \\
& =+4\left[+9+6 u+u^{2}\right]-24[+3+u]+7 \\
& =+36+24 u+4 u^{2}-72-24 u+7 \\
& =-29+4 u^{2}
\end{aligned}
$$

iii. We now solve the u-equation

$$
\begin{aligned}
-29+4 u^{2} & =0 \\
+4 u^{2} & =+29 \\
u^{2} & =\frac{+29}{+4} \\
u^{2} & =+7.25
\end{aligned}
$$

and so we have:

$$
\begin{aligned}
& \text { and } u_{0-\text { output }}=+\sqrt{+7.25}=+2.69+[\ldots] \\
& \text { a } u_{0-\text { output }}=-\sqrt{+7.25}=-2.69+[\ldots]
\end{aligned}
$$

and therefore

$$
-x_{0-\text { output }}=+3+2.693+[\ldots]=+5.693+[\ldots]
$$

and
$-x_{0-\text { output }}=+3-2.693+[\ldots]=+0.307+[\ldots]$

Alternatively, if we remember the 0-height Theorem, then we can proceed by first computing the discriminant and

EXAMPLE 13.5. We look at the same equation but assume that we remember the 0-height Theorem

$$
x \xrightarrow{\text { Rick }} \operatorname{Rick}(x)=+4 x^{2}-24 x+7
$$

that is:

$$
\begin{aligned}
\text { Discriminant Rick } & =(-24)^{2}-4(+4)(+7) \\
& =+576-112 \\
& =+464
\end{aligned}
$$

And since the discriminant is positive, we have

$$
\begin{aligned}
x_{0-\text { output }} & =x_{0-\text { slope }}+\frac{\sqrt{\text { Discriminant }}}{2 a} \\
& =\frac{+24}{2(+4)}+\frac{\sqrt{+464}}{2(+4)} \\
& =\frac{+24}{+8}+\frac{21.541+[\ldots]}{+8} \\
& =\frac{45.541+[\ldots]}{+8} \\
& =+5.693+[\ldots]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
x_{0-\text { output }} & =x_{0-\text { slope }}-\frac{\sqrt{\text { Discriminant }}}{2 a} \\
& =\frac{+24}{2(+4)}-\frac{\sqrt{+464}}{2(+4)} \\
& =\frac{+24}{+8}-\frac{21.541+[\ldots]}{+8} \\
& =\frac{2.460+[\ldots]}{+8} \\
& =+0.307+[\ldots]
\end{aligned}
$$

Either way, the reader should check that, indeed,

$$
+5.693 \xrightarrow{\text { Rick }} 0+[\ldots]
$$

and

$$
+0.307 \xrightarrow{\text { Rick }} 0+[\ldots]
$$

8. As a consequence of the 0-height Location Theorem, we have:

Theorem 13.11 Global Height-sign For any quadratic function $Q U A D R A T I C_{a, b, c}$, Height-sign QUADRATIC $=($ Sign a,Sign a $)$ everywhere except, when Disc $_{\text {QUADRATIC }}$ is positive, between the two $x_{0 \text {-height }}$ inputs where Height-sign QUADRATIC $=$ (-Sign a, - Sign a)

As a result, when looking for the inputs for which the output has a given sign, we have two approaches:
i. We can solve the associate equation, one way or the other, and then test each one of the sections determined by the 0 -height input(s), if any.

EXAMPLE 13.6. To solve the inequation $-3 x^{2}+t x-11<0$, we can begin by looking for its boundary inputs by solving the associated equation $-3 x^{2}+t x-11=0$ and then test the resulting intervals.
ii. We can use the Global Height-sign Theorem.
$=========$ OK SO FAR $=========$
(1) The difficulty is that there are two cases to deal with:
when $a>0$, concavity is u, the graph bottoms out and so there is a smallest bounded output when $\mathrm{a}<0$, concavity is n , the graph culminates and so there is a largest bounded output
and that we want to cover them both in one single statement.
So, we use the term "extreme bounded output" to cover both cases and we can now say that the extreme bounded output is the output for $x_{0}-$ slope. (regardless of the sign of a.)
(2) Yesterday, using qualitative global graphs, we agreed that: if the sign of the extreme bounded output is the same as the height-sign near infinity, there can be no 0 -height input. if the sign of the extreme bounded output is the opposite of the height-sign near infinity, there will be two 0 -height inputs.

But the height-sign near infinity is the sign of the coefficient a so this becomes: if the sign of the extreme bounded output is the same as the sign of the coefficient a, there can be no 0-height input. if the sign of the extreme bounded output is the opposite of the sign of the coefficient a, there will be
two 0-height inputs.
We also found that the extreme output is the output for $x_{0}-$ slope $=$ $-\mathrm{b} / 2 \mathrm{a}$ and we computed that the extreme output is equal to $\left[-b^{2}+4 a c\right] / 4 a$

As I recall, this is where we left off.
(3) Since the number $b^{2}-4 a c$ is what is called the discriminant of the function, we have that the extreme output $=$-Discriminant $/ 4 \mathrm{a}$

And now we are ready for the kill. The weapon will be that: Two numbers have the same sign if they multiply to + Two numbers have opposite signs if they multiply to -
(4) So our agreement above can now be restated as: if the extreme bounded output and the coefficient a multiply to + , there can be no $0-$ height input. if the extreme bounded output and the coefficient a multiply to -, there will be two 0 -height inputs.
that is: if Sign of -Discriminant/4a $* \mathrm{a}=+$, there can be no 0-height input. if Sign of -Discriminant/4a * $\mathrm{a}=-$, there will be two 0 -height inputs.
that is, after canceling the coefficient a if Sign of -Discriminant $=+$, there can be no 0-height input. if Sign of -Discriminant $=-$, there will be two 0 -height inputs.
that is, since Sign of -Discriminant is the opposite of Sign of Discriminant if Sign of Discriminant $=-$, there can be no 0-height input. if Sign of Discriminant $=+$, there will be two 0-height inputs.

Which is the qualitative part of the 0 -height Theorem FOR QUADRATIC FUNCTIONS.
(The quantitative part of the 0-height Theorem FOR QUADRATIC FUNCTIONS is that the 0-height inputs - when they exist-are at a distance of A Disc/2afromx x_{0} - slope.)

Chapter 14

Cubic Functions: Local Analysis

Output at $x_{0}, 289 \bullet$ Output near $\infty, 290 \bullet$ Output near $x_{0}, 292 \bullet$ Local graphs, $296 \bullet$ Local Feature-signs, $300 \bullet$ Local Graph Near $\infty, 304$.

Quadratic functions are specified by global input-output rules like the generic global input-output rule:

$$
x \xrightarrow[C U B I C]{C U B I C(x)=\underbrace{a x^{+3} \oplus b x^{+2} \oplus c x^{+1} \oplus d x^{0}}_{\text {output-specifying code }}, ~}
$$

which we usually write

$$
=\underbrace{a x^{3}+b x^{2}+c x+d}_{\text {output-specifying code }}
$$

where a, called the cubic coefficient, b, called the quadratic coefficient, c, called the linear coefficient, and d, called the constant coefficient, are the bounded numbers that specify the function $C U B I C$.

EXAMPLE 14.1. The cubic function $T I N A$ specified by the cubic coefficient +72.55 , the quadratic coefficient -23.04 , the linear coefficient -17.39 and the constant coefficient +5.84 is the function specified by the global inputoutput rule

$$
x \xrightarrow[\text { RINA }]{>} \text { TIN } A(x)=\underbrace{-72.55}_{\text {cubic coeff. }} x^{3} \underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-17.39}_{\text {linear coeff. }} x \underbrace{+5.84}_{\text {constant coeff. }}
$$

It is worth noting again that
term
cubic term
quadratic term
linear term constant term quadratic part

Note 14.1 The terms in the global input output rule need not be written in order of descending exponent. This is just a habit we have.

EXAMPLE 14.2. The function specified by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=-12.06 x^{3}+21.03 x^{2}-31.39 x+5.34
$$

could equally well be specified by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=+5.34+21.03 x^{2}-31.39 x-12.06 x^{3}
$$

or by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=-31.39 x+5.34-12.06 x^{3}+21.03 x^{2}
$$

We now introduce some standard terminology to help us describe very precisely what we will be doing. The output-specifying code of the affine function specified by

$$
x \xrightarrow{\text { AFFINE }} C U B I C(x)=\underbrace{a x^{3}+b x^{2}+c x+d}_{\text {output-specifying code }}
$$

consists of four terms:

- $a x^{3}$ which is called the cubic term.
- $b x^{2}$ which is called the quadratic term.
- $c x$ which is called the linear term.
- d which is called the constant term,
and there is of course also
- $b x^{2}+c x+d$ which is called the quadratic part

EXAMPLE 14.3. The output-specifying code of the function specified by the global input-output rule

$$
x \xrightarrow{\text { TINA }} \text { TIN } A(x)=\underbrace{-71.41}_{\text {cubic coeff. }} x^{3} \underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-31.39}_{\text {linear coeff. constant coeff. }} x \underbrace{+5.84}_{\text {+ }}
$$

consists of four terms:

$$
=\underbrace{-71.41 x^{3}}_{\text {cubic term }} \underbrace{-23.04 x^{2}}_{\text {quadratic term }} \underbrace{-31.39 x}_{\text {linear term constant term }} \underbrace{+5.34}
$$

Language 14.1 Whether we look upon d as the constant coefficient, that is as the coefficient of x^{0} in the constant term $d x^{0}$ or as the constant term $d x^{0}$ itself with the power x^{0} "going without saying" will be clear from the context.

1 Output at x_{0}

Remember from section 1 that x_{0} is a generic given input, that is that x_{0} is a bounded input that has been given but whose identity remains undisclosed for the time being.

Procedure 14.1 To evaluate at x_{0} the function specified by $x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b x^{2}+c x+d$
i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{\text { CUBIC }} C U B I C(x)\right|_{x \leftarrow x_{0}}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \leftarrow x_{0}}
$$

which gives:

$$
x_{0} \xrightarrow{C U B I C} C U B I C\left(x_{0}\right)=\underbrace{a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right)
$$

Demo 14.1 To evaluate at -3 the function specified by

$$
x \xrightarrow{\text { ARIA }} A R I A(x)=+17.52 x^{3}+21.03 x^{2}-32.67 x+71.07
$$

i. We declare that x is to be replaced by -3
$\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{\text { ARIA }} \operatorname{ARIA}(x)\right|_{x \leftarrow-3}=+17.52 x^{3}+21.03 x^{2}-32.67 x+\left.71.07\right|_{x \leftarrow-3}$
which gives

$$
-3 \xrightarrow{\text { ARIA }} \text { ARI } A(-3)=\underbrace{+17.52(-3)^{3}+21.03(-3)^{2}-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =-473.04 \oplus+189.26 \oplus+98.01 \oplus+71.07 \\
& =-114.7
\end{aligned}
$$

which gives the input-output pair

$$
(-3,-114.7)
$$

However, as already discussed in ?? ?? and as has already been the case with monomial functions, affine functions and quadratic functions, instead of getting the output number returned by a quadratic function at a given input, we will usually want all the outputs returned by the quadratic function for inputs near that given input. So, instead of getting the single input-output pair at the given input, we will get the local input-output rule with which to get all the input-output pairs near the given input.

2 Output near ∞

As already discussed in ?? ?? and in section 2 Output near ∞, in order to input a neighborhood of ∞, we will declare that " x is near ∞ " but write only x after that. This, again, is extremely dangerous as it is easy to forget that what we write may be TRUE only because x has been declared to be near ∞.

1. We will execute the output-specifying code, namely $a x^{3}+b x^{2}+c x+d$, into an output jet, that is with the terms in descending order of sizes, which, since here x is large, means that here the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞ :
x near $\infty \xrightarrow{C U B I C} C U B I C(x)=\underbrace{\text { Powers of } x \text { in descending order of exponents }}_{\text {output jet near } \infty}$
EXAMPLE 14.4. Given the function specified by the global input-output rule

$$
x \xrightarrow{T I B A} T I B A(x)=-61.03+37.81 x^{3}-82.47 x+45.03 x^{2}
$$

To get the output jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded.large $=$ large, $-82.47 \cdot x$ is large
iii. +45.03 is bounded and x is large. So, since bounded $\cdot \operatorname{large}=$ large, $+45.03 \cdot x$ is large too. But large \cdot large is larger in size than large so $+45.03 \cdot x^{2}$ is even larger than $-82.47 \cdot x$
iv. +37.81 is bounded and x is large. So, since bounded \cdot large $=$ large, $+37.81 \cdot x$ is large too. But large • large • large is larger in size than large \cdot large so $+37.81 \cdot x^{3}$ is even larger than $+45.03 \cdot x^{2}$
So, in the output jet near $\infty,+37.81 x^{3}$ must come first, $+45.03 x^{2}$ must come second, $-82.47 x$ comes third and -61.03 comes fourth

Then, we get the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{R I B A} T I B A(x)=\underbrace{+37.81 x^{3}+45.03 x^{2}-82.47 x-61.03}_{\text {output jet near } \infty}
$$

2. Altogether, then:

Procedure 14.2 To evaluate near ∞ the function specified

 by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$i. Declare that x is near ∞
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{C U B I C} C U B I C(x)\right|_{x \text { near } \infty}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \text { near } \infty}$ which gives:

$$
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x)=\underbrace{a x^{3}+b x^{2}+c x+d}_{\substack{\text { output-specifying code }}}
$$

ii. Execute the output-specifying code into a jet near ∞

$$
=\underbrace{[a] x^{3} \oplus[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}
$$

which gives the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { CUBIC }} \operatorname{CUBIC}(x)=\underbrace{[a] x^{3} \oplus[\bar{a}] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$
(Here the jet near ∞ looks the same as the given global input-output rule but that is only because the output-specifying code happened to be written in descending order of exponents.)

Demo 14.2 To evaluate near ∞ the function specified by the global inputoutput rule

$$
x \xrightarrow{\text { DINA }} \text { DINA }(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x
$$

i. We declare that x is near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{D I N A} D I N A(x)\right|_{x \text { near } \infty}=-61.03+37.81 x^{3}+51.32 x^{2}-\left.82.47 x\right|_{x \text { near } \infty}
$$ which gives:

$$
x \text { near } \infty \xrightarrow{D I N A} D I N A(x)=\underbrace{-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code into a jet near ∞ :
which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{D I N A} D I N A(x)=\underbrace{[+37.81] x^{3} \oplus[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

(Here the jet near ∞ does not look the same as the global input-output rule because the output-specifying code happened not to be in descending order of exponents.)
3. The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

Theorem 14.1 Approximate output near ∞. For cubic functions, the term in the jet that contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x)=[a] x^{3}+[\ldots]
$$

EXAMPLE 14.5. Given the function specified by the global input-output rule

$$
x \xrightarrow{\text { DINA }} D I N A(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{K I N A} K I N A(x)=[+37.81] x^{3} \oplus[\ldots]
$$

3 Output near x_{0}

We now deal with the output of the neighborhood of some given bounded input x_{0}.

1. In order to input a neighborhood of a given input x_{0} we will declare that $x \leftarrow x_{0} \oplus h$ that is that x is to be replaced by $x_{0} \oplus h$. As a result, we will have to compute $\left(x_{0} \oplus h\right)^{2}$ for which we will have to use an addition formula from
textscalgebra, namely ?? in ?? on page ??.
2. We can then execute the input-output specifying phrase into a jet jet near x_{0} that is with the terms in descending order of sizes which here, since h is small, means that the powers of h will have to be in ascending order of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$
We will therefore use:

Procedure 14.3 To evaluate near x_{0} the function specified

$$
\text { by } x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d
$$

i. Declare that x is to be replaced by $x_{0}+h$
$\left.\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{C U B I C} C U B I C(x)\right|_{x \leftarrow x_{0}+h}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \leftarrow x_{0}+h}$ which gives:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)^{3}+b\left(x_{0}+h\right)^{2}+c\left(x_{0}+h\right)+d}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near x_{0} :

$$
\begin{aligned}
& =a\left(x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}\right)+b\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+c\left(x_{0}+h\right)+d \\
& =a x_{0}^{3} \oplus 3 a x_{0}^{2} h \oplus 3 a x_{0} h^{2} \oplus a h^{3} \\
& \oplus b x_{0}^{2} \oplus 2 b x_{0} h \oplus b h^{2} \\
& \oplus c x_{0} \oplus c h \\
& \oplus d \\
& =\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

which gives the local input-output rule near x_{0} :
$x_{0}+h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}+h\right)$

Demo 14.3 To evaluate near -3 the function specified by
 $$
x \xrightarrow{A R B A} A R B A(x)=-32.67 x-31.18 x^{3}+71.07+81.26 x^{2}
$$

i. We declare that x is to be replaced by $-3+h$

$$
\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{A R B A} A R B A(x)\right|_{x \leftarrow-3+h}=-32.67 x-31.18 x^{3}+71.07+\left.81.26 x^{2}\right|_{x \leftarrow-3+h}
$$

which gives

$$
-3+h \xrightarrow{A R B A} A R B A(-3+h)=\underbrace{-32.67(-3+h)-31.18(-3+h)^{3}+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into a jet near -3 :

$$
\begin{aligned}
= & -32.67(-3+h)-31.18\left((-3)^{3}+3(-3)^{2} h+3(-3) h^{2}+h^{3}\right)+71.07+81.26\left((-3)^{2}+2(-3) h+h^{2}\right) \\
= & -32.67(-3)-32.67 h \\
& -31.18(-3)^{3}-31.18 \cdot 3(-3)^{2} h-31.18 \cdot 3(-3) h^{2}-31.18 h^{3} \\
& +71.07 \\
& +81.26(-3)^{2}+81.26 \cdot 2(-3) h+81.26 h^{2} \\
= & +98.01 \oplus-32.67 h \\
& \oplus+841.86 \oplus-841.86 h \oplus+280.62 h^{2} \oplus-31.18 h^{3} \\
& \oplus+71.07 \\
& \oplus+731.34 \oplus-487.56 h \oplus+81.26 h^{2} \\
= & {[+98.01+841.86+71.07+731.34] } \\
& \oplus[-32.67-841.86-487.56] h \\
& \oplus[+280.62+81.26] h^{2} \\
& \oplus[-31.18] h^{3} \\
= & \underbrace{[+1742.28] \oplus \text { [}-1362.09] h \oplus \text { [}+361.88] h^{2} \oplus[+81.26] h^{3}}
\end{aligned}
$$

which gives the local input-output rule near -3 :

$$
-3+h \xrightarrow{A R N A} A R B A(-3+h)=\underbrace{[+1742.28] \oplus[-1362.09] h \oplus[+361.88] h^{2} \oplus[+81.26] h^{3}}_{\text {output jet near }-3}
$$

3. When all we want is a feature-sign, though, the above procedure is very inefficient and we will then use the following procedure based directly
on the fact that a cubic function is the addition of:

- a cube function, (See ?? on ??)
- a square function, (See ?? on ??)
- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{C U B I C} C U B I C(x)=\underbrace{a x^{3}}_{\text {cube }} \oplus \underbrace{b x^{2}}_{\text {square }} \oplus \underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:

$$
x \xrightarrow{\text { CUBIC }} C U B I C(x)=\underbrace{a\left(x_{0}+h\right)^{3}}_{\text {cube }} \oplus \underbrace{b\left(x_{0}+h\right)^{2}}_{\text {square }} \oplus \underbrace{c\left(x_{0}+h\right)}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

The output of the local input-output rule near x_{0} will have to be a jet:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[] h^{3}
$$

and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want. This requires us to have the addition formulas at our finger tips:
a.
$\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}$ (See ?? on page 403)
b.

$$
\left(x_{0}+h\right)^{3}=x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}(\text { See ?? on ??) }
$$

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The cube function contributes $a x_{0}^{3}$
- The square function contributes $b x_{0}^{2}$
- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[\quad] h^{3}
$$

ii. If we want the coefficient of h^{1} in the output jet:

- The cube function contributes $3 b x_{0}^{2}$
- The square function contributes $2 b x_{0}$
- The linear function contributes c
- The constant function contributes nothing
so we have:
so we have:
$x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus\left[3 b x_{0}^{2}+2 b x_{0}+c\right] h \oplus[\quad] h^{2} \oplus[\quad] h^{3}$.
iii. If we want the coefficient of h^{2} in the output jet:
- The cube function contributes $3 b x_{0}$
- The square function contributes c
- The linear function contributes nothing
- The constant function contributes nothing
so we have:
$\xrightarrow{\stackrel{\text { so we have: }}{ } x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus\left[3 b x_{0}+c\right] h^{2} \oplus[\quad] h^{3} .}$
iv. If we want the coefficient of h^{3} in the output jet:
- The cube function contributes a
- The square function contributes nothing
- The linear function contributes nothing
- The constant function contributes nothing

$$
\left.\begin{array}{l}
\text { so we have: } \\
\quad x_{0}+h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}+h\right)=[
\end{array}\right] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[a] h^{3}
$$

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input, we get the local graph near any input, be it bounded or infinity, from the jet near that input.

Procedure 14.4 To graph near ∞ the function specified

 by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$1. Get the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{\text { CUBIC }} C U B I C(x)=\underbrace{[a] x^{3} \oplus[b] x^{2} \oplus[c] x \oplus[d]}_{\text {output jet near } \infty}
$$

(See ?? on ??.)
2. Get the local graphs:
a. Of the cubic term by graphing near ∞ the monomial function $x \rightarrow[a] x^{3}$ using ?? ?? on ??.
b. Of the quadratic term by graphing near ∞ the monomial func-
tion $x \rightarrow[a] x^{2}$ using ?? ?? on ??.
c. Of the linear term by graphing near ∞ the monomial function $x \rightarrow[b] x$ using ?? ?? on ??.
d. Of the constant term by graphing near ∞ the monomial function $x \rightarrow[\bar{c}]$ using ?? ?? on ??.
3. Get the local graph near ∞ of $C U B I C$ using chapter 9 by addingon to the local graph of the cubic term the local graph of the quadratic term, the local graph of the the local graph of, and the local graph of the constant term.

Demo 14.4 To graph near ∞ the function specified by the global inputoutput rule

$$
x \xrightarrow{\text { DINA }} D I N A(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x
$$

1. We get the output jet near ∞ : (See Demo 14.2 on page 291)

$$
x \text { near } \infty \xrightarrow{\text { DINA }} \text { DIN } A(x)=\underbrace{[+37.81] x^{3} \oplus[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

2. Get the local graph near ∞ of each term:
a. We get the graph of the cubic term by graphing the monomial function $x \rightarrow[+37.81] x^{3}$ near ∞ (See Demo 6.24 on page 175)

b. We get the graph of the quadratic term by graphing the monomial function $x \rightarrow[+51.32] x^{2}$ near ∞ (See Demo 6.24 on page 175)

c. We get the graph of the linear term by graphing the monomial function $x \rightarrow[-82.47] x$ near ∞ (See Demo 6.24 on page 175)

d. We get the graph of the constant term by graphing the monomial function $x \rightarrow[-61.03]$ near ∞ (See Demo 6.24 on page 175)
3. We get the local graph near ∞ of $D I N A$ by adding-on to the graph of the quadratic term the graph of the linear term and the graph of the constant term. (See Demo 6.24 on page 175)

PROCEDURE 14.5 To graph near x_{0} the function specified

 by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$1. Get the local input-output rule near x_{0} of $C U B I C$ using ?? ?? on ??
$x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)$

$$
=\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
$$

2. Get the local graphs:
a. Of the constant term by graphing near 0 the monomial func-
tion $x \rightarrow\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right]$
b. Of the linear term by graphing near 0 the monomial function $x \rightarrow\left[3 a x_{0}^{2}+2 b x_{0}+c\right] x$
c. Of the quadratic term by graphing near 0 the monomial function $x \rightarrow\left[3 a x_{0}+b\right] x^{2}$
d. Of the cubic term by graphing near 0 the monomial function $x \rightarrow[a] x^{3}$
3. Get the local graph of $C U B I C$ near x_{0} by adding to the local graph of the constant term, the local graph of the linear term, the local graph of the quadratic term, the local graph of the cubic term.

Demo 14.5 To graph near -3 the function specified by

$$
x \xrightarrow{A R B A} A R B A(x)=-32.67 x-31.18 x^{3}+71.07+81.26 x^{2}
$$

1. We get the local input-output rule near -3 of $A R B A$ (See Demo 14.3 on page 294):

$$
-3+h \xrightarrow{A R N A} A R B A(-3+h)=\underbrace{[+1742.28] \oplus[-1362.09] h \oplus[+361.88] h^{2} \oplus[+81.26] h^{3}}_{\text {output jet near }-3}
$$

2. We get the local graphs
a. We get the graph of the constant term near -3 by graphing the monomial function
$x \rightarrow[+1742.28]$.
: (See Demo 6.24 on page 175)

b. We get the graph of the linear term near -3 by graphing the monomial function $x \rightarrow[-1362.09] x$ (See Demo 6.24 on page 175)

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so we could proceed as follows:
i. Get the local input-output rule near the given input (See ?? on ?? when the given input is ∞ or ?? on ?? when the given input is x_{0}.)
ii. Get the local graph from the local input-output rule (See ?? on ??.)
iii. Get the feature-sign from the local graph. (See ?? ??.)

However, things are in fact much simpler: Given an input, be it ∞ or a bounded input x_{0}, to get a required feature-sign near that given input, we
look for the term in the output jet near that input that
i. Has the required feature.
and
ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a cubic function, the first term in the output jet near ∞ is both the largest-in-size and a regular monomial so that it has all three features:

PROCEDURE 14.6 To get the feature-signs near ∞ of the function specified by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$
i. Get the approximate local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { CUBIC }} C U B I C(x) & =\underbrace{[a] x^{3} \oplus[b] x^{2} \oplus[c] x \oplus[d]}_{\text {output jet near } \infty} \\
& =\underbrace{[a] x^{3} \oplus[\ldots]}_{\text {approximate output jet near } \infty}
\end{aligned}
$$

ii. Then, in the approximate output jet near ∞ :

- Get the Height-sign, the Slope-sign and the Concavity-sign all from the cubic term $[a] x^{3}$ because the next terms, $[b] x^{2},[c] x$ and $[d]$ are too small to matter. (Not to mention the fact that a linear term has no concavity and a constant term has neither concavity nor slope.)

Demo 14.6

To get the Height-sign near ∞ of the function specified by

$$
x \xrightarrow{\text { DELIA }} \operatorname{DELIA}(x)=+12 x^{3}-2 x^{2}+63 x-155
$$

i. We get the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { DELIA }} \operatorname{DELIA}(x)=+12 x^{3}-2 x^{2}+63 x-155$

$$
=\underbrace{[+12] x^{3} \oplus[-2] x^{2} \oplus[+63] x \oplus[-155]}_{\text {output jet near } \infty}
$$

ii. We get Height-sign from the cubic term $[+12] x^{3}$. (The quadratic term $[-2] x^{2}$, the linear term $[+63] x$ and the constant term $[-155]$ are too small

```
to matter)
iii. Since the cubic coefficient [+12] is positive, we get that Height-sign
DELIA near }\infty=\langle+,-\rangle.(Seen from \infty.)
```


Demo 14.7

Get the slope-sign near ∞ of the function specified by the global input-output rule

$$
x \xrightarrow{\text { DETER }} \operatorname{DETER}(x)=-0.45 x^{3}+3.03 x^{2}-81.67 x+46.92
$$

i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow[\text { DETER }]{ } \operatorname{DETER}(x) & =-045 x^{3}+3.03 x^{2}-81.67 x+46.92 \\
& =\underbrace{[-0.45] x^{3} \oplus[+3.03] x^{2} \oplus[-81.67] x \oplus[+46.92]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Slope-sign from the cubic term $[-0.45] x^{3}$. (The quadratic term $[+3.03] x^{2}$, the linear term $[-81.67] x$ and the constant term $[+46.92]$ are too small to matter.)
Since the cubic coefficient -0.45 is negative, we get that Slope-sign $D E T E R$ near $\infty=\langle\backslash\rangle$,$\rangle . (Seen from \infty$.)
2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it gives the Height-sign. However, the first term usually has neither Slope nor Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change the Height-sign as given by the first term but it is usually the largest-insize term that can give the Slope-sign. However, the second term has no Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change the Height-sign given by the first term and the Slope-sign given by the second term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term in the output jet - keeping in mind that the exceptional monomial functions do not have all the features.
However, near a bounded input, the given bounded input may turn out to be critical for the local feature:
i. If the constant term in the output jet is 0 , then the term which gives the Height-sign can be either the linear term or the quadratic term if the linear term is 0 or even the cubic term if the quadratic term turns out to be 0 too. The bounded input is then again said to be critical for the Height.
ii. If the linear term in the output jet is 0 , then the term which gives the critical for the Concavity Slope-sign is the quadratic term or the cubic term is the quadratic term turns out to be 0 too. The bounded input is then said to be critical for the Slope. iii. If the quadratic term in the output jet is 0 , then the term which gives the Concavity-sign is the cubic term. The bounded input is then said to be critical for the Concavity.
So, we usually need to compute only one coefficient in the output jet. But if the given bounded input turns out to be critical for that feature, then we need to compute the next coefficient: So we use

Procedure 14.7 To get the feature-signs near x_{0} of the function specified by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$
i. Get the local input-output rule near x_{0} :
$x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=a\left(x_{0}+h\right)^{3}+b\left(x_{0}+h\right)^{2}+c\left(x_{0}+h\right)+d$

$$
\begin{aligned}
& =a\left(x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}\right)+b\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+c\left(x_{0}+h\right)+d \\
& =\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

ii. Then, in the output jet near x_{0} :

- Get the Height-sign from the constant term $\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right]$. (The linear term, the quadratic term and the cubic term are too small to matter.)
If the constant coefficient is 0 , get the Height-sign from the linear term $\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h$. (The quadratic term and the cubic term are too small to matter.)
If the linear coefficient is 0 too, get the Height-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The quadratic term and the $c u$ bic term are too small to matter.)
If the quadratic coefficient is 0 too, get the Height-sign from the cubic term $[a] h^{3}$. (The quadratic term and the cubic term are too small to matter.)
- Since the constant term has no slope, get the Slope-sign from the linear term $\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h$. (The quadratic term and the cubic term are too small to matter.)
If the linear coefficient is 0 , get the Slope-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The cubic term is too small to matter.) If the quadratic coefficient is 0 too, get the Slope-sign from the cubic term $[a] h^{3}$.
- Since both the constant term and the linear term have no concavity, get Concavity-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The cubic term is too small to matter.)
If the quadratic coefficient is 0 , get the Slope-sign from the cubic term $[a] h^{3}$.

Demo 14.8

To get the feature signs near -3 of the function specified by the global inputoutput rule

$$
x \xrightarrow{A R B A} A R B A(x)=-32.67 x+71.07+81.26 x^{2}
$$

i. We get the local input-output rule near -3 (See Demo 14.3 on page 294):

$$
\begin{aligned}
-3+h \xrightarrow{A R B A} A R B A(-2+h) & =\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }} \\
& =\underbrace{[+900.428] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
\end{aligned}
$$

ii. Then, from the output jet:

- Since the constant coefficient

$$
+900.428
$$ is positive, we get that Heightsign $A R B A$ near $-3=\langle+,+\rangle$.

- Since the linear coefficient $[-519.63] h$ is negative. we get that Slope-sign $A R B A$ near $-3=\langle\backslash\rangle$,
- Since the quadratic coefficient $[+81.26] h^{2}$ is positive, we get that Concavity-sign $A R B A$ near $-3=\langle\cup, \cup\rangle$

THEOREM 14.2 Approximation Near ∞

6 Local Graph Near Infinity

Theorem 14.3 Height-sign Near ∞

Theorem 14.4 Slope-sign Near ∞

THEOREM 14.5 Concavity-sign Near ∞

Theorem 14.6 Local Input-Output Rule

Theorem 14.7 Height-sign Near x_{0}

Theorem 14.8 Slope-sign Near x_{0}

TheOrem 14.9 Concavity-sign Near x_{0} Given the function $C U B I C a, b, c, d$

- When Local square coefficient of $C U B I C\left(x_{0}\right)=+$,

$$
\text { Concavity-sign CU BIC }\left.\right|_{\text {near } x_{0}}=(\cup, \cup)
$$

- When Local square coefficient of $C U B I C\left(x_{0}\right)=-$,

Concavity-sign CU BIC $\left.\right|_{\text {near } x_{0}}=(\cap, \cap)$

- When Local square coefficient of $C U B I C\left(x_{0}\right)=0$,

Concavity-sign $\left.C U B I C\right|_{\text {near } x_{0}}$ depends on the sign of the local cube coefficient of $C U B I C\left(x_{0}\right)$

Chapter 14. Cubic Functions: Local Analysis

Chapter 15

Cubic Functions: Global Analysis

Global Graph, $307 \bullet$ Concavity-sign, 308 • Slope-sign, 310 • Extremum, 311 • Height-sign, 312 • 0-Concavity Location, 314 • 0-Slope Location, 315 • Extremum Location, 317 • 0-Height Location, 319 .

In the case of cubic functions, we will be able to solve exactly only a very few global problems because everything begins to be truly computationally complicated.

1 Global Graph

As always, we use
PROCEDURE 15.1 Essential graph of a function specified by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d$
i. Graph the function near ∞, (See ?? on ??.)
ii. Ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs whose nearby inputs have unbounded outputs? (∞-height inputs.)
iii. Use the local input-output rule near x_{0} to get further information. (See ?? on ??.)

But, given a bounded input x_{0}, we have that:

- a being bounded, $a x_{0}^{3}$ is also bounded
- b being bounded, $b x_{0}^{2}$ is also bounded
- c being bounded, $c x_{0}$ is also bounded
- and d being bounded
altogether, we have that $a x_{0}^{3}+b x_{0} x^{2}+c x_{0}+d$ is bounded and that the answer to the Essential Question is:

Theorem 15.1 Bounded Height Under a cubic functions, all bounded inputs have bounded outputs.
and therefore
THEOREM 15.2 Offscreen Graph The offscreen graph of a cubic function consists of just the local graph near ∞.

We now deal in detail with the third step.

Existence Theorems

Since cubic functions have no bounded ∞-height input, the only way a feature can change sign near a bounded input is when the feature is 0 near the bounded input. In particular, essential 0-feature inputs are bounded inputs

- with a 0 feature,
- whose existence is forced by the offscreen graph - which, in the case of cubic functions consists, by theorem 15.2 , of only the local graph near ∞. None of the following theorems, though, will indicate where the 0 -feature inputs inputs are located. The Location Theorems will be dealt with in the last part of the chapter.

2 Concavity-sign

Given the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Concavity-sign Near ∞ Theorem for cubic functions says that:

- When a is + , Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cup, \cap)$
- When a is -, Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cap, \cup)$

1. Since the concavity changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the concavity also has to change sign as x goes from the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded concavity-sign change input.

EXAMPLE 15.1. Given a cubic function whose offscreen graph is

Magellan view
there has therefore to be a bounded concavity-sign change input, $x_{\text {concavity sign-change. }}$ But since there cannot be a bounded ∞-height input, we cannot have

Mercator view and therefore we must have at least

Mercator view

Magellan view

Magellan view

So, based on the off-screen graph, we have

THEOREM 15.3 Concavity sign-change A cubic function must have at least one bounded concavity sign-change input.
2. On the other hand, based on the off-screen graph, a cubic function could have any odd number of 0-concavity inputs. Based on the general local input-output rule, we will see that a cubic function can have at most one 0 -concavity input. But, at this point, all we know for sure is

THEOREM 15.4 0-Concavity Existence A cubic functions must have at least one concavity-sign change input:
$x_{\text {concavity sign-change }}=x_{0 \text {-concavity }}$

3 Slope-sign

Given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Slope-sign Near ∞ Theorem for cubic functions says that:

- When a is,+ Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, /)$
- When a is -, Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, \backslash)$

1. Since the slope does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the slope does not have to change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded slope-sign change input:

EXAMPLE 15.2. Given a cubic function whose offscreen graph is

Mercator view

Magellan view
there is no need for a bounded slope-sign change input, $x_{\text {Slope-sign change }}$ and therefore we can have

2. On the other hand, based on just graphic considerations, a cubic function could have any number of 0-slope inputs. Based on input-output rule considerations, we will see that a cubic function can have only zero, one or two 0-slope inputs. But, at this point, all we know for sure is

ThEOREM 15.5 Slope-Sign Change Existence A cubic function need not have a Slope-sign change input.

And thus also
THEOREM 15.6 0-Slope Existence A cubic function need not have a 0 -Slope input.

4 Extremum

From the optimization viewpoint, the most immediately striking feature of an affine function is the absence of a forced extreme input, that is of a bounded input whose output is either larger than the output of nearby inputs or smaller than the output of nearby inputs. On the other hand, at this point we cannot prove that there is no extreme input.

EXAMPLE 15.3. Given a cubic function with the offscreen graph:

Since there can be no ∞-height input, we cannot have, for instance, either one of the following

On the other hand, there is nothing to prevent a fluctuation such as:

But no extremum input is forced:

So, we have
THEOREM 15.7 Extremum Existence A cubic function has no forced extremum input

5 Height-sign

Given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Height-sign Near ∞ Theorem for cubic functions says that:

- When a is + , Height-Sign $\left.\right|_{x \text { near } \infty}=(+,-)$
- When a is - , Height-Sign $\left.\right|_{x \text { near } \infty}=(-,+)$

1. Since the height changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the height has also to change sign as x goes from the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded height-sign change input.

EXAMPLE 15.4. Given a cubic function whose offscreen graph is

Magellan view
there has therefore to be a height-sign change input But since there cannot be a bounded ∞-height input, we cannot have

Mercator view
and therefore we must have

Mercator view

Magellan view

Magellan view
2. Moreover, because there is no bounded ∞-height input where the height could change sign, $x_{\text {height-sign change }}$ has to be a bounded input where the height is 0 . As a result, we have that

Theorem 15.8 Height-Sign Change Existence A cubic functions must have a Height-sign change input and
$x_{\text {Height-sign change }}=x_{0 \text {-height }}$

LOCATION THEOREMS

Previously, we only established the existence of certain essential bounded inputs of cubic functions and this investigation was based on graphic considerations. Here we will investigate the location of the essential bounded inputs and this investigation will be based on the generic local input-output rule.

6 0-Concavity Location

Given a cubic function, the global problem of locating an input where the local concavity is 0 is still fairly simple.

More precisely, given a cubic function $C U B I C_{a, b, c, d}$, that is the cubic function specified by the global input-output rule

$$
x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

since the concavity near x_{0} is the local square coefficient $3 a x_{0}+b$, in order to find the input(s) where the local concavity is 0 , we need to solve the affine equation

$$
3 a x+b=0
$$

by reducing it to a basic equation:

$$
\begin{aligned}
3 a x+b-b & =0-b \\
3 a x & =-b \\
\frac{3 a x}{3 a} & =\frac{-b}{3 a} \\
x & =\frac{-b}{3 a}
\end{aligned}
$$

So, we have:
THEOREM 15.9 -slope Location For any cubic function $C U B I C_{a, b, c, d}$,

$$
x_{0-\text { concavity }}=\frac{-b}{3 a}
$$

In fact, we also have:
Theorem 15.10 Global Concavity-sign Given a cubic function $C U B I C_{a, b, c, d}$,

- When a is positive,

$$
\begin{array}{ll}
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }<\frac{-b}{3 a}} & =(\cap, \cap) \\
\text { Concavity-sign }\left.C U B I C\right|_{\frac{-b}{3 a}} & =(\cap, \cup) \\
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }>\frac{-b}{3 a}} & =(\cup, \cup)
\end{array}
$$

- When a is negative,

$$
\begin{array}{ll}
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }<\frac{-b}{3 a}} & =(\cup, \cup) \\
\text { Concavity-sign }\left.C U B I C\right|_{\frac{-b}{3 a}} & =(\cup, \cap) \\
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }>\frac{-b}{3 a}} & =(\cap, \cap)
\end{array}
$$

The case is easily made by testing near ∞ the intervals for the corresponding inequations.

7 0-Slope Location

In the case of affine functions and of quadratic functions, we were able to prove that there was no shape difference with the principal term near ∞ by showing that there could be no fluctuation:

- In the case of affine functions we were able to prove that there was no shape difference with dilation functions
- In the case of quadratic functions we were able to prove that there was no shape difference with square functions.
More precisely, given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

since the slope near x_{0} is the local linear coefficient $3 a x^{2}+2 b x+c$, in order to find the input(s) where the local slope is 0 , we need to solve the quadratic equation

$$
3 a x^{2}+2 b x+c
$$

which we have seen we cannot solve by reduction to a basic equation and for which we will have to use the 0 -Height Theorem for quadratic functions, keeping in mind, though, that

- For a as it appears in 0-Height Theorem for quadratic functions, we have to substitute the squaring coefficient of $3 a x^{2}+2 b x+c$, namely $3 a$,
- For b as it appears in 0-Height Theorem for quadratic functions, we have to substitute the linear coefficient of $3 a x^{2}+2 b x+c$ namely $2 b$,
- For c as it appears in 0 -Height Theorem for quadratic functions, we have to substitute the constant coefficient of $3 a x^{2}+2 b x+c$ namely c.

1. It will be convenient, keeping in mind the above substitutions, first to compute

$$
\begin{aligned}
x_{0-\text { slope for }\left[3 a x^{2}+2 b x+c\right]} & =-\frac{2 b}{2 \cdot 3 a} \\
& =-\frac{2 b}{6 a} \\
& =-\frac{b}{3 a} \\
& =x_{0-\text { concavity for } C U B I C}
\end{aligned}
$$

2. Then, still keeping in mind the above substitutions, we compute the discriminant of $3 a x^{2}+2 b x+c$:

$$
\begin{aligned}
\text { Discriminant }\left[3 a x^{2}+2 b x+c\right] & =(2 b)^{2}-4(3 a)(c) \\
& =4 b^{2}-12 a c
\end{aligned}
$$

3. Then we have:

- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0$, the local linear coefficient of $C U B I C,\left[3 a x^{2}+2 b x+c\right]$, has no 0-height input and therefore $C U B I C$ has no 0-slope input.
- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0$, the local linear coefficient of CUBIC, $\left[3 a x^{2}+2 b x+c\right]$, has one 0 -height input and therefore CUBIC has one 0 -slope input, namely
- $x_{0-\text { slope for } C U B I C}=x_{0-h e i g h t ~ f o r ~}^{\left[3 a x^{2}+2 b x+c\right]}=-\frac{b}{3 a}$,
- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0$, the local linear coefficient of $C U B I C,\left[3 a x^{2}+2 b x+c\right]$, has two 0-height inputs and therefore $C U B I C$ has two 0-slope inputs., namely:
- $x_{0-\text { slope for } C U B I C}=x_{0-h e i g h t ~ f o r ~}\left[3 a x^{2}+2 b x+c\right]=-\frac{b}{3 a}+\frac{\sqrt{4 b^{2}-12 a c}}{2 a}$
and

$$
\text { - } x_{0-\text { slope for } C U B I C}=x_{0-\text { height for }\left[3 a x^{2}+2 b x+c\right]}=-\frac{b}{3 a}-\frac{\sqrt{4 b^{2}-12 a c}}{2 a}
$$

In terms of the function $C U B I C$, this gives us:

THEOREM 15.11 0-slope Location Given the cubic function $C U B I C_{a, b, c, d}$, when
\bullet Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0, C U B I C$ has no 0-Slope input
-Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0$, CU BIC has one 0-Slope input
\bullet Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0, C U B I C$ has two 0-Slope inputs

8 Extremum Location

The 0 -slope inputs are the only ones which can be extremum inputs. So, there will therefore be three types of cubic functions according to the number of 0-slopes inputs:

1. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0$ so that $C U B I C$ has no 0 -Slope input, there can be no extremum input and we will say that this type of cubic is of Shape type 0 .

EXAMPLE 15.5.

Cube coefficient positive

Cube coefficient negative

Since cubic function of Shape type O have no 0-Slope input, their shape is not like that of cubing functions.
2. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0$ so that $C U B I C$ has one 0-Slope input, there will still be no extremum input and we will say that this type of cubic is of Shape type I.

EXAMPLE 15.6.

Since cubic function of Shape type I do have one 0-Slope input, their shape is very much like that of cubing functions.
3. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0$ so that $C U B I C$ has two 0-Slope input, there will be one minimum input and one maximum input and we will say that this type of cubic is of Shape type II.

EXAMPLE 15.7.

We can thus state:
THEOREM 15.12 Extremum Location Given the cubic function $C U B I C_{a, b, c, d}$, when
-Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0, C U B I C$ has no locally extremum input.
-Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0, C U B I C$ has one locally minimum-maximum input or one locally maximum-minimum input.
-Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0, C U B I C$ has both

- $x_{\text {locally }}$ minimum-output,
- $x_{\text {locally maximum-output }}$,

9 0-Height Location

The location of 0 -height inputs in the case of a cubic function is usually not easy.

1. So far, the situation has been as follows:
i. The number of 0 -height inputs for affine functions is always one,
ii. The number of 0 -height inputs for quadratic functions is already more complicated in that, depending on the sign of the extreme-output compared with the sign of the outputs for inputs near ∞, it can be none, one or two.

It follows from the Extremum Location Theorem that
iii. The number of 0-height inputs for cubic functions depends
a. On the Shape type of the cubic function,
b. In the case of Shape type II, on the sign of the extremum outputs relative to the sign of the cubing coefficient

EXAMPLE 15.8. The cubic function specified by the global graph

is of Shape Type O (No 0-slope input) and always has a single 0 height input.

EXAMPLE 15.9. The cubic function specified by the global graphs are all of the same shape of Type II and the number of 0 -height inputs depends on how high the graph is in relation to the 0 -output level line.

2. The obstruction to computing the solutions that we encountered when trying to solve quadratic equations, namely that there was one more term than an equation has sides is even worse here since we have four terms and an equation still has only two sides. See ?? on ??

Chapter 16

Rational Degree \& Algebra Reviews

Rational Degree, 321 • Graphic Difficulties, 323 .

Rational functions are functions whose global input-output rule is of the form

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

where $P O L Y_{\text {Num }}(x)$ and $P O L Y_{\text {Den }}(x)$ stand for two positive-exponent polynomial expressions.

EXAMPLE 16.1. The function whose global input-output rule is

$$
x \xrightarrow{T A B} T A B(x)=\frac{-3 x^{2}+4 x-7}{-5 x^{4}-8}
$$

is a rational function in which:

- $\operatorname{POLY} Y_{\text {Num }}(x)$ is $-3 x^{2}+4 x-7$
- $P O L Y_{\text {Den }}(x)$ is $-5 x^{4}-8$

1 Rational Degree

Because the upper degree of polynomial functions is what we used to sort polynomial functions into different types, we now try to extend the idea of
rational degree
regular rational function
upper degree to the case of rational functions in the hope that this will also help us sort rational functions into different types.

Given a rational function whose global input-output rule is

$$
x \xrightarrow[R A T]{ } R A T(x)=\frac{P O L Y_{N u m}(x)}{P O L Y_{D e n}(x)}
$$

the rational degree of this rational function is the upper degree of $P O L Y_{N u m}(x)$ minus the upper degree of $P O L Y_{\text {Den }}(x)$:
Rat.Deg. of $\frac{P O L Y_{N u m}(x)}{P O L Y_{D e n}(x)}=\mathrm{UppDeg}$. of $P O L Y_{N u m}(x)-\mathrm{UppDeg}$. of $P O L Y_{D e n}(x)$
Thus, the rational degree of a rational function can well be negative.

NOTE 16.1

The rational degree is to rational function very much what the size is to arithmetic fractions in "school arithmetic" which distinguishes fractions according to the size of the numerator compared to the size of the denominator even though, by now, the distinctions are only an inconsequential remnant of history..
What happened is that, historically, the earliest arithmetic fractions were "unit fractions", that is reciprocals of whole numbers such as one half, one third, one quarter, etc. Later came "Egyptian fractions", that is combinations of (distinct) unit fractions, such as one third and one fifth and one eleventh, etc. A much later development were the "proper fractions", also called "vulgar fractions", such as two thirds, three fifths etc. Later still, came "improper fractions" such as five thirds, seven halves, etc. And finally "mixed numbers", such as three and two sevenths. Today, none of these distinctions matters inasmuch as we treat all fractions in the same manner.
However, while these "school arithmetic" distinctions are based on the size of the numerator versus the size of the denominator and make no real differences in the way we handle arithmetic fractions, in the case of rational functions, the above distinction based on the upper degree of the numerator versus the upper degree of the denominator will make a difference-even though no major one-in the way we will handle rational functions of different types.

In fact, by analogy with what we did with power functions, we will say that

- Rational functions whose rational degree is either >1 or <0, are regular rational functions,
- Rational functions whose rational degree is either $=0$ or $=1$, are ex- exceptional rational ceptional rational functions.

EXAMPLE 16.2. Find the rational degree of the function $D O U G H$ whose global input-output rule is

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{x^{2}-5 x+6}
$$

Since the rational degree is given by
Rat.Deg. of $\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}=$ UppDeg. of $P O L Y_{\text {Num }}(x)-$ UppDeg. of $P O L Y_{D e n}(x)$
and since, here,

- $\operatorname{POLY} Y_{\text {Num }}(x)=+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9$
- POLY Den $(x)=+1 x^{2}-5 x+6$
we get from the definition of the upper degree of a polynomial that:

$$
\text { UppDeg. of } \begin{aligned}
+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9 & =\text { Exponent of Highest Term } \\
& =\text { Exponent of }+1 x^{4} \\
& =4 \\
\text { UppDeg. of }+1 x^{2}-5 x+6 & =\text { Exponent of Highest Term } \\
& =\text { Exponent of }+1 x^{2} \\
& =2
\end{aligned}
$$

so that the rational degree of the rational function $D O U G H$ is:

$$
\text { Rat.Deg. of } \begin{aligned}
\frac{+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{+1 x^{2}-5 x+6} & =\text { Exponent of }+1 x^{4}-\text { Exponent of }+1 x^{2} \\
& =4-2 \\
& =2
\end{aligned}
$$

so that DOUGH is an example of a rational function of degree >1 and therefore of a regular rational function.

2 Graphic Difficulties

Finally, when there is one or more ∞-height bounded input(s), beginners often encounter difficulties when trying to interpolate smoothly the outlying graph of a rational function.

The difficulties are caused by the fact that, when we draw the local graph near ∞ and the local graphs near the ∞-height inputs from the local
input-output rules, we are only concerned with drawing the local graphs themselves from the local input-output rules. In particular, when we draw the local graph near ∞ and the local graphs near the ∞-height inputs, we want to bend them enough to show the concavity but we often end up bending them too much to interpolate them.

But then, what often happens as a result is that, when we want to interpolate, the local graphs may not line up well enough for us to interpolate them (smoothly).

EXAMPLE 16.3.

Given the rational function whose offscreen graph was drawn so as to show the concavity.

Here is what can happens when we attempt to interpolate

Of course, this is absolutely impossible since, according to this global graph, there would be inputs, such as x_{0}, with more than one output, y_{1}, y_{2}, \ldots :

But if we unbend the local graphs just a bit as in

The way to avoid this difficulty is not to wait until we have to interpolate but to catch any problem as we draw the local graphs by mentally extending the local graphs slightly into the transitions.

EXAMPLE 16.4.

Given the rational function whose offscreen graph was drawn do as to show the concavity
we can already see by extending the local graphs just a little bit into the transitions that this will cause a lot of trouble when we try to interpolate the local graph:

So, here, we bend the local graph near ∞ a little bit more and we unbend the local graphs near the ∞ height inputs a little bit:

We check again by extending the local graphs just a little bit into the transitions:
and indeed now we have no trouble interpolating:

Chapter 17

Rational Functions: Local Analysis Near ∞

Local I-O Rule Near ∞, 327 • Height-sign Near $\infty, 330 \bullet$ Slope-sign Near $\infty, 332 \bullet$ Concavity-sign Near $\infty, 335 \bullet$ Local Graph Near $\infty, 339$.

To do local analysis we work in a neighborhood of some given input and thus count inputs from the given input since it is the center of the neighborhood. When the given input is ∞, counting from ∞ means setting $x \leftarrow$ large and computing with powers of large in descending order of sizes.

Recall that the principal term near ∞ of a given polynomial function $P O L Y$ is simply its highest power term which is therefore easy to extract from the global input-output rule. The approximate input-output rule near ∞ of $P O L Y$ is then of the form

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{P O L Y} P O L Y(x)\right|_{x \text { near } \infty}=\text { Highest Term POLY }+[\ldots]
$$

However, the complication here is that to get the principal part near ∞ of a rational function we must approximate the two polynomial and divide - or the other way round - and the result need not be a polynomial but can also be a negative-exponent power function and the main issue will be whether to do the approximation before or after the division.

1 Local Input-Output Rule Near ∞

Given a rational function $R A T$, we look for the function whose input-output rule will be simpler than the input-output rule of $R A T$ but whose local graph near ∞ will be qualitatively the same as the local graph near ∞ of $R A T$.

More precisely, given a rational function $R A T$ specified by the global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

what we will want then is an approximation for the output of the local input-output rule near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{R A T} R A T(x)\right|_{x \text { near } \infty}=\left.\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}\right|_{x \text { near } \infty}
$$

from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is ∞, we localize both

- $P O L Y_{\text {Num }}(x)$
and
- $P O L Y_{\text {Den }}(x)$
by writing them in descending order of exponents.

2. Depending on the circumstances, we will take one of the following two routes to extract what controls the wanted feature:
■ The short route to Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$, that is:
i. We approximate both $\left.P O L Y_{N u m}(x)\right|_{x \text { near } \infty}$ and $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } \infty}$ to their principal term - that is to just their highest size termwhich, since x is near ∞, is their highest exponent term:

$$
\left.\frac{\operatorname{POLY}_{\text {Num }}(x)}{\operatorname{POLY}} \quad \text { Lecalize near }(x) \quad \frac{\left.\operatorname{POLY} Y_{\text {Num }}(x)\right|_{x \text { near } \infty}}{\left.\operatorname{POL} Y_{\text {Den }}(x)\right|_{x \text { near } \infty}} \quad \text { i. Approximate } \quad \text { Princ. } \text { TERM }\left._{\text {Num }}(x)\right|_{x \text { near } \infty}+[\ldots]\right]
$$

ii. In order to divide Princ.TERM $\left.M_{N u m(x)}\right|_{x \text { near } \infty}$, that is the principal term near ∞ of the numerator of RAT by Princ.TERM $\left.M_{D e n(x)}\right|_{x \text { near } \infty}$, that is the principal term near ∞ of the denominator of $R A T$ we use monomial division

$$
\frac{a x^{+m}}{b x^{+n}}=\frac{a}{b} x^{+m \ominus+n} \text { where }+m \ominus+n \text { can turn out positive, negative or } 0
$$

$$
\begin{aligned}
\text { Princ.TERM RAT }\left.(x)\right|_{x \text { near } \infty} & =\frac{\operatorname{Princ.TERM_{Num}(x)|_{x\text {near}\infty }}}{\text { Princ.TERM }} \begin{aligned}
\text { Den } & \left.(x)\right|_{x \text { near } \infty} \\
& =\left.\frac{\text { coef. Princ.TERM }}{\text { Num }}(x)\right|_{x \text { near } \infty} \\
\text { coef. Princ.TERM } & \left.x_{\text {Den }}(x)\right|_{x \text { near } \infty} ^{\text {UppDeg.POLY }}
\end{aligned}
\end{aligned}
$$

$$
=\frac{\text { coef. Princ.TERM }}{\text { Num }\left.(x)\right|_{x \text { near } \infty}} \cdot x^{\text {RatDeg.RAT(x) }}
$$

The resulting monomial is Princ.TERM $\left.R A T(x)\right|_{x \text { near } \infty}$, that is the principal term of the rational function $R A T$ near \propto :

ii. We approximate by stopping the long division as soon as we have the principal part that has the feature(s) we want:

3. Which route we will take in each particular case will depend both on the wanted feature(s) near ∞ and on the rational degree of $R A T$ and so we will now look separately at how we get Height-sign $\left.\right|_{x \text { near } \infty}$, Slope-sign $\left.\right|_{x \text { near } \infty}$ and Concavity-sign $\left.\right|_{x \text { near } \infty}$

LOCAL ANALYSIS NEAR ∞

When the wanted features are to be found near ∞, the rational degree of the rational function tells us up front whether or not the short route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near ∞

No matter what the rational degree of the given rational function $R A T$, Princ.TERM RAT (x) $\left.\right|_{x \text { near } \infty}$ will give us Height-sign $\left.\right|_{x \text { near } \infty}$ because, no matter what its exponent, any power function has Height-sign $\left.\right|_{x \text { near }}$. So, no matter what the rational degree of RAT, to extract the term responsible for Height-sign $\left.\right|_{x \text { near } \infty}$ we can take the short route to Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$:

EXAMPLE 17.1. Given the rational function $D O U G H$ specified by the global input-output rule

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}
$$

find Height-sign $\left.D O U G H\right|_{x \text { near } \infty}$.
a. We localize both the numerator and the denominator near ∞-which amounts only to making sure that the terms are in descending order of exponents.

$$
\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \text { Localize near } \infty \quad \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}
$$

b. Inasmuch as Princ.TERM DOUGH $\left.(x)\right|_{x \text { near } \infty}$ has Height no matter what the degree, in order to extract the term that controls Height-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM $\left.\operatorname{DOUGH}(x)\right|_{x \text { near } \infty}$:
i. We approximate

$$
\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \text { Li. Apporilize nearimate } \frac{+12 x^{5}+[\ldots]}{-3 x^{2}+[\ldots]}
$$

that is we approximate

- the numerator $+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9$ to its principal term, $-12 x^{5}$
- the denominator $-3 x^{2}-5 x+6$ to its principal term, $-3 x^{2}$
ii. And then we divide:
$\begin{aligned} & \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \\ & \frac{+12 x^{5}+[\ldots]}{-3 x^{2}+[\ldots]} \\ &-\frac{12}{3} x^{3}+[\ldots]\end{aligned}$
where

$$
\begin{aligned}
\frac{+12 x^{5}}{-3 x^{2}} & =\frac{+12 \cdot x \cdot x \cdot x \cdot x \cdot x}{-3 \cdot x \cdot x} \\
& =-\frac{12}{3} x^{5-2}
\end{aligned}
$$

The more usual way to write all this is something as follows:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)\right|_{x \text { near } \infty} & =\left.\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}\right|_{x \text { near } \infty} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \\
& =\frac{+12 x^{5}+[\ldots]}{-3 x^{2}+[\ldots]} \\
& =-\frac{12}{3} x^{5-2}+[\ldots]
\end{aligned}
$$

Whatever we write, the principat term of DOUGH near ∞ is $-\frac{12}{3} x^{3}$ and it gives

$$
\text { Height-sign }\left.D O U G H\right|_{x \text { near } \infty}=(-,+)
$$

EXAMPLE 17.2. Given the function $P A C$ specified by the global inputoutput rule

$$
x \xrightarrow{P A C} P A C(x)=\frac{-12 x^{3}+7 x+4}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+10}
$$

find Height-sign $\left.P A C\right|_{x \text { near } \infty}$. Inasmuch as Princ.TERM PAC(x)|$\left.\right|_{x \text { near } \infty}$ has Height no matter what the degree, in order to extract the term that controls Height-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM DOUGH $\left.(x)\right|_{x \text { near } \infty}$:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{P A C} P A C(x)\right|_{x \text { near } \infty} & =\left.\frac{-12 x^{3}+7 x+4}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+10}\right|_{x \text { near } \infty} \\
& =\frac{-12 x^{3}+7 x+\left.4\right|_{x \text { near } \infty}}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+\left.10\right|_{x \text { near } \infty}} \\
& =\frac{-12 x^{+3}+[\ldots]}{+4 x^{+5}+[\ldots]} \\
& =\frac{-12}{+4} x^{+3 \ominus+5}+[\ldots] \\
& =-3 x^{-2}+[\ldots]
\end{aligned}
$$

and we get that

$$
\text { Height-sign }\left.P A C\right|_{x \text { near } \infty}=(-,-)
$$

3 Slope-sign Near ∞

In the case of Slope-sign $\left.R A T\right|_{x \text { near } \infty}$, there are two cases depending on the rational degree of the given rational function:

- If the rational function $R A T$ is either:
- A regular rational function, that is of rational degree >1 or <0
or
- An exceptional rational function of rational degree $=1$,
that is not an exceptional rational function of rational degree $=0$, then Princ. TERM RAT $\left.(x)\right|_{x \text { near } \infty}$ will be a power function that will have Slope near ∞ and so in order to extract the term that controls Slope-sign $\left.\right|_{x \text { near }} \infty$ we take the short route to Princ. TERM RAT $\left.(x)\right|_{x \text { near } \infty}$:

EXAMPLE 17.3. Given the rational function SOUTH specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find Slope-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH
a. We have

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We now proceed with the two steps:

$$
\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9} \stackrel{\text { Approximate }}{\square \text { Approximate }} \frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
$$

b. The more usual presentation is:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We approximate } \begin{aligned}
+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty} \\
\begin{aligned}
& \\
& \begin{array}{l}
\text { and }
\end{array} \\
&=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

and then we divide:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

c. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

which approximates SOUTH near ∞ is <0, the power function $P O W E R$ has all three features, concavity, slope and height. (This was of course to be expected from the fact that the rational degree of $S O U T H$ is <0.)
ii. We get

$$
\text { Slope-sign of SOUTH near } \infty=(/, \backslash)
$$

- If the rational function $R A T$ is an exceptional rational function whose rational degree $=0$, then Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$ will be an exceptional power function with exponent $=0$ and Princ.TERM RAT(x) $\left.\right|_{x \text { near } \infty}$ will not have Slope and so in order to extract the term that controls Slope-sign $\left.\right|_{x \text { near } \infty}$ we will have to take the long route to a Princ.PART RAT(x) $\left.\right|_{x \text { near } \infty}$ that has Slope:

4 Concavity-sign Near ∞

In the case of Concavity-sign $\left.R A T\right|_{x \text { near } \infty}$, there are two cases depending on the rational degree of the given rational function.

- If the rational function $R A T$ is a regular rational function, that is if the rational degree of $R A T$ is either >1 or <0, then Princ. TERM $\left.R A T(x)\right|_{x \text { near } \infty}$ will be a regular power function, that is a power function whose exponent is either >1 or <0 and then, in either case, Princ. TERM RAT(x) $\left.\right|_{x \text { near } \infty}$ will have Concavity and so in order to extract the term that controls Concavity-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM Den $\left.(x)\right|_{x \text { near } \infty}$:

EXAMPLE 17.4. Given the rational function SOUTH specified by the global input-output rule

$$
x \xrightarrow{\operatorname{SOUTH}} \operatorname{SOUTH}(x)=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find Concavity-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH

$$
\begin{aligned}
& \text { a. We have } \\
&\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty}=\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
&=\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We now proceed with the two steps:

b. The more usual presentation is:

$$
\begin{aligned}
&\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty}=\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
&=\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}} \\
& \text { We and } \\
&+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty} \quad-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty \quad \text { and }} \\
&=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
\end{aligned}
$$

and then we divide:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

c. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

which approximates SOUTH near ∞ is <0, the power function $P O W E R$ has all three features, concavity, slope and height. (This was of course to be expected from the fact that the rational degree of SOUTH is <0.)
ii. We get

$$
\text { Concavity-sign of SOUTH near } \infty=(\cap, \cap)
$$

- If the rational function $R A T$ is an exceptional rational function that is if the rational degree of $R A T$ is either $=1$ or $=0$ then Princ.TERM $\left.R A T(x)\right|_{x \text { near } \infty}$ will be an exceptional power function with exponent either $=1$ or $=0$ (Chapter 7) and in both cases Princ.TERM RAT(x) $\left.\right|_{x \text { near } \infty}$ will not have Concavity and in order extract the term that controls Concavity-sign $\left.\right|_{x \text { near } \infty}$ we will have to take the long route to a Princ. PART $\left.R A T(x)\right|_{x \text { near } \infty}$ that does have Concavity.

EXAMPLE 17.5. Given the rational function $B A T H$ specified by the global input-output rule

$$
x \xrightarrow{\text { BATH }} \operatorname{BATH}(x)=\frac{+x^{3}-5 x^{2}+x+6}{+x^{2}-4 x+3}
$$

find Concavity-sign BATH $\left.\right|_{x \text { near } \infty}$.
a. The localization step is to localize both the numerator and the denominator near ∞-which amounts only to making sure that the terms are in descending order of exponents.
$\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3} \quad$ Localize near $\infty \quad \frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near } \infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near } \infty}}$
b. Since Princ. TERM BATH $\left.(x)\right|_{x \text { near } \infty}$ has no Concavity, the extraction step to get Concavity-sign $\left.B A T H\right|_{x \text { near } \infty}$ must take the long route to a Princ. PART BATH $\left.(x)\right|_{x \text { near } \infty}$ that has Concavity:
i. We set up the division as a long division:

ii. We approximate by stopping the long division as soon as we have the
principal part of the quotient that has Concavity:

$$
\frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near }+\infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near }+\infty}}
$$

$\frac{+x^{3}+[\ldots]}{+x^{2}+[\ldots]}$

$$
+x+[\ldots]
$$

$$
\text { iii. Approximate } x-1-6 x^{-1}+[\ldots]
$$

$$
+ x ^ { 2 } - 4 x + 3 \longdiv { + x ^ { 3 } - 5 x ^ { 2 } + x + 9 }
$$

$$
\frac{+x^{3}-4 x^{2}+3 x}{0 x^{3}-x^{2}-2 x+9}
$$

$$
\frac{-x^{2}+4 x-3}{0 x^{2}-6 x+12}
$$

that is we stop with $-6 x^{-1}$ since it is the term responsible for Concavity. The more usual way to write all this is:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { BATH }} \operatorname{BATH}(x)\right|_{x \text { near } \infty} & =\left.\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3}\right|_{x \text { near } \infty} \\
& =\frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near } \infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near } \infty}} \\
& =\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3}
\end{aligned}
$$

and then we divide (in the latin manner):

Whichever way we write it, Princ. PART BATH(x) $\left.\right|_{x \text { near } \infty}=+x-1-$ $6 x^{-1}$ and its third term, $-6 x^{-1}$, gives

$$
\text { Concavity-sign }\left.B A T H\right|_{x \text { near } \infty}=(\cap, \cup)
$$

$$
\begin{aligned}
& +x^{2}-4 x+3 \begin{array}{ccccc}
& +x & -1 & -6 x^{-1} & +[. .] \\
\cline { 2 - 6 } & +x^{3} & -5 x^{2} & +x & +9
\end{array} \\
& \begin{array}{llll}
+x^{3} & -4 x^{2} & +3 x & \\
\hline 0 x^{3} & -x^{2} & -2 x & +9
\end{array} \\
& \begin{array}{ccc}
-x^{2} & +4 x & -3 \\
\hline 0 x^{2} & -6 x & +12
\end{array}
\end{aligned}
$$

5 Local Graph Near ∞

In order to get the local graph near ∞, we need a local input-output rule that gives us the concavity-signÑand therefore the slope-sign and the height-sign.

So, the route we must take in order to get the local graph near ∞ is the route that will get us the concavity-sign near ∞.

EXAMPLE 17.6. Given the rational function $S O U T H$ whose global inputoutput rule is

$$
x \xrightarrow{\operatorname{SOUTH} \operatorname{SOUTH}(x)}=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find its local graph near ∞.
i. We get the local input-output rule near ∞ as in EXAMPLE 1.

We have:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We approximate separately the numerator and the denominator:

$$
=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
$$

We divide the approximations:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

ii. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

is <0, the power function $P O W E R$ is regular and has both concavity and slope. So, the local graph of the power function POWER near ∞ will be approximately the graph near ∞ of the rational function SOUTH.
The local graph near ∞ of the rational function SOUTH is therefore:

EXAMPLE 17.7. Given the rational function $D O U G H$ whose global inputoutput rule is

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}
$$

find its local graph near ∞.
i. We get the local input-output rule near ∞.

We have:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{D O U G H} D O U G H(x)\right|_{x \text { near } \infty} & =\left.\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}\right|_{x \text { near } \infty} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}
\end{aligned}
$$

We approximate separately the numerator and the denominator:

$$
=\frac{+12 x^{5}+[\ldots]}{-3 x^{4}+[\ldots]}
$$

We divide the approximations:

$$
\begin{aligned}
& =-\frac{+12}{-3} x^{5-2}+[\ldots] \\
& =-4 x^{+3}+[\ldots]
\end{aligned}
$$

ii. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-4 x^{+3}
$$

is >1, the power function $P O W E R$ is regular and has both concavity and slope. So, the local graph of the power function $P O W E R$ near ∞ will be approximately the graph near ∞ of the rational function $D O U G H$.
The local graph near ∞ of the rational function $D O U G H$ is therefore:

EXAMPLE 17.8. Given the rational function $B A T H$ specified by the global input-output rule

$$
x \xrightarrow{\text { BATH }} \operatorname{BATH}(x)=\frac{+x^{3}+x^{2}-5 x+6}{+x^{2}-4 x++3}
$$

as in EXAMPLE 1, find the local graph near ∞.
i. We get the local input-output rule near ∞ that gives all three features as we did in EXAMPLE 1:
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{B A T H} \operatorname{BATH}(x)\right|_{x \text { near } \infty}=+x+5+27 x^{-1}+[\ldots]$
ii. So the local graph near ∞ of the function $B A T H$ is

Chapter 18

Rational Functions: Local Analysis Near x_{0}

Local I-O Rule Near $x_{0}, 344 \bullet$ Height-sign Near $x_{0}, 346 \bullet$ Slope-sign Near $x_{0}, 349 \bullet$ Concavity-sign Near $x_{0}, 350 \bullet$ Local Graph Near $x_{0}, 351$.

Doing local analysis means working in a neighborhood of some given input and thus counting inputs from the given input since it is the center of the neighborhood. When the given input is x_{0}, we localize at x_{0}, that is we set $x=x_{0}+h$ where h is small and we compute with powers of h in descending order of sizes.

EXAMPLE 18.1. Given the input +2 , then the location of the number +2.3 relative to +2 is +0.3 :

Recall that the principal part near x_{0} of a given polynomial function $P O L Y$ is the local quadratic part
$\left.\left.x\right|_{x \text { near } x_{0}} \xrightarrow{P O L Y} P O L Y(x)\right|_{x \text { near } x_{0}}=[\quad]+[\quad]+[\quad] h^{2}+[\ldots]$
However, the complication here is that to get the principal part near x_{0} of a rational function we must approximate the two polynomial and divide - or the other way round - and the result need not be a polynomial but can also be a negative-exponent power function and the main issue will be whether to do the approximation before or after the division.

1 Local Input-Output Rule Near x_{0}

Given a rational function $R A T$, we look for the function whose input-output rule will be simpler than the input-output rule of $R A T$ but whose local graph near x_{0} will be qualitatively the same as the local graph near x_{0} of $R A T$.

More precisely, given a rational function $R A T$ specified by the global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

what we will want then is an approximation for the output of the local
input-output rule near x_{0}

$$
\left.\left.x\right|_{x \text { near } x_{0}} \xrightarrow{R A T} R A T(x)\right|_{x \text { near } x_{0}}=\left.\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}\right|_{x \text { near } x_{0}}
$$

from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is x_{0}, we localize both

- $P O L Y_{\text {Num }}(x)$
and
- $P O L Y_{D e n}(x)$
by letting $x \leftarrow x_{0}+h$ and writing the terms in ascending order of exponents.

2. Depending on the circumstances, we will take one of the following two routes to extract what controls the wanted feature:
■ The short route to Princ.TERM RAT(x) $\left.\right|_{x_{\text {near } x_{0}}}$, that is:
i. We approximate both $\left.\operatorname{POL} Y_{\text {Num }}(x)\right|_{x \text { near } x_{0}}$ and $\left.P O L Y_{D e n}(x)\right|_{x \text { near } x_{0}}$ to their principal term - that is to just their lowest size term - which, since x is near ∞, is their lowest exponent term:

ii. In order to divide Princ.TERM $\left.M_{N u m(x)}\right|_{x \text { near } x_{0}}$, that is the principal term near x_{0} of the numerator of RAT by Princ.TERM $\left.\operatorname{Den}(x)\right|_{x \text { near } x_{0}}$, that is the principal term near x_{0} of the denominator of $R A T$ we use monomial division

The resulting monomial is Princ.TERMRAT $\left.(x)\right|_{x \text { near } x_{0}}$, that is the principal term of the rational function $R A T$ near x_{0}.

However, Princ.TERM RAT $\left.(x)\right|_{x \text { near } x_{0}}$ is useful only in four cases:

- When it is a constant term and what we want is the Height-sign,
- When it is a linear term and what we want is the Height-sign or the Slope-sign,
- When it is a square term,
- When it is a negative-exponent term.
- The long route to Princ. PART RAT $\left.(x)\right|_{x \text { near } x_{0}}$:
i. In order to divide $\left.P O L Y_{N u m}(x)\right|_{x \text { near } x_{0}}$ by $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } x_{0}}$, we set up the division as a long division, that is $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } x_{0}}$ dividing into $\left.P O L Y_{\text {Num }}(x)\right|_{x \text { near } x_{0}}$ and since these are polynomials in h, in order to be in order of descending sizes, they must be in order of ascending exponents.
ii. We approximate by stopping the long division as soon as we have the principal part that has the feature(s) we want:
iii. The difficulty will be that we will have to approximate at two different stages:
- While we localize both the numerator and the denominator,
- When we divide the approximate localization of the numerator by the approximate localization of the denominator
So, we will have to make sure that the approximations in the localizations of the numerator and the denominator do not interfere with the approximation in the division, that is that, as we divide, we do not want to bump into a [...] coming from having approximated the numerator and the denominator too much, that is before we can extract from the division the term that controls the wanted feature.

3. Which route we will take in each particular case will depend both on the wanted feature (s) near x_{0} and so we will now look separately at how we get Height-sign $\left.\right|_{x \text { near } \infty}$, Slope-sign $\left.\right|_{x \text { near } x_{0}}$ and Concavity-sign $\left.\right|_{x \text { near } x_{0}}$

Local Analysis Near x_{0}

When the wanted features are to be found near x_{0}, the rational degree of the rational function does not tell us which of the short route or the long route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near x_{0}

If all we want is the Height-sign, then we can always go the short route.

EXAMPLE 18.2. Let SOUTH be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

Find the height-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2

$$
\begin{aligned}
h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h) & =\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
& =\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}} \\
& =\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15}
\end{aligned}
$$

ii. Since we want the local input-output rule that will give us the height-sign, we try to approximate before we divide:

$$
\begin{aligned}
& =\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[\ldots]}{\left[(+2)^{4}-(+2)^{3}-10(+2)^{2}+2-15\right]+[\ldots]} \\
& =\frac{[+4+10+6]+[\ldots]}{[+16-8-40+2-15]+[\ldots]} \\
& =\frac{+20+[\ldots]}{-45+[\ldots]} \\
& =-\frac{20}{45}+[\ldots]
\end{aligned}
$$

and since the approximate local input-output rule near +2 is

$$
h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}+[\ldots]
$$

and the local input-output rule includes the term that gives the Height-sign near +2

$$
-\frac{20}{45}
$$

we have:

$$
\text { Height-sign SOUTH near }+2=(-.-)
$$

EXAMPLE 18.3. Let $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

Find the height-sign of SOUTH near -3
i. We localize both the numerator of SOUTH and the denominator of SOUTH near -3

$$
\begin{aligned}
h \xrightarrow{\text { SOUTH }_{2} 3} \text { SOUT H }(-3+h) & =\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow-3+h} \\
& =\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow-3+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-3+h}} \\
& =\frac{(-3+h)^{2}+5(-3+h)+6}{(-3+h)^{4}-(-3+h)^{3}-10(-3+h)^{2}+(-3+h)-15}
\end{aligned}
$$

ii. Since we want the local input-output rule that will give us the height-sign, we try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{\left[(-3)^{2}+5 \cdot(-3)+6\right]+[\ldots]}{\left[(-3)^{4}-(-3)^{3}-10(-3)^{2}-3-15\right]+[\ldots]} \\
& =\frac{[+9-15+6]+[\ldots]}{[+81+27-90-3-15]+[\ldots]} \\
& =\frac{[0]+[\ldots]}{[0]+[\ldots]}
\end{aligned}
$$

We cannot divide as we could get

$$
=a n y \text { size }
$$

iii. We therefore must approximate the localizations at least to h

$$
\begin{aligned}
& =\frac{[0]+[2 \cdot(-3)+5] h+[\ldots]}{[0]+\left[+4(-3)^{3}-3(-3)^{2}-10 \cdot 2(-3)+1\right] h+[\ldots]} \\
& =\frac{[-6+5] h+[\ldots]}{[-108-27+60+1] h+[\ldots]} \\
& =\frac{[-1] h+[\ldots]}{[-74] h+[\ldots]}
\end{aligned}
$$

$$
=\frac{-h+[\ldots]}{-74 h+[\ldots]}
$$

We divide

$$
=+\frac{1}{74}+[\ldots]
$$

and since the approximate local input-output rule near -3 is

$$
h \xrightarrow{\text { SOUTH }_{-3}} \operatorname{SOUTH}(-3+h)=+\frac{1}{74}+[\ldots]
$$

and the local input-output rule includes the term that gives the Height-sign near -3

$$
+\frac{1}{74}
$$

we have:

$$
\text { Height-sign SOUTH near }-3=(+,+)
$$

3 Slope-sign Near x_{0}

EXAMPLE 18.4. Let $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the slope-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2 and since we want the approximate local input-output rule for the slope-sign, we will approximate to h :

$$
\begin{aligned}
&+2+h \xrightarrow{\text { SOUTH }} \text { SOUTH }(+2+h)=\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
&=\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}} \\
&=\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15} \\
&=\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[2(+2)+5] h+[\ldots]}{\left[(+2)^{4}-(+2)^{3}-10 \cdot(+2)^{2}+(+2)-15\right]+\left[4(+2)^{3}-3(+2)^{2}-10 \cdot 2(+2)+1\right] h+[\ldots]}
\end{aligned}
$$

$$
=\frac{[+20]+[+9] h+[\ldots]}{[-45]+[-19] h+[\ldots]}
$$

ii. We set up the division with

$$
[-45]+[-19] h+[\ldots] \quad \text { dividing into } \quad[+20]+[+9] h+[\ldots]
$$

that is:

$$
\begin{array}{ccccc}
& -\frac{20}{45} & -\frac{[9 \cdot 45]-[19 \cdot 20]}{45^{2}} h & +[\ldots] \\
\cline { 2 - 5 }-45-19 h+[\ldots] & +20 & +[\ldots] & \\
& +20 & +\frac{19 \cdot 20}{45} h & +[\ldots] & \\
\cline { 2 - 5 } & 0 & +\frac{[9 \cdot 45]-[19 \cdot 20]}{45} h & +[\ldots]
\end{array}
$$

And since $[9 \cdot 45]-[19 \cdot 20]=405-380=+25$, the approximate local inputoutput rule near +2 is:

$$
h \xrightarrow{\operatorname{SOUTH}_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h+[\ldots]
$$

and the term that gives the slope-sign near +2 is

$$
-\frac{25}{45^{2}} h
$$

so that

$$
\text { Slope-sign SOUTH near }+2=(\backslash . \backslash)
$$

4 Concavity-sign Near x_{0}

EXAMPLE 18.5. Let SOUTH be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the concavity-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2 and since we want the approximate local input-output rule for the slope-sign, we will approximate to h^{2} :

$$
\begin{aligned}
+2+h \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(+2+h) & =\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
& =\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15} \\
&=\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[2(+2)+5] h+[1] h^{2}}{\left[(+2)^{4}-(+2)^{3}-10 \cdot(+2)^{2}+(+2)-15\right]+\left[4(+2)^{3}-3(+2)^{2}-10 \cdot 2(+2)+1\right] h+\left[6(+2)^{2}-3(+2)-10\right] h^{2}+[\ldots]} \\
&=\frac{[+20]+[+9] h+[1] h^{2}}{[-45]+[-19] h+[8] h^{2}+[\ldots]}
\end{aligned}
$$

ii. We set up the division with

$$
-45+-19 h+8 h^{2}+[\ldots] \quad \text { dividing into } \quad+20+9 h+h^{2}
$$

but carry it out latin style (that is, we write the result of the multiplication as it comes out instead of the opposite of the result.)

And since $\frac{+45[45-8 \cdot 20]-19[99 \cdot 45]-[19 \cdot 20]]}{45^{2}}=-\frac{2401}{45^{2}}$, the local input-output rule near +2 is:
$h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h-\frac{2401}{45^{2}} h^{2}+[\ldots]$
and the term that gives the concavity-sign near +2 is

$$
-\frac{2401}{45^{2}} h^{2}
$$

so that

$$
\text { Concavity-sign SOUTH near }+2=(\cap, \cap)
$$

5 Local Graph Near x_{0}

EXAMPLE 18.6. Let SOUTH be the function specified by the global input-output rule

$$
x \xrightarrow{\operatorname{SOUTH} \operatorname{SOUTH}(x)}=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the local graph of SOUTH near +2
Since, in order to get the local graph near +2 we need all three features near +2 , height-sign, slope-sign and concavity-sign, we need to get the approximate local input-output rule as we did in the previous example:
$h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h-\frac{2401}{45^{2}} h^{2}+[\ldots]$
from which we get:

Chapter 19

Rational Functions: Global Analysis

The Essential Question, $353 \bullet$ Locating ∞-Height Inputs, $354 \bullet$ Offscreen Graph, 359 • Feature-sign Change Inputs, 361 • Global Graph, 362 • Locating 0-Height Inputs, 363 .

Contrary to what we were able to do with polynomial functions, with rational functions we will not be able to establish global theorems. Of course, we did not really establish global theorems for all polynomial functions either but only for polynomial functions of a given degree, $0,1,2$ and 3 . But, in the case of rational functions, even the rational degree will not separate rational functions into kinds that we can establish global theorems for inasmuch as even rational functions with a given rational degree can be very diverse.

So, what we will do here is to focus on how to get global information about any given rational function.

1 The Essential Question

Given a rational function, as with any function, the offscreen graph will consist:

- certainly of the local graph near ∞. This is because, as soon as the input is large, the graph point is going to be left or right of the screen and therefore offscreen regardless of the size of the output,
- possibly of the local graph(s) near certain bounded input(s). This is because, in case the outputs for inputs near certain bounded inputs are large, the graph points will then be above or below the screen and therefore offscreen even though the inputs are bounded.
So, as always, we will need to ascertain whether
- There might be bounded inputs for which nearby inputs will have a large output,
or, as was the case with all polynomial functions,
- The outputs for any bounded input are themselves necessarily bounded In other words, in order to get the offscreen graph, we must begin by asking the Essential Question:
- Do all bounded inputs have bounded outputs
or
- Is there one (or more) bounded input which is an ∞ height input, that is, a bounded input whose nearby inputs have unbounded outputs?

And, indeed, we will find that there are two kinds of rational functions:

- rational functions that do have ∞-height input(s)
- rational function that do not have any ∞-height input as was the case with power functions and polynomial functions.

2 Locating ∞-Height Inputs

However, given a rational function, not only will we need to know whether or not there exists ∞-height input(s), if there are any, we will also have to locate the ∞-height inputs, if any, because we will need to get the local graph near these ∞-height input(s). More precisely:

1. Given a rational function $R A T$ specified by a global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{N U M E R A T O R_{R A T}(x)}{D E N O M I N A T O R_{R A T}(x)}
$$

we want to find whether or not there can be a bounded input x_{0} such that the outputs for nearby inputs, $x_{0}+h$, are large. In other words, we want to know if there can be x_{0} such that

$$
\left.h \xrightarrow{R A T} R A T(x)\right|_{x \leftarrow x_{0}+h}=\text { large }
$$

But we have

$$
\begin{aligned}
\left.R A T(x)\right|_{x \leftarrow x_{0}+h} & =\left.\frac{\operatorname{NUMERATOR}_{R A T}(x)}{\operatorname{DENOMINATOR} R_{R A T}(x)}\right|_{x \leftarrow x_{0}+h} \\
& =\frac{\left.\operatorname{NUMERATOR}_{R A T}(x)\right|_{x \leftarrow x_{0}+h}}{\left.\operatorname{DENOMINATOR} R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}} \\
& =\frac{\operatorname{NUMERATOR}_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR }}{ }_{R A T}\left(x_{0}+h\right)
\end{aligned}
$$

So, what we want to know is if there can be an x_{0} for which

$$
\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}=\text { large }
$$

2. Since it is a fraction that we want to be large, we will use the Division Size Theorem from Chapter 2:

THEOREM 2 (Division Size)

$$
\begin{array}{rlrl}
\frac{\text { large }}{\text { large }} & \text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

There are thus two ways that a fraction can be large:

- When the numerator is large
- When the denominator is small

In each case, though, we need to make sure of the other side of the fraction. So, rather than look at the size of both the numerator and the denominator at the same time, we will look separately at:

- The first row, that is when the numerator of the fraction is large

$$
\begin{aligned}
& \frac{\text { large }}{\text { large }}=\text { any size } \quad \frac{\text { large }}{\text { medium }}=\text { large } \quad \frac{\text { large }}{\text { small }}=\text { large } \\
& \frac{\text { medium }}{\text { large }}=\text { small } \quad \frac{\text { medium }}{\text { medium }}=\text { medium } \quad \frac{\text { medium }}{\text { small }}=\text { large } \\
& \frac{\text { small }}{\text { large }}=\text { small } \quad \frac{\text { small }}{\text { medium }}=\text { small } \quad \frac{\text { small }}{\text { small }}=\text { any size }
\end{aligned}
$$

because in that case all we will then have to do is to make sure that the denominator is not large too.

- The last column, that is when the denominator of the fraction is small.
possible ∞-height input

$$
\begin{array}{lll}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the numerator is not small too.
3. We now deal with $\frac{\text { NUMERATOR } R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$, looking separately at the numerator and the denominator:

- Since the numerator, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{N U M E R A T O R_{R A T}} N U M E R A T O R_{R A T}(x)
$$

and since we have seen that the only way the outputs of a polynomial function can be large is when the inputs are themselves large, there is no way that $N U M E R A T O R_{R A T}\left(x_{0}+h\right)$) could be large for inputs that are bounded. So there is no way that the output of $R A T$ could be large for bounded inputs that make the numerator large and we need not look any further.

- Since the denominator, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of the polynomial function

$$
x \xrightarrow{\text { DENOMINATOR }} \text { RAT } D E N O M I N A T O R_{R A T}(x)
$$

and since we have seen that polynomial functions can have small outputs if they have 0 -height inputs and the inputs are near the 0 -height inputs, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$ can be small for certain bounded inputs and thus so can $\frac{\text { NUMERATOR } R_{\text {RAT }}\left(x_{0}+h\right)}{\text { DENOMINATORRAT }\left(x_{0}+h\right)}$. However, we will then have to make sure that $N U M E R A T O R_{R A T}\left(x_{0}+h\right)$, is not small too near these bounded inputs, that is we will have to make sure that x_{0} does not turn out to be a 0 -height input for $N U M E R A T O R_{R A T}$ as well as for $D E N O M I N A T O R_{R A T}$ so as not to be in the case:

$$
\frac{\text { small }}{\text { small }}=\text { any size }
$$

We will thus refer to a 0 -height input for $\operatorname{DENOMINATOR} R_{R A T}$ as only a possible ∞-height input for $R A T$
Altogether, then, we have:

Theorem 19.1 Possible ∞-height Input The 0 -height inputs of the denominator of a rational function, if any, are the only possible ∞-height inputs for the rational function.
4. However, this happens to be one of these very rare situations in which there is "an easier way": After we have located the 0-height inputs for DENOMINATOR $R_{R A T}$, instead of first making sure that they are not also 0-height inputs for $N U M E R A T O R_{R A T}$, we will gamble and just get the local input-output rule near each one of the 0 -height inputs for DENOMINATOR RAT. Then,

- If the local input-ouput rule turns out to start with a negative-exponent power function, then we will have determined that x_{0} is an ∞-height input for $R A T$ and the payoff will be that we will now get the local graph near x_{0} for free.
- If the local input-ouput rule turns out not to start with a negativeexponent power function, then we will have determined that x_{0} is not a ∞-height input for $R A T$ after all and our loss will be that we will probably have no further use for the local input-output rule.
Overall, then, we will use the following two steps:
Step i. Locate the 0-height inputs for the denominator, DENOMINATOR $R_{R A T}(x)$, by solving the equation

$$
D E N O M I N A T O R_{R A T}(x)=0
$$

Step ii. Compute the local input-output rule near each one of the 0 -height inputs for the denominator, if any.

The advantage is that we need not even refer to the Division Size Theorem: once we have a possible ∞-height input, we just get the local inputoutput rule near that possible ∞-height input, "for the better or for the worse".

EXAMPLE 19.1. Let $C O U G H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { COUGH }} \operatorname{COUGH}(x)=\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}
$$

locate the ∞-height input(s) of $C O U G H$, if any.
Step i. The possible ∞-height input(s) of $C O U G H$ are the 0 -height input(s) of $\operatorname{DENOMINATOR}$ COUGH (x), that is the solution(s), if any, of the equa-
tion

$$
x^{2}+5 x+6=0
$$

In general, solving an equation may or may not possible but in this case, the equation is a quadratic one and we have learned how to do this in Chapter
12. One way or the other, we find that there are two solutions:

$$
-3,-2
$$

which are the possible ∞-height inputs of the rational function COUGH .
Step ii. We compute the local input-output rules near -3 and near -2 :

- Near -3 :

$$
\begin{aligned}
h \xrightarrow{\text { COUGH near }-3} \operatorname{COUGH}(-3+h) & =\left.\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}\right|_{x \leftarrow-3+h} \\
& =\frac{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-3+h}}{x^{2}+5 x+\left.6\right|_{x \leftarrow-3+h}} \\
& =\frac{(-3+h)^{4}-(-3+h)^{3}-10(-3+h)^{2}+(-3+h)-15}{(-3+h)^{2}+5(-3+h)+6}
\end{aligned}
$$

We try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{(-3)^{4}+[\ldots]-(-3)^{3}+[\ldots]-10(-3)^{2}+[\ldots]-3+[\ldots]-15}{(-3)^{2}+[\ldots]+5(-3)+[\ldots]+6} \\
& =\frac{+81+27-90-3-15+[\ldots]}{+9-15+6+[\ldots]} \\
& =\frac{0+[\ldots]}{0+[\ldots]} \\
& =\frac{[\ldots]}{[\ldots]} \\
& =\text { any size }
\end{aligned}
$$

So we must go back and try to approximate to the linear terms, ignoring the constant terms since we just saw that they add up to 0 both in the numerator and the denominator:

$$
\begin{aligned}
& =\frac{4(-3)^{3} h+[\ldots]-3(-3)^{2} h+[\ldots]-10 \cdot 2(-3) h+[\ldots]+h}{2 \cdot(-3) h+[\ldots]+5 h} \\
& =\frac{-108 h+[\ldots]-27 h+[\ldots]+60 h+[\ldots]+h}{-6 h+[\ldots]+5 h} \\
& =\frac{-74 h+[\ldots]}{-h+[\ldots]} \\
& =+74+[\ldots]
\end{aligned}
$$

so that -3 is not an ∞-heigth input

- Near -2 :

$$
h \xrightarrow{\text { COUGH }_{\text {near }-2}} \operatorname{COUGH}(-2+h)=\left.\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}\right|_{x \leftarrow-2+h}
$$

$$
=\frac{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-2+h}}{x^{2}+5 x+\left.6\right|_{x \leftarrow-2+h}}
$$

$$
=\frac{(-2+h)^{4}-(-2+h)^{3}-10(-2+h)^{2}+(-2+h)-15}{(-2+h)^{2}+5(-2+h)+6}
$$

We try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{(-2)^{4}+[\ldots]-(-2)^{3}+[\ldots]-10(-2)^{2}+[\ldots]-2+[\ldots]-15}{(-2)^{2}+[\ldots]+5(-2)+[\ldots]+6} \\
& =\frac{+16+8-40-2-15+[\ldots]}{+4-10+6+[\ldots]} \\
& =\frac{-33+[\ldots]}{0+[\ldots]} \\
& =\frac{-33}{[\ldots .]} \\
& =\text { large }
\end{aligned}
$$

So -2 is an ∞-height input for $C O U G H$ and we need only find exactly how small $[. .$.$] is to get the local input-output rule near -2$

$$
\begin{aligned}
& =\frac{-33+[\ldots]}{2 \cdot(-2) h+[\ldots]+5 h} \\
& =\frac{-33+[\ldots]}{h+[\ldots]} \\
& =-33 h^{-1}+[\ldots]
\end{aligned}
$$

3 Offscreen Graph

Once the Essential Question has been answered, and if we do not already have the local input-output rule near each one of the ∞-height inputs, we need to get them and the corresponding local graphs so that we can then join them smoothly to get the offscreen graph.

Altogether, given a rational function $R A T$ the procedure to obtain the offscreen graph is therefore:
i. Get the approximate input-output rule near ∞ and the local graph near ∞
ii. Answer the Essential Question and locate the ∞ input(s), if any,
iii. Find the local input-output rule and then the local graphs near each ∞-height inputs

EXAMPLE 19.2. Let $M A R A$ be the function specified by the global input-output rule

$$
x \xrightarrow{M A R A} M A R A(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the offscreen graph.
i. We get the local approximation near ∞ :

$$
\text { Near } \begin{aligned}
\infty, x \xrightarrow{\text { MARA }} \operatorname{MARA(x)} & =\frac{x+[\ldots]}{x^{2}+[\ldots]} \\
& =+x^{-1}+[\ldots]
\end{aligned}
$$

and the local graph near ∞ of $M A R A$ is

ii. We locate the ∞-height inputs, if any. The possible ∞-height input(s) of MARA are the 0-height input(s) of $\operatorname{DENOMINATOR}$ MARA (x), that is the solution(s), if any, of the equation

$$
x^{2}+5 x+7=0
$$

In general, solving an equation may or may not possible but in this case, the equation is a quadratic one and we have learned how to do this in Chapter 12. One way or the other, we find that there are no solution. So, the function MARA has no ∞-height input.
iii. The offscreen graph therefore consists of only the local graph near ∞.

4 Feature-sign Change Inputs

Given a rational function, in order to get the feature-sign change input(s), if any, we need only get the outlying graph and then we proceed as in Chapter 3 so we need only give an example.

EXAMPLE 19.3. Let $M A R A$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { MARA }} \operatorname{MARA}(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the feature-sign change inputs of $M A R A$, if any.
i. We find the offscreen graph of $M A R A$ as in the preceding example:

ii. We mark the features of the offscreen graph:

iii. Therefore:

- there must be at least one height-sign change input,
- there does not have to be a slope-sign change input
- there must be at least one concavity-sign change input,

5 Global Graph

Given a rational function, in order to get the essential global graph, we need only get the outlying graph and then we join smoothly so we need only give an example.

EXAMPLE 19.4. Let $M A R A$ be the function specified by the global input-output rule

$$
x \xrightarrow{M A R A} M A R A(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the feature-sign change inputs of $M A R A$, if any.
i. We find the offscreen graph of $M A R A$ as in the preceding example:

ii. We join smoothly the offscreen graph:

iii. Observe that, in fact,

- there must be at least one height-sign change input,
- there must be at least two slope-sign change inputs
- there must be at least three concavity-sign change input,

6 Locating 0-Height Inputs

Locating the 0 -height inputs of a given rational function is pretty much the mirror image of what we did to locate its ∞-height inputs. More precisely:

1. Given a rational function $R A T$ specified by a global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{\text { NUMERATOR } R_{R A T}(x)}{\text { DENOMINATOR } R_{R A T}(x)}
$$

we want to find whether or not there can be a bounded input x_{0} such that the outputs for nearby inputs, $x_{0}+h$, are small. In other words, we want to know if there can be x_{0} such that

$$
\left.h \xrightarrow{R A T} R A T(x)\right|_{x \leftarrow x_{0}+h}=\text { small }
$$

But we have

$$
\begin{aligned}
\left.R A T(x)\right|_{x \leftarrow x_{0}+h} & =\left.\frac{N U M E R A T O R_{R A T}(x)}{D E N O M I N A T O R_{R A T}(x)}\right|_{x \leftarrow x_{0}+h} \\
& =\frac{\left.N U M E R A T O R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}}{\left.D E N O M I N A T O R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}} \\
& =\frac{\operatorname{NUMERATOR}_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}
\end{aligned}
$$

So, what we want to know is if there can be an x_{0} for which

$$
\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}=\operatorname{small}
$$

2. Since it is a fraction that we want to be small, we will use the Division Size Theorem from Chapter 2:

THEOREM 2 (Division Size)

$$
\begin{aligned}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{aligned}
$$

There are thus two ways that a fraction can be small:

- When the numerator is small
- When the denominator is large

In each case, though, we need to make sure of the other side of the fraction. So, rather than look at the size of both the numerator and the denominator at the same time, we will look separately at:

- The third row, that is when the numerator of the fraction is small

$$
\begin{array}{rlrl}
\frac{\text { large }}{\text { large }}=\text { any size } & & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the denominator is not small too.

- The first column, that is when the denominator of the fraction is large.

$$
\begin{array}{llll}
\frac{\text { large }}{\text { large }} & =\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }} & =\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the numerator is not large too.
3. We now deal with $\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$, looking separately at the numerator and the denominator:

- Since the numerator, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{\text { NUMERATOR }_{R A T}} \text { NUMERATOR }_{R A T}(x)
$$

and since we have seen that polynomial functions can have small outputs if they have 0 -height inputs and the inputs are near the 0 -height inputs, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$ can be small for certain bounded inputs and thus so can $\frac{\text { NUMERATOR } R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$. However, we will then have to make sure that DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is not small too near these bounded inputs, that is we will have to make sure that x_{0} does not turn out to be a 0 -height input for DENOMINATOR $R_{R A T}$ as well as for NUMERATOR $R_{R A T}$ so as not to be in the case:

$$
\frac{\text { small }}{\text { small }}=\text { any size }
$$

We will thus refer to a 0 -height input for $N U M E R A T O R_{R A T}$ as only a possible 0-height input for $R A T$.

- Since the denominator, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{\text { DENOMINATOR }_{R A T}} \text { DENOMINATOR } R_{R A T}(x)
$$

and since we have seen that the only way the outputs of a polynomial function can be large is when the inputs are themselves large, there is no way that DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$) could be large for inputs that are bounded. So there is no way that the output of $R A T$ could be small for bounded inputs that make the denominator large and we need not look any further.
Altogether, then, we have:
Theorem 19.2 Possible 0-height Input The 0-height inputs of the numerator of a rational function, if any, are the only possible 0 -height inputs for the rational function.
4. However, this happens to be one of these very rare situations in which there is "an easier way": After we have located the 0-height inputs for $N U M E R A T O R_{R A T}$, instead of first making sure that they are not also 0-height inputs for DENOMINATOR RAT, we will gamble and just get the local input-output rule near each one of the 0 -height inputs for NUMERATOR RAT. Then,

- If the local input-ouput rule turns out to start with a positive-exponent power function, then we will have determined that x_{0} is a 0 -height input for $R A T$ and the payoff will be that we will now get the local graph near x_{0} for free.
- If the local input-ouput rule turns out to start with a 0 -exponent power
function or a negative-exponent power function, then we will have determined that x_{0} is not a 0 -height input for $R A T$ after all and our loss will be that we will probably have no further use for the local input-output rule.
Overall, then, we will use the following two steps:

$$
\begin{aligned}
& \text { Step i. Locate the 0-height inputs for the numerator, } \\
& \text { NUMERATOR } R_{R A T}(x) \text {, by solving the equation } \\
& \text { NUMERATOR } R_{R A T}(x)=0
\end{aligned}
$$

Step ii. Compute the local input-output rule near each one of the 0 -height inputs for the numerator, if any.

The advantage is that we need not even refer to the Division Size Theorem: once we have a possible 0-height input, we just get the local inputoutput rule near that possible 0-height input, "for the better or for the worse".

EXAMPLE 19.5. Let $T A R A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{\text { TARA }} \operatorname{TARA}(x)=\frac{x^{3}-8}{x^{2}+3 x-10}
$$

locate the 0 -height input(s) if any.
Step i. The possible 0 -height input(s) of $T A R A$ are the 0 -height input(s) of $\operatorname{NUMERATOR} R_{T A R A}(x)$, that is the solution(s), if any, of the equation

$$
x^{3}-8=0
$$

In general, solving an equation may or may not possible and in this case, the equation is a cubic one. Still, here it is a very incomplete one and we can see that the solution is +2 which is the possible 0 -height input of the rational function TARA.
Step ii. We compute the local input-output rule near +2 .

$$
\begin{aligned}
h \xrightarrow{T A R A_{\text {near }-3}} T A R A(+2+h) & =\left.\frac{x^{3}-8}{x^{2}+3 x-10}\right|_{x \leftarrow+2+h} \\
& =\frac{x^{3}-\left.8\right|_{x \leftarrow+2+h}}{x^{2}+3 x-\left.10\right|_{x \leftarrow+2+h}} \\
& =\frac{(+2+h)^{3}-8}{(+2+h)^{2}+3(+2+h)-10}
\end{aligned}
$$

We try to approximate to the constant terms:

$$
=\frac{(+2)^{3}+[\ldots]-8}{(+2)^{2}+[\ldots]+3(+2)+[\ldots]-10}
$$

$$
\begin{aligned}
& =\frac{+8-8+[\ldots]}{+4+6-10+[\ldots]} \\
& =\frac{0+[\ldots]}{0+[\ldots]}=\frac{[\ldots]}{[\ldots]}=\text { any size }
\end{aligned}
$$

So we must go back and approximate to the linear terms, ignoring the constant terms since we just saw that they add up to 0 both in the numerator and the denominator:

$$
\begin{aligned}
& =\frac{3(+2)^{2} h+[\ldots]}{2(+2) h+[\ldots]+3 h} \\
& =\frac{+12 h+[\ldots]}{+4 h+[\ldots]+3 h}=\frac{+12 h+[\ldots]}{+7 h+[\ldots]} \\
& =+\frac{12}{7}+[\ldots]
\end{aligned}
$$

and, since $+\frac{12}{7} \neq 0,+2$ is not an 0 -heigth input for $T A R A$.

Epilogue

Looking Back, $369 \bullet$ Looking Ahead, 371 - Reciprocity Between 0 and ∞, 372 - The Family of Power Functions, 385 - The bigger the size of the exponent the boxier the graph, 387 - Local Quantitative Comparisons, $389 \bullet$ Global Quantitative Comparisons, 392 • Dimension $n=2$: $\left(x_{0}+h\right)^{2}$ (Squares), 403.

Where to from here on?

- Derived functions
- Functions defined equationally
- Matters of size e.g. the bigger the size of the exponent, the boxier the graph
Check that reciprocity has been moved correctly to Chapter 7

1 Looking Back

Until now, the global graph of each new kind of function was qualitatively very different as we moved from one kind of functions to the next.

1. In the case of the power functions, we found that the qualitative features of the global graphs of
i. regular positive-exponent power functions,
ii. negative-exponent power functions,
iii. exceptional power functions, that is

- 0-exponent power functions
- 1-exponent power functions
were very different but the differences among power functions of any particular type were not really that great in that, from the point of view of the shape of the global graph, there were really only four types of regular power functions (depending on the sign and the parity of the exponent) and only
two types of exceptional power functions (depending on the parity of the exponent).

2. In the case of the polynomial functions, we found that the qualitative features of the global graphs changed a lot when we moved from one degree to the next:
i. The global graph of a constant function (Degree 0)

- has no height-sign change input, (same height everywhere)
- has no slope,
- has no concavity,
ii. The global graph of an affine function (Degree 1)
- always has exactly one height-sign change input,
- has no slope-sign change input, (same slope everywhere)
- has no concavity,
iii. The global graph of a quadratic function (Degree 2)
- may or may not have height-sign change input(s),
- always has exactly one slope-change input,
- has no concavity-sign change input, (same concavity everywhere)
iv. The global graph of a cubic function (Degree 3)
- has at least one height-sign change inputs,
- may or may not have slope-change input(s),
- has exactly one concavity-sign change input,

As for the qualitative differences among the global graphs of polynomial functions of a same degree, they are not great - but growing along with the degree.
i. The difference among constant functions is the height of the global graph.
ii. The differences among affine functions are the height and the slope of the global graph.
iii. The differences among quadratic functions are the height, the slope and the concavity of the global graph.
iv. The differences among cubic functions are not only the height, the slope and the concavity of the global graph but also whether or not there is a bounded fluctuation.
Thus, in terms of content organization, the degree of polynomial functions was a very powerful organizer if only because this allowed us introduce the features, height, slope, concavity, one at a time.

The emphasis throughout will be to convince ourselves of the need to proceed very systematically while keeping our eyes open so as to take advantage of whatever might make our life easier and not to do anything that we do not absolutely have to do.

2 Looking Ahead

We will now say a few words about the way rational functions will be dealt with in the rest of this text.

1. While, so far, we have had a very transparent content organization, in contrast, in the case of rational functions, the rational degree will not be such a powerful organizer because the four different types of rational functions will not be markedly different.
Still, in each one of the next four chapters, we will investigate a given type of rational function but this will be mostly in order not to upset the reader with too much variety from the get go. However, we will not be able to develop much of a theory for each type and we will mostly go about gathering experience investigating rational functions without paying too much attention to the type of rational function being dealt with, taking things as they come.
On the other hand, the differences among rational functions of any given type of rational degree, will be quite significant because of the possible ∞ height inputs.
Thus, the other side of the coin will be that, while, until now, once we had a theory of a kind of function, the investigation of this kind of functions quickly became a bit boring in that we knew what the overall global graph was going to look like, in the case of rational functions, there will be a much more interesting diversity.
2. Before anything else, it should be stressed that in the investigations of any given rational function we will follow essentially the exact same approaches that we used in the investigation of any given power function and of any given polynomial function: We will thus
i. get its local graph near ∞,
ii. get the answer to the Essential question and find the ∞-height input(s), if any. (This will involve solving an equation.)
iii. get the local graph near the ∞-height inputs, if any.
iv. get the global graph by interpolating the local graph near ∞ and the local graphs near the ∞-height inputs, if any.
3. As happened each time we investigated a new kind of function, finding the local rule near bounded inputs-and therefore near ∞-height input(s)will require a new algebra tool.
4. As with any function, rational or otherwise, what we will actually do will depend of course on what information we need to find and there are
reciprocal function
going to be two main kinds of questions:
a. Local questions, that is, for instance:

- Find the local concavity-sign near a given input,
- Find the local slope-sign near a given input,
- Find the local height-sign near a given input,
- Find the local graph near a given input,

The given input can of course be any input, that is ∞ or any given bounded input, for instance an ∞-height input, a concavity-sign change input, a slope-sign change input, a height-sign change input or any ordinary input whatsoever.
b. Global questions, that is, for instance

- Find the concavity-sign change input(s), if any
- Find the slope-sign change input(s), if any
- Find the height-sign change input(s), if any
- Find where the output has a given concavity-sign
- Find where the output has a given slope-sign
- Find where the output has a given height-sign
- Find the global graph

In the case of global questions, it will usually be better to start by getting the bounded graph and then to get the required information from the bounded graph. But then of course, since the bounded graph is really only the essential bounded graph, that is the graph that is interpolated from the outlying graph, the global information that we will get will only be about the essential features that is the features forced onto the bounded graph by the outlying graph.

The curious reader will obviously have at least three questions:
i. How do the various power functions compare among each other?
ii. What of polynomial functions of degree higher than 3 ?
iii. What of Laurent polynomial functions?

In the "overview", we will discuss the several manners in which regular positive-power functions, negative-power functions and exceptional-power functions all fit together. This will require discussing the size of slope.

3 Reciprocity Between 0 and ∞

We will now investigate the relationship between 0 and ∞

1. Reciprocal Function The reciprocal function is the power function with exponent -1 and coefficient +1 , that is the function whose
global input-output rule is

$$
\begin{aligned}
x \xrightarrow{R E C I P R O C A L} \text { RECIPROCAL }(x) & =(+1) x^{-1} \\
& =+\frac{1}{x}
\end{aligned}
$$

so that the output is the reciprocal of the input (hence the name).

1. The first thing about the reciprocal function is that it is typical of negative-exponent power functions in terms of what it does to the size of the output:

$$
\begin{aligned}
& + \text { large } \xrightarrow[\text { RECIPROCAL }]{\text { RECIPROCAL }} \text { RECIPR }(\text { large })=+ \text { small } \\
& \text { - large } \xrightarrow[\text { RECIPROCIPROCAL }(\text { large })]{ }=- \text { small }
\end{aligned}
$$

and

$$
\begin{aligned}
& + \text { small } \xrightarrow[\text { RECIPROCAL }]{\text { RECIPROCAL }} \text { RECIPROCAL }(\text { small })=+ \text { large } \\
& - \text { small } \xrightarrow[\text { RECIPROCAL }(\text { small })=- \text { large }]{ }=2 .
\end{aligned}
$$

2. More generally, the global graph of the reciprocal function is:

- Mercator picture:

- Magellan picture:
family
prototypical

3. Although quite different from the identity function, the reciprocal functions does play a role in the family of all power functions that is quite similar in some respects to the role played by the identity function

For instance, because the size of the exponent in both cases is 1 , they are both the "first" of their kind.

However, that is not very important because:

- The identity function is not prototypical of the other power functions because the identity function is a linear function and has no concavity.

EXAMPLE 19.6. The identity function lack concavity while all regular power function have concavity.

- The reciprocal function is prototypical of the other negative power functions in many ways.

EXAMPLE 19.7. The shape of the reciprocal function is essentially the same as the shape of all (negative-exponent) power functions of type NOP

One thing the identity function and the reciprocal function have in common, though and for what it's worth at this time, is that the reciprocal function is the mirror image of itself when the mirror is the identity function.
3. Reciprocity Between 0 and ∞

In particular, they intersect at a 90 degree angle.

Another way way to look at it is that the local graphs near +1 are locally mirror images of each other when the mirror is the input level line for +1 :
far
reciprocal of each other

2. Reciprocity

1. It will be convenient to introduce two new terms:

- We introduced the word "near" almost from the begining and, with Magellan graphs in mind, we will now introduce the word "far". Thus,
- When an input is large, it is near ∞ and therefore far from 0 ,
- When an input is small, it is near 0 and therefore far from ∞.
- More generally, we will say that two power functions are reciprocal of each other when:
- their coefficient are the same,
- the size of their exponents are the same,
- the sign of their exponents are the opposite.

In other words, two power functions are reciprocal of each other whenever they differ only by the sign of their exponents.

EXAMPLE 19.8. The identity function and the reciprocal function are reciprocal.

We will see that, when the mirror is the input level line for +1 , the local graphs near +1 of two power functions that are reciprocal of each other are approximately mirror images of each other. But the angles will not be 45 degrees anymore.
2. The point of all this is that the local graph near ∞ of a regular power function is the same as the local graph near 0 of the power function that it is reciprocal of and, vice versa, the local graph near 0 of a regular power function is the same as the local graph near ∞ of the power function that it is reciprocal of.

EXAMPLE 19.9. Given the local graph near 0 of $J A C K$, an odd positive power function with positive coefficient :

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more closing down the gap until the edges touch.

We then glue shut the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

rotating

Now we cut open the cylinder along the input level line for 0

We widen out and unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we end up with:

is exactly like the local graph near 0 of $J A C K$'s reciprocal power function which is an odd positive power function with positive coefficient:

(On both graphs, outputs for negative inputs are negative and outputs for positive inputs are positive.)

EXAMPLE 19.10. Given the local graph near 0 of the even positive power function $J I L L$:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

We then glue the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut the cylinder open along the input level line for 0

We unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we get (Remember that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞):

is just like the local graph near 0 of $J I L L$'s reciprocal power function which is a negative, even-exponent power function:

EXAMPLE 19.11. Given the local graph near 0 of the even positive power function $J A C K$:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

We then glue the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us: rotating

Now we cut the cylinder at 0

and we unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we get (Remember that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞):

is just like the local graph near 0 of $J A C K$'s reciprocal power function which
is an even positive power function:

4 The Family of Power Functions

The following is more of an informative nature at this stage than something that we will be building on in this text. The purpose here is mostly to give some coherence to all the power functions by showing various ways in which they fit together. It should help the reader organize her/his vision of power functions.

1. Types of Regular Functions This is just a recapitulation of stuff we saw in the preceding two chapters:

Sign exponent	Parity exponent	Sign coefficient	TYPE
+	Even	+	PEP
		-	PEN
	Odd	+	$P O P$
		-	PON
-	Even	+	NEP
		-	NEN
	Odd	+	NOP
		-	NON

2. What Power Functions Do To Size We will say that a function is size-preserving when the size of the output is the same as the size of the input, that is "small gives small" and "large gives large".
size-inverting
fixed point

EXAMPLE 19.12. Regular positive-exponent power functions are sizepreserving:

Correspondingly, we will say that a function is size-inverting when the size of the output is the reciprocal of the size of the input, that is "small gives large" and "large gives small".

EXAMPLE 19.13. Negative-exponent power functions are size-inverting:

By contrast, with exponent-zero power functions, the output for small inputs has size 1 and so is neither small nor large and so exponent-zero power functions are neither size-preserving nor size-inverting. You might say that they are "size-squashing".

Thus, in a way, constant functions separate regular positive-exponent power functions from negative-exponent power functions.

On the other hand, even though linear functions are exceptional, they are nevertheless size-preserving.
3. Fixed point A fixed point for a function is an input whose output is equal to the input.

EXAMPLE 19.14. Given the identity function, every input is a fixed point. In particular, both 0 and +1 are fixed points.

EXAMPLE 19.15. 0 is a fixed point for all regular power functions.

EXAMPLE 19.16. +1 is a fixed point for all regular power functions.

EXAMPLE 19.17. -1 is a fixed point for all regular even-exponent power functions.

5 The bigger the size of the exponent the boxier the graph

We will call template something that looks like it could be the graph of a regular power function except that it is not a function because the inputs -1 and +1 both have an unbounded number of outputs. Each type of regular power function has its own template.

1. We begin by comparing power functions with their template two at a time.

EXAMPLE 19.18. The positive-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{+4}} P O W E R_{+4}(x)=+x^{+4}
$$

is much closer to its template than the positive-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{+2}} P O W E R_{+2}(x)=+x^{+2}
$$

EXAMPLE 19.19. The positive-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }_{+5}} P O W E R_{+5}(x)=+x^{+5}
$$

is much closer to its template than the positive-odd-exponent power function
whose global input-output rule is
$x \xrightarrow{P O W E R_{+3}} P O W E R_{+3}(x)=+x^{+3}$

EXAMPLE 19.20. The negative-even-exponent power function whose global input-output rule is
$x \xrightarrow{P O W E R_{-4}} P O W E R_{+5}(x)=+x^{-4}$
is much closer to its template than the negative-even-exponent power function whose global input-output rule is
$x \xrightarrow{P O W E R_{-2}} P O W E R_{-2}(x)=+x^{-2}$

EXAMPLE 19.21. The negative-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }}{ }_{-3} P O W E R_{-3}(x)=+x^{-3}
$$

is much closer to its template than the negative-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }_{-1}} P O W E R_{-1}(x)=+x^{-1}
$$

2. Together, power functions make an interesting pattern:

6 Local Quantitative Comparisons

1. Local quantitative comparison near ∞

2. Local quantitative comparison near +1

Local quantitative comparison near 0 , between -0.1 and +0.1

7 Global Quantitative Comparisons

1. Global quantitative comparison between -1 and +1

2. Global quantitative comparison between -1 and +1

1. Symmetries Of Power Functions

3.

2. Coverage By Power Functions

Observe that there are graphs of power functions whose exponent is a fraction or a decimal number and that these graphs are exactly where we would expect them to be based on the way the fractional or decimal exponent fits with the whole number exponents. This, though, is a something that will be investigated in the next volume:
textscReasonable Transcendental Functions.

Appendices

Appendix A

Localization

Inputs are counted from the origin that comes with the ruler. However, rather than counting inputs relative to the origin of the ruler, it is often desirable to use some other origin to count inputs from.

Appendix A. Localization

Appendix B

Reverse Problems

Reverse problems are called that way because, in a reverse problem, what is GIVEN is the feature that the outputs are to have and what is WANTED are the inputs for which the function returns outputs with the given feature so that

Appendix C

Addition Formulas

1 Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares)
In order to get

Appendix D

Polynomial Divisions

Division in Descending Exponents, 405.

1 Division in Descending Exponents

Since decimal numbers are combinations of powers of TEN, it should not be surprising that the procedure for dividing decimal numbers should also work for polynomials which are combinations of powers of x.

Appendix E

List of Definitions

DEFINITION 1.1 A specification 5
DEFINITION $1.2 \boldsymbol{x}_{0}$ 9
DEFINITION $1.3 \oplus$ and \ominus, 10
DEFINITION $1.4 \boldsymbol{x}_{\mathbf{0}} \oplus \boldsymbol{h}$ 14
Definition 1.5 Qualitative Sizes. 24
DEFINITION $1.6 \boldsymbol{L}$ 26
DEFINITION $1.7 \boldsymbol{h}$ 26
Definition 1.8 Real World Numbers. 27
DEFINITION 1.9 Neighborhood of 0 33
DEFINITION 1.10 A neighborhood of ∞ 34
DEFINITION 1.9 Neighborhood of 0 (Restated) 34
DEFINITION $1.7 \boldsymbol{h}$ (Restated) 35
DEFINITION 1.11 [...] 43
Definition 2.1 Two kinds of problems 51
Definition 2.2 Functional requirement 52
Definition 2.1 Two kinds of problems (Restated) 54
DEFINITION 2.2 Functional requirement (Restated) 60
Definition 2.3 Explicit Functions 63
Definition 2.4 Fundamental Problem 72
Definition 3.1 Local Code 81
DEFINITION 4.1 \$64,000 Question 114
Definition 4.2 Local Code 115
DEFINITION 5.1 An essential onscreen graph 149
Definition 6.1 Monomial Functions 153
Definition 7.1 Square Functions 178
Definition 7.2 Cube Functions 178

Definition 8.1 Constant Functions 201
Definition 8.2 Linear Functions 206

Appendix F

List of Theorems

THEOREM 1.1 Multiplication and Division of Signs 11
THEOREM 1.2 Reciprocal of qualitative sizes 38
THEOREM 1.2 (Restated) Reciprocal of qualitative sizes 38
THEOREM 1.2 (Restated) Reciprocal of qualitative sizes 39
THEOREM 1.3 Multiplication of qualitative sizes 39
THEOREM 1.4 Division of qualitative sizes 39
THEOREM 2.1 large 69
Theorem 7.1 Output Sign 180
THEOREM 7.2 Symmetry 183
THEOREM 7.3 Output Size 186
THEOREM 7.4 Reciprocity 188
THEOREM 7.5 Output Sign for positive inputs. 193
THEOREM 10.1 Approximate output near ∞ 230
THEOREM 11.1 242
THEOREM 11.2 Approximate output near x_{0} 242
THEOREM ?? (Restated) ?? 242
THEOREM 11.3 Approximate output near ∞ 243
THEOREM 11.4 Offscreen Graph 243
Theorem 11.5 Slope-Sign Change Non-Existence 244
THEOREM 11.6 0-Slope Input Non-Existence 245
THEOREM 11.7 Extremum Non-existence 245
THEOREM 11.8 0-Height Existence 246
THEOREM 11.9 Global Slope-sign 248
THEOREM 12.1 Approximate output near ∞ 258
THEOREM 13.1 Bounded Height 273
THEOREM 13.2 Offscreen Graph 273
Theorem 13.3 Concavity-sign Change Non-Existence 275
Theorem 13.4 0-Concavity Input Non-Existence 275
Theorem 13.5 Slope-sign Change Existence 276
Theorem 13.6 0-Slope Existence 276
Theorem 13.7 Extremum Existence 277
Theorem 13.8 0-slope Location 278
Theorem 13.9 Global Slope-sign 278
Theorem 13.10 0-height Location 282
Theorem 13.11 Global Height-sign 285
THEOREM 14.1 Approximate output near ∞ 292
TheOrem 14.2 Approximation Near ∞ 304
Theorem 14.3 Height-sign Near ∞ 304
Theorem 14.4 Slope-sign Near ∞ 304
Theorem 14.5 Concavity-sign Near ∞ 305
Theorem 14.6 Local Input-Output Rule 305
Theorem 14.7 Height-sign Near x_{0} 305
Theorem 14.8 Slope-sign Near x_{0} 305
Theorem 14.9 Concavity-sign Near x_{0} 305
Theorem 15.1 Bounded Height 308
Theorem 15.2 Offscreen Graph 308
Theorem 15.3 Concavity sign-change 310
Theorem 15.4 0-Concavity Existence 310
Theorem 15.5 Slope-Sign Change Existence 311
Theorem 15.6 0-Slope Existence 311
Theorem 15.7 Extremum Existence 312
Theorem 15.8 Height-Sign Change Existence 314
THEOREM 15.9 0-slope Location 314
Theorem 15.10 Global Concavity-sign 315
Theorem 15.11 0-slope Location 317
Theorem 15.12 Extremum Location 318
Theorem 19.1 Possible ∞-height Input 357
Theorem 19.2 Possible 0-height Input 365

Appendix G

List of Notes

Note 1.1 4
Note 16.1 (Restated) 6
Note 1.2 6
Note ?? ?? (Restated) 8
Note 1.3 8
Note ?? ?? (Restated) 12
Note 1.4 17
Note 1.5 18
Note 1.6 19
Note 1.7 20
Note 1.8 23
NOTE 1.3 The tolerance is a plain decimal number (Restated) 25
Note 1.9 29
Note 1.10 34
Note 1.11 37
Note 2.1 53
Note 2.2 67
Note 2.3 69
Note 3.1 86
Note 3.2 100
NOTE 5.1 Location of essential inputs (Restated) 104
Note 5.1 148
Note 6.1 159
Note 8.1 202
Note 9.1 219
Note 10.1 226

Note 12.1 . 254
Note 14.1 . 288
Note 16.1 . 322

Appendix H

List of Agreements

AGREEMENT 1.1 3
AGREEMENT 1.2 7
AGREEMENT 1.3 9
AGREEMENT 1.4 13
AGREEMENT 1.5 13
AGREEMENT 2.1 54
AGREEMENT 2.2 64
AGREEMENT 2.3 68
AGREEMENT 3.1 90
AGREEMENT 4.1 105
AGREEMENT 4.2 124

GNU Free Documentation License

\author{

1. Applicability And Definitions, $416 \bullet 2$. Verbatim Copying, 417 • 3.
 Copying In Quantity, 417 • 4. Modificatons, 418 • 5. Combining Documents, 420 • 6. Collections Of Documents, 420 • 7. Aggregation With Independent Works, 420 • 8. Translation, 421 • 9. Termination, 421 • 10. Future Revisions Of This License, 421 - ADDENDUM: How to use this License for your documents, 422.
}

Version 1.2, November 2002
Copyright © $2000,2001,2002$ Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as FrontCover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and BackCover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100 , you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the

Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium,
is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later
version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no BackCover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the FrontCover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Index

$+, 7$
$+\infty, 36$
$-, 7$
$-\infty, 36$
0, 6
0-height input, 365
$0^{+}, 33$
IDENTITY, 207
L, 26
OPPOSITE, 207
$U N I T_{+}, 202$
UNIT-, 202
| |, 7
$\infty, 29$
干, 160
$\odot, 11$
$\langle, 81,115$
$\rangle, 81,115$
$\ominus, 10$
$\oplus, 10$
$\pm, 160$
$\xrightarrow{f}, 63$
$f(x), 63$
$h, 26,232$
$x, 63$
$x_{0 \text {-height }}, 120$
$x_{0}, 9,226$
$x_{0} \oplus h, 14$
$x_{0}^{+}, 16$
$x_{0}^{-}, 17$
$x_{1}, 9$
$x_{2}, 9$
$x_{3}, 9$
$x_{\infty-\text { height }}, 120$
$x_{\text {maxi-height }}, 85$
$x_{\text {min-height }}, 86$
$y_{0}, 66$
+large, 36
, 81
-, 11
-large, 35
[...], 43
\$64,000 Question, 114
absolute value, 7
abuse of language, 202
actual number, 9
add-on function, 215
add-on number, 215
addition formula, 258
affine function, 225
affine part, 254
amount, 2
angles, 81, 115
approximate, 42, 201, 230
arrow notation, 63
arrowhead, 15
at, 54
axis, 57
bar, 216
bar graph, 57, 216
base function, 215
bi-level sign, 160
binomial function, 217
bump, 147
call for, 51
Cartesian setup, 56
center, 15, 34
closer to, 20
code, 160
coefficient, 153
Coefficient Sign, 158
Coefficient Size, 159
collection, 2
compactification, 103
compare, 17
compatible, 134
concavity, 94
concavity-sign, 94
concavity-size, 94
conclusive, 89, 111, 121
constant coefficient, 201, 225, 253, 287
constant coefficient in the jet near ∞, 229
constant term, 226, 254, 288
continuation, 90, 124
continuous, 96
continuous at $x_{0}, 96$
count, 2
counting number, 2
critical for the Concavity, 303
critical for the Height, 268
critical for the Slope, 268
cubic coefficient, 287
cubic term, 288
curve, 59
cut-off input, 98
cutoff, 23
data, 15
de-locate, 282
declare, 64
decode, 70
describe, 1
diagonal flip, 182
diametrically opposite, 29
differ, 4
different, xvi
digit, 26
dilation function, 213
direct problem, 54
discontinuous, 97
discontinuous at $x_{0}, 97$
domain, 53
error, 9
essential, 134, 142
essential interpolation, 134
essential local extreme-height input, 145
essential-feature input, 308
even, 158
even pole, 88
even zero, 87
exceptional monomial function, 154
exceptional rational function, 323
execute, 70
explicit function, 63
exponent, 153
Exponent Parity, 158
Exponent Sign, 158
Exponent Size, 159
extract, 327
extremity, 109
family, 374
far, 376
farther from, 21
features, of input-output rule, 158
figure, 26
finite, 24, 28
first derivative, 242
fixed point, 386
for, 54
forced, 134, 174
format, 70
fraction, 41
free, xvi
fudge, 139
function, 52
gap, 98
general, 9
general local analysis, 241
generic, 9
generic given input, 226
generic global input-output rule, 225
generic local input-output rule, 242
given, 1
given number, 9
global analysis, 106
global concavity, 275
global feature, 133
global height, 205
global input-output rule, 63
global slope, 212, 245
graph, 60, 68
height, 82, 117
Height-sign, 82, 117
height-size, 83, 119
histogram, 57
hollow dot, 57, 97
horizontal flip, 181
inconclusive, 89, 121
infinite, 24, 28
infinitesimal, 24, 28
infinity, 29
informal, xvi
information, 1
input, 50
input level band, 77, 105
input Magellan circle, 103
input ruler, 55
input-output, 55
interpolate, 134
item, 2
jet, 228
jet near $x_{0}, 293$
join, 72
joining curve, 134
jump, 97
kink, 100
large number, 24
larger, 18
larger-in-size, 20
largest permissible error, 43
left of, 33
left of $\infty, 36$
level line, 57
limit, 105, 125
linear coefficient, 206, 225, 253, 287
linear coefficient in the jet near ∞, 229
linear term, 226, 254, 288
link, 55
local analysis, 106
local behavior, 106
local code, 81, 115
local extreme-height input, 86
local graph, 109
local graph near $\infty, 112$
local graph near $x_{0}, 80$
local graph place, 79, 106
local input-output rule near $\infty, 228$
local maximum-height input, 85
local minimum-height input, 85
locate, 106
lower cutoff, 23

Magellan circle, 28
Magellan continuous at, 126, 131
Magellan input, 103
Magellan view, 29
magnifier, 31
magnitude, 2
max-min fluctuation, 148
measure, 4
Mercator view, 34
min-max fluctuation, 148
monomial function, 153
natural number, 2
near, 35
nearby, 15
nearby input, 104
negative, 7
neighborhood, 15, 34
neighborhood of $\infty, 34,104$
normalize, 159
number, 1, 9
number line, 13
object, 2
odd, 158
odd pole, 88
odd zero, 87
offscreen graph, 68
on-off function, 98
onscreen graph, 68
opposite, 8
opposite input, 183
opposite of $x, 207$
origin, 13
output, 50
output jet near $x_{0}, 232,259$
output level band, 78, 106
output Magellan circle, 104
output neighborhood, 78, 106
output ruler, 55
output-specifying code, 63,153
override, 99
pair, 50, 55
Parentheses, 15
parity, 87,88
perform, 70
picture, 13
plain decimal number, 3
plain error, 4
plain number, 9
plain whole number, 2
plot, 56
plot point, 57
point, 30
polar graph, 113
pole, 88
positive, 7
positive integer, 2
possible ∞-height input, 356
power, 153
power function, 154
procedure, 43
prototypical, 374
quadratic coefficient, 253, 287
quadratic equation, 279
Quadratic function, 253, 287
quadratic part, 288
quadratic term, 254, 288
qualitative, 7
qualitative ruler, 15
qualitative size, 24
quantitative, 7
quasi-continuous at, 99
radius, 15
rational degree, 322
Rational function, 321
real number, 40
real world, 1
real world number, 24
reciprocal, 11, 373
reciprocal function, 372
reciprocal of each other, 376
regular monomial function, 154
regular rational function, 322
relation, 49, 50
relative, 399
removable discontinuity at, 99
remove, 99
result, 66
return, 53
Reverse Polish Notation, 63
Reverse problem, 401
reverse problem, 54
right of, 33
right of $\infty, 35$
rigorous, xv
rise, 212
root, 41
ruler, 13
run, 212
scale, 32
screen, 56
set, 1
shape, 174
Shape type I, 317
Shape type II, 318
Shape type O, 317
side, 13,35
sided local graph place, 79,107
sign, 7
sign-size compare, 17
signed decimal number, 7
signed whole number, 7
signed error, 8
signed-number, 6
significant, 5
simplest, 149
size, 7
size-compare, 19
size-inverting, 386
size-preserving, 385
slope, 89, 92
slope-sign, 92
slope-size, 94
small number, 24
small relative, 5
smaller, 17
smaller-in-size, 20
smooth, 100
smoothness, 100
solid dot, 57
specification, 5
specify, 1
straight, 246
straight line, 204
stuff, 2
sum function, 215
supplement, 99
symmetrical, 13
table, 50
template, 387
term, 226, 254, 288
thicken, 15, 104
tickmark, 13
tolerance, 5
transition function, 98
transition input, 98, 134
trinomial function, 222
type, 177
uncertainty, 4
undetermined, 37
unit, 3
unspecified input, 63
unspecified output, 63
upper cutoff, 23
vertical flip, 182
way, 2
wiggle, 147
zero, 87

[^0]: ${ }^{1}$ Bulletin of the American Mathematical Society, Volume 55, Number 1, January 2018, Pages 123-129 (http://dx.doi.org/10.1090/bull/1581)
 ${ }^{2}$ One of the very highest honors for a mathematician. (https://en.wikipedia.org/ wiki/Fields_Medal)

[^1]: ${ }^{0}$ Bulletin of the AMS, Vol 47 Number 1 Pages 139-144

[^2]: ${ }^{2}$ At this time most of Gowers' paper will be much too hard to read but even a cursory glance will show that our concern with the real world is quite the same as his.

[^3]: ${ }^{3}$ Which is presumably why, say +13.73 and -78.02 used to be written as ${ }^{+} 13.73$ and ${ }^{-} 78.02$ since ${ }^{+} 13.73-{ }^{-} 78.02$ has the same advantage as $+13.73 \ominus-78.02$.

[^4]: ${ }^{4}$ Moreover, qualitative sizes lead quite naturally to Bachmann-Landau's o's and O's (See https://en.wikipedia.org/wiki/Big_0_notation) and in turn to asymptotic expansions (See https://en.wikipedia.org/wiki/Asymptotic_expansion) which is what physicists, chemists, biologists, and engineers use all the time.

[^5]: ${ }^{5}$ Moreover, this "definition" keeps changing with time! A sign of unease?

[^6]: ${ }^{6}$ It is also at the expense of a unified view and therefore of forcing memorization of scattered recipes.

[^7]: ${ }^{7}$ https://www.dpmms.cam.ac.uk/~wtg10/continuity.html

[^8]: ${ }^{0}$ Calculus, 4th edition

[^9]: ${ }^{2}$ Actually, functions should not be allowed to return no output because that causes a theoretical difficulty and one should introduce the notion of domain. But since this theoretical difficulty is not about to come up any time soon, here we need not complicate things unnecessarily.

[^10]: ${ }^{3}$ Thus, $\quad x f$, known as the Reverse Polish Notation for the output, would be much better code than $f(x)$ because:
 i. In the arrow notation, x would be ahead of f in both places: $x \xrightarrow{f} x f$.
 ii. Not to mention that $x f$ requires no parentheses.
 (https://en.wikipedia.org/wiki/Reverse_Polish_notation) Unfortunately, even Hewlett Packard was eventually forced to abandon the Reverse Polish Notation.

[^11]: ${ }^{4}$ Which Educologists do not seem to wonder about or even be aware of.
 ${ }^{5}$ Educologists have much to answer for never even raising these questions.

[^12]: ${ }^{6}$ The plot appears on the back cover of Strang's Calculus, 1991, Wellesley-Cambridge Press, where it is discussed in Section 1.6 A Thousand Points of Light, pages 34-36.

[^13]: ${ }^{1}$ Educologists will surely appreciate "Sign-slope $f=/$ iff Sign-heigth $f^{\prime}=+$ ".

[^14]: ${ }^{2}$ Educologists will surely appreciate "Sign-concavitye $f=\cup$ iff Sign-heigth f " $=+$ ".

[^15]: ${ }^{1}$ The absolute silence maintained by Educologists in this regard is rather troubling.

[^16]: ${ }^{2}$ The absolute silence maintained by Educologists in this regard is rather troubling.

[^17]: ${ }^{1}$ https://en.wikipedia.org/wiki/Think_globally\%2C_act_locally
 ${ }^{2}$ Educologists may want to look up https://math.stackexchange.com/questions/ 34053/list-of-local-to-global-principles

