Reasonable Basic Calculus

Reasonable Basic Calculus

According To ... The Real World, From ... Mere Signed Decimal Numbers.

In other words, for people who believe calculus ought to make sense.

FreeMathTexts.org
Free as in free beer. Free as in free speech.

Copyright ©2021 A. Schremmer. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Section, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in ??

To Françoise.
Mathematician and pianist of my life!

Contents

Preface You Don't Need To Read XV
For Whom The Standard Texts Toll xv
For Whom This Text? xvii
Calculus Language Vs. Everyday Language xvii
Proof vs. Belief xxii
Reason Vs. Rigor xxiv
The Way To Go? xxv
Chapter 0 Numbers For Calculating 1

1. The Numbers We Will Use 2
2. Zero and Infinity 4
3. Numbers In General 7
4. Real-world Numbers 13
5. Picturing Real World Numbers 17
6. Computing with Real World Numbers 19
7. Size-comparing Real World Numbers 23
8. Qualitative Sizes 26
9. Computing with Qualitative Sizes 33
10* Computing with Extended Numbers. 39
10. Neighborhoods 40
12* Real Numbers 55
13* Approximating Real Numbers 58
Conclusion 59
Chapter 1 The Name Of The Game 63
11. Relations 63
12. Picturing Relations 73
13. Relations Given By Sets Of Plot Dots 77
14. Functions 87
15. Functions Given by I-O Plots 95
16. Functions Given By Curves 107
17. "Simple" Functions? 116
18. Local graph near a point 119
Chapter 2 Local Features Functions May Have 133
19. Local Code 133
20. Local Height 136
21. Local extreme 141
22. Zeros And Poles 146
23. Local Slope 148
24. Local Concavity 150
25. Feature Sign-Change Inputs 153
Chapter 3 Global Ways Functions May Behave 165
26. Height-Continuity 165
27. Slope-Continuity 172
28. Concavity-Continuity 173
29. Feature Sign-Change 178
30. Smooth Interpolations 178
31. Essential Onscreen Graph 181
32. Interpolating An Offscreen Graph 187
33. Essential Feature-Sign Changes Inputs 191
34. Dilation of Functions 201
35. Addition of Functions 202
36. Linear Combinations of functions 203
Part II Functions Given By Rules 205
Chapter 4 Input-Output Rules 207
37. Global Input-Output Rules 207
38. Output at a given number. 208
3* Global Graph: Why Not Just Plot \& Interpolate? 211
39. Local Input-Output Rule 214
40. Towards Global Graphs. 224
Chapter 5 Straight Functions 227
41. The Function $\mathcal{Z E R O}$ 227
42. The Functions $\mathcal{U N I T}^{+}$and $\mathcal{U N I T}^{-}$ 229
43. Constant functions 233
44. Piecewise constant functionss 234
45. The Diagonal Functions $\operatorname{IDEN} \mathcal{N} \mathcal{I} \mathcal{Y}$ and $\mathcal{O P P O S I T E}$ 235
46. Linear Functions 241
47. Piecewise Linear Functions 243
48. Affine Functions 243
49. Piecewise Affine Functions 254
Chapter 6 Regular Power Functions 257
50. Functions $\mathcal{S Q U A R I N G}{ }^{+}$and $\mathcal{S Q U A R I N G}{ }^{-}$ 262
51. Functions $\mathcal{C U B I N G}{ }^{+}$and $\mathcal{C U B I N G}{ }^{-}$ 263
52. Functions $\mathcal{R E C I P R O C A} \mathcal{L}^{+}$and $\operatorname{RECIPROCA} \mathcal{L}^{-}$ 263
53. The Functions $\mathcal{S Q U A R E R E C I P}{ }^{+}$and $\mathcal{S Q U A R E R E C I P}{ }^{-}$ 264
54. Secondary Regular Power Functions 264
55. Graphing Power Functions 287
56. Reciprocity 298
57. Global Graphing 305
58. Types of Global Graphs 310
Chapter 7 No More Affine Functions 313
59. Binomial Functions 313
60. Graphs of Binomial Functions 315
61. Local graphs 317
62. Local Feature-signs 319
63. Affine Functions: Global Analysis 323
64. Smoothness 323
65. The Essential Question 324
66. Slope-sign 326
67. Extremum 327
68. Height-sign 327
69. Bounded Graph 328
70. 0-Slope Location 330
71. Locating Inputs Whose Output $=y_{0}$ 330
72. Locating Inputs Whose Output $>y_{0}$ Or $<y_{0}$ 330
73. Initial Value Problem 331
74. Boundary Value Problem 333
75. Piecewise affine functions 334
Part III (Laurent) Polynomial Functions 335
Chapter 8 Quadratic Functions 339
76. Trinomial Functions 339
77. Output at x_{0} 341
78. Output near ∞ 343
79. Output near x_{0} 345
80. Local graphs 348
81. Local Feature-signs 352
82. Quadratic Functions: Global Analysis 355
83. The Essential Question 357
84. Concavity-sign 358
85. Slope-sign 359
86. Extremum 360
87. Height-sign 361
88. Bounded Graph 363
89. 0-Concavity Location 365
90. 0-Slope Location 366
91. Extremum Location 367
92. 0-Height Location 368
Chapter 9 Cubic Functions 375
93. Output at x_{0} 377
94. Output near ∞ 378
95. Output near x_{0} 380
96. Local graphs 384
97. Local Feature-signs 388
98. Cubic Functions: Global Analysis 392
99. Global Graph 392
100. Concavity-sign 393
101. Slope-sign 395
102. Extremum 396
103. Height-sign 397
104. 0-Concavity Location 399
105. 0-Slope Location 400
106. Extremum Location 401
107. 0-Height Location 403
Chapter 10 Quartic Functions 405
Chapter 11 Quintic Functions 407
Part IV Rational Functions 409
Chapter 12 Rational Degree \& Algebra Reviews 411
108. Rational Degree 411
109. Graphic Difficulties 413
Chapter 13 Rational Functions: Local Analysis Near ∞ 419
110. Local I-O Rule Near ∞ 419
111. Height-sign Near ∞ 422
112. Slope-sign Near ∞ 424
113. Concavity-sign Near ∞ 426
114. Local Graph Near ∞ 431
Chapter 14 Rational Functions: Local Analysis Near x_{0} 437
115. Local I-O Rule Near x_{0} 438
116. Height-sign Near x_{0} 440
117. Slope-sign Near x_{0} 443
118. Concavity-sign Near x_{0} 444
119. Local Graph Near x_{0} 445
Chapter 15 Rational Functions: Global Analysis 449
120. The Essential Question 449
121. Locating Infinite Height Inputs 450
122. Offscreen Graph 455
123. Feature-sign Change Inputs 456
124. Global Graph 457
125. Locating 0-Height Inputs 459
Chapter 16 Homographic Functions 465
Part V Transcendental Functions 467
Part VI Epilogue 469
126. Looking Back 471
127. Looking Ahead 472
128. Reciprocity Between 0 and ∞ 474
129. The Family of Power Functions 486
130. The bigger the size of the exponent the boxier the graph 488
131. Local Quantitative Comparisons 491
132. Global Quantitative Comparisons 494
Part VII Appendices 499
Appendix A Dealing With Numbers 501
133. Real World Numbers - Paper World Numerals 501
134. Things To Keep In Mind 505
135. Zero And Infinity 507
136. Plain Whole Numbers 508
137. Comparing. 510
138. Adding and Subtracting 512
139. Multiplying and Dividing 512
Appendix B Localization 515
Appendix C Equations - Inequations 517
CONTENTS xiii
Appendix D Addition Formulas 519
140. Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares) 519
Appendix E Polynomial Divisions 521
141. Division in Descending Exponents 521
Appendix F Systems of Two First Degree Equations in Two Unknowns 523
142. General case 523
Appendix G List of Agreements 525
Appendix H List of Cautionary Notes 527
Appendix I List of Definitions 529
Appendix J List of Language Notes 531
Appendix K List of Theorems 533
Appendix L List of Procedures 535
Appendix MList of Demos 539
Index 545

What is important is the real world, that is physics, but it can be explained only in mathematical terms.

Preface You Don't Need To Read

For Whom The Standard Texts Toll, xv • For Whom This Text?, xvii • Calculus Language Vs. Everyday Language, xvii • Proof vs. Belief, xxii • Reason Vs. Rigor, xxiv • The Way To Go?, xxv .

Standard prefaces are never for you but to convince teachers that the text is just what they want their students to buy for that class they are to teach.
In contrast, this preface you don't need to read is for you.

Of course, every textbook is different from every other textbook-at least so claim their authors. And of course, so claims this author! But exactly

Why else would they ever have wanted to write it? how is this text different? First, though, how about the standard texts?

For Whom The Standard Texts Toll

Back in 1988, Underwood Dudley (https://en.wikipedia.org/wiki/Underwood_ Dudley) published in the American Mathematical Monthly a wonderful article about calculus books - camouflaged as a Book Review! ${ }^{2}$ - which he said he wrote after having "examined 85 separate and distinct calculus books". (https://www.maa.org/sites/default/files/0002989051112.di991736. 99p03667.pdf)

Dudley's first point was that "Calculus books should be written for students". As an example of one such, Dudley gives Elias Loomis' (https://en. wikipedia.org/wiki/Elias_Loomis) Elements of the Differential and Integral Calculus from 1851. ${ }^{3}$ He points out that Loomis' "proof of L'Hospital's

[^0]That's the spirit!
E.g. G. Strang in his Calculus (p151): "I regard the discussion below as optional in a calculus course (but required in a calculus book)."
Which goes to show that universality can have a steep price.

At less than $\$ 10$!
Which, these days, would be an unspeakable horror!

Well, this one sure wasn't!

Rule was short, simple, and clear, and also one which does not appear in modern texts because it fails for certain pathological examples." A bit later, Dudley continues: "It is a still better idea to strive for clarity and let students see what is really going on, which is what Loomis did, rather than putting 'rigor' first. But nowadays, authors cannot do that. They must protect against some colleague snootily writing to the publisher "Evidently Professor Blank is unaware that his so-called proof of L'Hospital Rule is faulty, as the following well-known example shows. I could not possibly adopt a text with such a serious error."

As another example of a book written for students, Dudley gives Silvanus Thompson's (https://en.wikipedia.org/wiki/Silvanus_P._Thompson) Calculus Made Easy ${ }^{2}$ from 1910 which was very successful and is in fact still in print. Dudley is visibly enchanted to report that "Chapter 1, whose title is 'To Deliver You From The Preliminary Terrors' forthrightly says that dx means 'a little bit of x'. (Significantly enough, Thompson was a professor of physics and an electrical engineer.)

Another point Dudley made was that "First-semester calculus has no application." Of course there is no question about Calculus being about the Real World. Absolutely none. The only thing is, the Real World is in the eye of the beholder and the beholder is, here again, the teacher. And so, of course, Dudley riffes on "Applications being so phony".

Dudley concluded that "It is a shame, and probably inevitable that calculus books are written for calculus teachers."

And, indeed, as he predicted, nothing has changed to this day. For instance, and even though it is about "school math", see the American Mathematical Society's 2015 Response (http://www.ams.org/notices/201505/ rnoti-p508.pdf) to Elizabeth Green's New York Times article Why Do Americans Stink at Math? (https://www.nytimes.com/2014/07/27/magazine/ why-do-americans-stink-at-math.html). In that response, Hung-Hsi Wu (https://math.berkeley.edu/~wu/) wrote "If Americans do "stink" at math, clearly it is because they find the math in school to be unlearnable. [...] For the past four decades or so the mathematics contained in standard textbooks has played havoc with the teaching and learning of school mathematics." Why should it be any different with calculus?
mode/2up
${ }^{2}$ Free from https://archive.org/details/CalculusMadeEasy/page/n4/mode/2up.

For Whom This Text?

Da Vinci
language
paper world
word
meaning
entity

In short, for people allergic to "just teach them how to do it ".

On the other hand, should you prefer to skip all that and go see for yourself, if only for now, just click on Chapter 0 - Numbers For Calculating (Page 1) or Chapter 1 - The Name Of The Game (Page 63).

In any case, if and when you want, there will always be Appendix A - Dealing With Numbers (Page 501).

Calculus Language Vs Everyday Language

The long answer starts with the fact that, to communicate about the real world, we need to use a language which is something that belongs to what's sometimes called the paper world and, at least from a theoretical standpoint, one should indeed distinguish words in the paper world from their meaning, that is from the entities in the real world that the words refer to. (See https://en.wikipedia.org/wiki/Language, https://en. wikipedia.org/wiki/Semantics, https://en.wikipedia.org/wiki/Entity)

EXAMPLE 0.2. The word tree in the English language-as weill as the words arbre in French, Baum in German, árbol in Spanish, albero in Italian, etc, refers to the real world entity whose picture is
model theory
precise
sentence
situation
define

Veeery advanced.

In STEM, the only suitable response to "You know what I mean" is a flat "No!"

This distinction between paper world and real world is at the core of a relatively new part of Mathematics called Model Theory. See https: //en.wikipedia.org/wiki/Model_theory but the article does not mention the recent applications of Model Theory to other branches of (advanced) mathematics. Readers of this text might want to look at the author's https: //www.researchgate.net/publication/346528673_A_Model_Theoretic_ Introduction_To_Mathematics_4th_edition.

However, while being aware of the distinction between paper world and real world is fundamental, using two sets of words, one for the real world and another for the paper world would not serve any purpose in this text. So:

AGREEMENT 0.1 In this text, we will not distinguish words from their meaning.

EXAMPLE 0.3. We shall use the word tree to refer to the entity tree.
On the other hand, just like "Law depends on the precise meaning of words", as Chief Inspector Kan reminds Inspector Van der Valk in Nicolas Freeling's (https://en.wikipedia.org/wiki/Nicolas_Freeling) thriller, Criminal Conversation ${ }^{3}$, so do Science, Technology, Engineering and . . . Mathematics.

So the first way this text claims to be different is the extreme attention paid to words. (https://plainlanguagenetwork.org/plain-language/ what-is-plain-language/) Because, like in court, to be able to agree on what sentences are saying about real world situations, we need to use words that have been defined precisely. Only then will we have a chance, ultimately, to deal intelligently with the real world.

[^1]Concerning the relevance of Mathematics to the real world, here are two articles very much to the point:

- A very famous, if somewhat dense, article on "The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics, https://www.maths.ed.ac.uk/~v1ranick/papers/ wigner.pdf by Eugene Wigner (https://en.wikipedia.org/wiki/ Eugene_Wigner),
which eventually started a lively discussion on natural law and mathematics:
- https://www.quantamagazine.org/puzzle-solution-natural-law-and
elegant-math-20200117/
Notice their use of "realworld situation", practically a mantra in this text.

1. Calculus language. Contrary to what most people think, CALCULUS is, before anything else, a language. But CALCULUS is a language that is systematic and thus lends itself to calculating-aka computing-how the real world changes. (https://en.wikipedia.org/wiki/Calculation)
i. In order to communicate precisely we will need Calculus words. So, to help you get a precise idea of what a calculus word means, each and every calculus word will be introduced using: (i) everyday words together with already defined calculus words, and (ii) an EXAMPLE to illustrate what the calculus word refers to in the real world.
Most of the time, that will be enough for you to keep on trucking safely but, occasionally, a formal, that is a dictionary-like, definition of a calculus word in terms of only previously defined calculus words will be necessary and will then appear in a special format:

EXAMPLE 0.4. just to show the special format:
Definition 0.1 Meaningless means the same as without meaning.
ii. However, a major obstacle to learning the language of calculus is that many calculus words are just everyday words to which a very precise CALCULUS meaning has been assigned. The danger then is for the reader later to forget they are facing a calculus word and go by the everyday word. Which, unfortunately, is exactly when Calculus will stop making sense.
iii. And, to make things even worse, we will have to use these calculus words alongside everyday words because it is of course with everyday words that we will describe and discuss what we will be doing with the calculus words and explain why we are doing what we are doing.
symbol

Pace English teachers!

Not to be con-
//en. wikipedia. org/
wiki/Identification_
friend_or_foe
But why is it that "Jack sits to the right of Jill iff Jill sits to the left of Jack" is false?
iv. However, we will not use words that mathematicians often use but never really define. (https://en.wikipedia.org/wiki/List_of_mathematical_ jargon)
v. And, because it is extremely easy to overlook for which previous noun in a sentence a pronoun stands, this text tries never to use pronouns even though it means repeating the noun itself.
vi. Symbols are necessary to carry out computations.

EXAMPLE 0.5. Figuring in everyday language the difference between three thousand seventy nine Dollars and eight Cents and six hundred forty seven Dollars and twenty six Cents would be a lot harder than computing the difference in the Base Ten language:
\$3 079.08
-\$647.26
(https://en.wikipedia.org/wiki/Hindu\�\�\�Arabic_numeral_ system)

Not all symbols, though, are for computational purposes and a few are just like abbreviations. For instance, we will use the following two symbols which are completely standard, if relatively recent inventions, but with which you may not be acquainted:

LANGUAGE NOTE 0.1 iff, read "if and only if", is the symbol that indicates of two sentences that neither one can be 'true' without the other one also being 'true'. (https://en.wikipedia.org/wiki/If_ and_only_if)

EXAMPLE 0.6. The sentence "Jack is to the right of Jill iff Jill is to the left of Jack" is true.

LANGUAGE NOTE $0.2 \square$, read "Q.E.D.", is the symbol that indicates the end of a proof. (https://www.urbandictionary.com/ define.php?term=QED)
2. Click to recall. Because you will have to concentrate on what's going on, the language has to be transparent. But. as pointed out above, it is not easy to keep in mind precisely what calculus words refer to. So:
i. Like any scientific book, this text will help you retrieve what calculus words and symbols precisely refer to by having every single one of these calculus words and symbols in the Index at the end of the book along with the page where the calculus word or symbol is defined-and appears in bold black characters in the text as well as in red characters in the margin of that page.
ii. Using the Index more than occasionally, though, even onscreen, is a huge pain which makes it extremely likely you will put off looking up what the calculus word refers to precisely and rely instead on the everyday word, ... and then be left facing text that makes no sense.
And so, calculus word will always appear in red-black characters to remind you that clicking on that calculus word will instantly get you back to the page where what the calculus word refers to was precisely explained. In fact, more generally,

AGREEMENT 0.2 Anything, anywhere, that appears in red-black characters is a click away from what that thing refers to:

- Titles in all tables of contents,
- Page numbers in all references,
- References as in Definition 0.1 or ?? or as in the Blue Note just to the right.

3. Reading calculus. One thing has to be emphasized, though, which is that, no matter how much attention has been given to language difficulties, it is impossible to get from a single reading of a piece of text everything that's in that piece of text. This is because it is impossible for any piece of text to say it all so that any piece of text will have to rely on some things having been said earlier to prepare the ground and there will be some things that can only be said later, when everything has been made ready to make the point.

So, here are a couple of maneuvers used by mathematicians when they are reading a text in a subject they are not familiar with and, like you will too, run into something they don't get:

- If, even after you have made sure you know whar every single calculus word in the piece of text denotes you are having trouble with, you still don't really get the message or something still does not connect, then try going back to a place in the text with which you have made your peace and reread it anyway. You will probably discover things you had not thought of when reading it before. Now read forward till you reach that

Onscreen, a click on the page number will get you there.

But you may have to scroll a bit if you want to see the word in the margin. And what to click on to return to where you were will depend on your pdf reader.

To take a break from this Preface You Don't Need To Read, would you like to go see the actual beginning of CALCULUS in Chapter 1 The Name Of The Game (Page 63)?

Like the CALCULUS in this book needs Chapter 0 Numbers For Calculating (Page 1).

Back \& Forth maneuver!
decide
true
false
Nait \& See maneuver!
state
Dedikevgou might finally see the point of Chapter 1 The Name Of The Game (Page 63).
place where you stalled and it may very well be that those new things you hadn't thought of before will now help you make it through.

- If you do get what a piece of text is saying but just don't see what the point is, make a note of it and then try reading ahead anyway and eventually you might have the "Aha", that is you may now understand the point of that piece of text you had trouble with.

Proof Vs Belief.

Another way this text claims to be different has to do with the question: how do we decide if a sentence is true or false, that is whether what the A much debated issue - at sentence says about the real world is really the case? Or not? Or whether least by some people. the sentence is undecidable?

Well, I don't know ... If you were to point a gun at me ...

With some sentences, we can decide on the basis of factual evidence, that is by checking what the sentence says directly against the real world. Unfortunately, most sentences cannot be checked against the real world.

EXAMPLE 0.7. We can decide that the sentence " $4+1$ is larger than 4 " is true by trying to match $\infty \infty \infty \infty \infty$ But what collection should we look at in the real world to decide if the sentence " $4000000000000000000000000000000000+1$ is larger than 4000000000000000000000000000000000 " is true?
And, even more to the point, what should we look at in the real world to decide if the sentence "Any number plus one is larger than the number itself" is true? Of course, we can check for any number(s) we want but that does not prove that the sentence " $x+1$ is larger than x " will be true for any number we replace x with.

And, contrary to what many people seem to believe these days, just stating a sentence, no matter how many times and how forcefully, does not make the sentence true. And just invoking some other text doesn't work either: how do we know the author of that other text hadn't had some hidden agenda? Or didn't really know what they were writing about? Or made some honest mistake? So, in everyday life the matter often comes down to being a matter of belief.

On the other hand, in mathematics, we cannot just believe whatever we want.

EXAMPLE 0.8. What would happen, even in everyday life, if, say, the result of an addition was up to the beliefs of whoever does the addition?

We need to let others know on what basis we believe a sentence to be true and the standard way to do that in mathematics is to create a theory, that is a collection of sentences called theorems, by proceeding as follows:
theorem
theorem
postulate axiom
i. Postulate (https://www. thefreedictionary.com/postulate) a few sen- deductive rule tences believed to be true - to be referred to as axioms (https://en. wikipedia. org/wiki/Axiom) - to be theorems,
ii. Use deductive rules (https://en.wikipedia.org/wiki/Natural_deduction)
to get new theorems from old theorems.
Then, because the deductive rules preserve truth, the use of deductive rules reduces the question of truth from that of a huge number of sentences to that of just a few axioms because the truth of the theorems will then derive from the truth of the theorems which were used with the deductive rules and so, ultimatley, from the truth of just the axioms. (https://en. wikipedia.org/wiki/G\�\�del\'s_completeness_theorem)

On what basis do we choose axioms is a totally separate issue. It could be on the basis of direct reference to the real world, or because the axioms are conjectured to be true on the basis of indirect or incomplete evidence (https://en.wikipedia.org/wiki/Conjecture) or maybe just out of curiosity, just to see what would ensue if we were to postulate these axioms instead of those axioms.

However, we must always keep in mind that the deductive rules can spread falsehood like wildfire.

EXAMPLE 0.9. One of the deductive rules in algebra is that "adding equals to equals yields equals". Now:

- If we start from a true sentence like " $4+5$ and $6+3$ are equal", then the rule will force us to believe that, say, " $4+5+7$ and $6+3+7$ are equal" which is fine,
But:
- If we start from " 9 and 8 are equal", then:
- adding 9 and 8 to, say, 7 and 7 will force us to believe that 16 and 15 are equal.
- adding 16 and 15 to 9 and 8 will force us to believe that 25 and 23 are equal,
- adding 16 and 15 to 25 and 23 will force us to believe that 41 and 38 are equal,
- Etc

Finally, just to clarify,

WWisenadieto syietutuffik, cualbsd itnodel-theoretic or semantic (https://en. wikipedia. org/wiki/Semantic_
theory_of_truth), is due to Alfred Tarski (https://en. wikipedia. org/wiki/Alfred_Tarski who, however, "[would not] claim [it was] the 'right' one [other than in mathematics]."
rigor

> CAUTIONARY NOTE 0.1 A scientific theory is a much more complicated thing than a mathematical theory. See for instance https://en.wikipedia.org/wiki/Theory\#Scientific, https://en.wikipedia.org/wiki/Theory\#Philosophical_views, https://en.wikipedia.org/wiki/Scientific_theory\#Theories_ as_axioms, etc.

Reason Vs Rigor

So, since the foremost fear in mathematics is the fear of making a mistake in the use of the deductive rules after which every sentence risks to be false, the name of the game is to proceed as rigorously as possible, that is to provide as many steps in the use of the deductive rules - as possible while
That's what referreing is all remaining "readable"-and always to be able and ready to provide missing about.

The single quotes, ' ', say that, at this time, you are not supposed to know what the word means.

EXAMPLE 0.10. While'Delta functions' (https://en.wikipedia.org/ wiki/Dirac_delta_function) had been used since the early eighteen hundreds, it was only in 1950 that Laurent Schwartz (https://en.wikipedia. org/wiki/Laurent_Schwartz) was awarded the Fields Medal ${ }^{4}$ for having defined them rigorously.

Indeed, calculus has been extraordinarily difficult to develop rigorously (https://en.wikipedia.org/wiki/Nonstandard_analysis) and, as a result, the number-one worry for authors of calculus texts is how much rigorous to be? A few texts, called Real Analysis (https://en.wikipedia. org/wiki/Real_analysis), are completely rigorous and the rest, just called CALCULUS, skip whatever the authors think will be too much for the prospective buyers of their book.

But the reason this text isn't rigorous is totally different: in contrast with textbooks that retain, however un-rigorously, the point of view of mathematicians, this text aims at the calculus that hard scientists (https: //en.wikipedia.org/wiki/Hard_and_soft_science) and engineers have been using forever-without worrying one bit about rigor. So, the mathematical conformists ought to be warned that, instead of being based on the use of 'limits' or 'infinitesimals', as it seems all current CALCULUS textbooks are doing,

[^2]CAUTIONARY NOTE 0.2 In this text, CALCULUS will be by way of 'polynomial approximations' which are the algebraic equivalent of the 'decimal approximations' used by scientists and engineers in applications of CALCULUS to the real world.
(As well as by mathematicians . . . in pure research!)
of Geometric Algebra fame said at the outset of his 2002 Oersted lecture:
That "course content is taken [by many] as given [...] ignores the possibility
of improving pedagogy
by reconstructing course content."

Way To Learn?

Yet another way this text claims to be different has to do with the fact that "Math Anxiety" invariably originates with the standard textbooks, in the best cases because the textbook leaves so much "going without saying" that reason has become invisible, in the worst cases because the textbook has been gutted down to the disconnected "facts and skills" deemed necessary to pass some exam so that no reason remains.
In contrast, this text wants to do three things:

- As Einar Hille (https://en.wikipedia.org/wiki/Einar_Hille) wrote, "Mathematics is neither accounting nor the theory of relativity. Mathematics is much more than the sum total of its applications no matter how important and diversified these may be. It is a way of thinking." ${ }^{3}$ (Emphasis added.)
Of course, a way of thinking cannot be taught or even described and can only be learned from experience. Fortunately, as George Sarton (https: //en.wikipedia.org/wiki/George_Sarton) wrote, "It is only a matter of perseverance and of good will. Only thus will you acquire a method of thought. And if one cannot reproach anyone for being ignorant of this or that-for ignorance is not a sin-it is legitimate to reproach one with poor reasoning. [...] [T]his scientific sincerity is only achieved by the attentive study of a specific subject." ${ }^{4}$
So, one thing this text wants to do is to facilitate your "attentive study" In other words, here, zero of calculus by presenting and discussing matters in a way that will "show and tell". make reasonable sense to you.
- As John Holt (https://en.wikipedia.org/wiki/John_Holt_(educator)) wrote, "Human beings are born intelligent. We are by nature questionasking, answer-making, problem-solving animals, and we are extremely good at it, above all when we are little. But under certain conditions,

[^3]So, zero"drill and test" too.

The hope is you will.

That, you surely won't like one bit! (At least for now.)

That's because nobody is perfect. Not even authors.

And this, Ladies and Gentlemen, is where (Not Your Usual) Preface comes to an end.

Or, if you can get hold of Simmons' book, the historical material Dudley praised.

Veeery, very short!
which may exist anywhere and certainly exist almost all of the time in almost all schools, we stop using our greatest intellectual powers, stop wanting to use them, even stop believing that we have them." ${ }^{5}$
Which is why this text does not have Exercises: the important questions are those you will be asking yourself. All this text wants to do is to raise reasonable issues and deal with these issues up to a point where you will be equipped to look deeper into at least some of these issues.
Of course, you would be quite right asking how then will you know if you have learned calculus but the answer still is: when you will have become able to answer most of your own questions. Better yet, though, is for two or three people to confront their understanding of this text.

- As Etienne Ghys (https: //en.wikipedia.org/wiki/\�\�tienne_Ghys) wrote, "I have now learned that precision and details are frequently necessary in mathematics, but I am still very fond of promenades. [...] You have to be prepared to get lost from time to time, like in many promenades. [...] You will have to accept half-baked definitions. [...] I am convinced that mathematical ideas and examples precede proofs and definitions." ${ }^{6}$ (Emphasis added.)
And that really says it all.

Those curious about the history of CALCULUS might want to look up https://en.wikipedia.org/wiki/History_of_calculus or the shorter https: //en.wikipedia.org/wiki/Calculus\#History but, for those only a little bit curious, here is a very short version:

Calculus was invented in the late 1600s independently by Newton (initially by way of 'infinitesimals' but ultimately by way of 'limits') and Leibniz (solely by way of 'infinitesimals').

The first of the many editions of the first calculus text, Infinitesimal Calculus with Applications to Curved Lines, by L'Hospital, is from 1696. (https://en.wikipedia.org/wiki/Guillaume_de_l\% $27 \mathrm{H} \% \mathrm{C} 3 \%$ B4pital).

Right away, scientists, engineers and mathematicians started using 'infinitesimals' routinely even though it was almost immediately realized that 'infinitesimals'-as well as 'limits'-were not rigorous.
If only because 'limits'
can't be computed but only guessed and then checked to see if they are the 'limit'.
Guess what: 'infinitesimals'
are still mostly avoided like the plague!
Arnold would have had the Fields Medal except his public opposition to the persecution of dissidents had led him into direct conflict with influential Soviet officialsand he suffered persecution himself, including not being
${ }^{5}$ John Holt How Children Fail A classic, first published in the 60s. Free download from https://archive.org/download/HowChildrenFail/HCF.pdf
${ }^{6}$ Etienne Ghys, A singular mathematical promenade. 2017. Free download from https://arxiv.org/abs/1612.06373

And when, over a century later, most mathematicians switched to 'limits' which had finally been made rigorous, scientists - and for a long time even differential geometers -stayed with 'infinitesimals'. (https: //en.wikipedia.org/wiki/Calculus\#Limits_and_infinitesimals).

Eventually, in 1961, Abraham Robinson (https://en.wikipedia.org/ wiki/Abraham_Robinson), three years over the age limit for the Fields Medal, finally made "infinitesimals' rigorous .

Yet, as Vladimir Arnold (https://en.wikipedia.org/wiki/Vladimir_ Arnold) wrote already in 1990: "Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it." (https://en.wikipedia.org/wiki/ Infinitesimal).

In any case, a long time before all that, around 1800, Joseph-Louis Lagrange (https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange), one of the greatest mathematicians ever, who explicitly wanted to free CALCULUS from "any consideration of infinitesimals, vanishing quantities, limits and fuxions", had developed the approach to CALCULUS by way of the 'polynomial approximations' to be used in this text. (https://en.wikipedia.org/wiki/Charles_Babbage\#British_ Lagrangian_School) Eventually, though, Lagrange realized that 'polynomial approximations' could not deal with certain pathological cases and reverted to 'infinitesimals'.

However, starting around 1880, yet another all time great mathematician, Henri Poincaré (https://en.wikipedia.org/wiki/Henri_Poincar\% C3\%A9), used 'polynomial approximations' to solve a very large number of problems so that Lagrange's 'polynomial approximations' are now known as 'Poincaré expansions' as well as 'asymptotic expansions' . . . by mathematicians. (https://en.wikipedia.org/wiki/Asymptotic_expansion.)

But 'polynomial approximations' are still often confused by teachers with 'Taylor series. And that is most regrettable.

When you have mastered numbers, you will in fact no longer be reading numbers, any more than you read words when reading books. You will be reading meanings.

Harold Geneen ${ }^{1}$

Chapter 0

Numbers For Calculating

The Numbers We Will Use, 2 • Zero and Infinity, 4 • Numbers In General, 7 • Real-world Numbers, 13 • Picturing Real World Numbers, 17 - Computing with Real World Numbers, 19 • Size-comparing Real World Numbers, 23 • Qualitative Sizes, 26 • Computing with Qualitative Sizes, 33 - Computing with Extended Numbers., 39 • Neighborhoods, 40 - Real Numbers, 55 - Approximating Real Numbers, 58 - Conclusion, 59 .

Before considering Calculus according to the real world, it will be No, no, this is not going to be useful to consider a few aspects of Arithmetic according to the real world your usual Review Of Basic that are usually not granted much attention in Arithmetic textbooks.

To begin with, from the model theoretic standpoint,
CAUTIONARY NOTE 0.1 The word 'number' refers to the real world while a 'numeral' is the name of a 'number'. belongs to the paper world Stuff in disguise!
You should read this Chapter 0 to have an idea of what's in there but don't panic: as you go on with the later chapters, there will alsways be clickable references and it will then make perfect sense.

This being said, in accordance with Interpolation (Agreement 3.1, Page 187),

[^4]qualifier
thing
qualifier

AGREEMENT 0.1 This text will not use the word 'numeral' but only the word 'number', leaving it to the reader which is actually intended.

1 The Numbers We Will Use

By itself, that is without qualifier, the word 'number' cannot be defined because mathematicians, scientists, and engineers all use many different kinds of 'numbers' for many different purposes. (https://en.wikipedia. org/wiki/Number)

1. Signed decimal numbers. In fact, even "the rest of us" use different kinds of 'numbers' depending on:
A. Whether the real world entity we want to deal with is:

- A collection of items
or
- An amount of stuff
and also on:
B. Whether the information we want about the real world entity is:
- The size of the real world entity alone,
or
- The size together with the orientation of the real world entity, So, the word number should always be used with one of the following qualifiers

	Collection	Amount
Size only	plain whole number	plain decimal number
Size and orientation	pligned whole number signed decimal number	

EXAMPLE 0.1.

- 783043 is a plain whole numeral which may refer to a collection of people,
- 648.07 is a plain decimal numeral which may refer to an amount of money,
- -547048308 and +956481 are signed whole numerals,
- -137.0488 and +0.048178 are signed decimal numerals.

EXAMPLE 0.2.

- By "Numbers are beautiful", what will be intended is "Signed decimal numerals are beautiful",
- By "Plain numbers are weird", what will be intended is "Plain numerals, whether whole or decimal, are weird".
- By "Decimal numbers are handy", what will be intended is "Decimal numerals, whether plain or signed, are handy".
number changeable
set

However, in contradistinction with Discrete Mathematics which deals exclusively with collections of items and therefore uses only whole numbers (https://en.wikipedia.org/wiki/Discrete_mathematics), CALCULUS deals only with amounts of stuff and we will use whole numbers only occasionally, mostly as explanatory backdrop for decimal numbers.

But since constantly having to use qualifiers would be unbearably burdensome,

Agreement 0.2 In the absence of qualifier, number will be short forsigned decimal number.

EXAMPLE 0.3. What will be intended by:

- "Numbers are beautiful" is "Signed decimal numbers are beautiful",
- "Plain numbers are weird" is "Plain numbers, whether whole or decimal, are weird".
- "Decimal numbers are handy" is "Decimal numbers, whether plain or signed, are handy".

2. Changeable number vs. set number. In the real world, numbers can occur in different ways:

- A number may be changeable in a situtation, that is in that situtation the number can be changed to any other number.
EXAMPLE 0.4. The people of Jacksville are considering paving part of the parking lot next to Township Hall and since both the length and the width of the area to be paved are changeable, people are discussing the pro and con of 20 ft long by 100 feet wide versus 60 ft long by 60 feet wide versus 100 ft long by 30 feet wide versus etc, etc.
- A number may be set in a situtation that is in that situtation the number cannot be changed to any other number.
EXAMPLE 0.5. The people in Jillsburg are considering paving part of the road from City Hall down to the river but since the width is set by the County, only the length of the area to be paved is changeable and people are discussing the pro and con of 300 ft long versus 1000 ft long versus 500 ft long versus etc, etc.

0
syntactic
semantic
nothingness

EXAMPLE 0.6. The circumference of a circle of diameter 702.36 is equal to 3.14159×702.36 (https://en.wikipedia.org/wiki/Circumference\# Circle),
In that sentence, the number 702.36 is changeable to any other number to get the circumference of another circle but the number 3.14159 is set. (https: //en.wikipedia.org/wiki/Pi)

2 Zero and Infinity

Zero and Infinity both play most important roles, different but reciprocal.

1. Zero. Already "the ancient Greeks [...] seemed unsure about the status of zero as a number." (https://en.wikipedia.org/wiki/0\#Classical_ antiquity).

There are two difficulties with $\mathbf{0}$ that separate 0 from other numbers
i. The syntactic difficulty is that, at least to an extent, mathematicians use 0 only for convenience.

EXAMPLE 0.7. When dealing with addition of signed numbers, not having 0 would create a difficulty when explaining what happens with adding opposite sign numbers.

On the other hand, as we will discuss in ?? ?? - ?? (??), the presence of 0 causes serious difficulties when dealing with division.
ii. The semantic difficulty, actually the more important one, is that nothingness does not exist in the real world in that there is no such thing as a zero amount of stuff.

EXAMPLE 0.8.

- There is no such thing as a perfect vacuum. (https://en.wikipedia. org/wiki/Vacuum).
- There is no such thing as an absolute zero temperature. (https://en. wikipedia.org/wiki/Absolute_zero)

So the second difficulty is that since 0 does not denote any amount in the real world, 0 has no size and no sign.
Since it is standard practice, though, we will have to accept that

CAUTIONARY NOTE $0.2 \quad 0$ is considered to be a number in spite of the fact that 0 does not denote anything in the real world.

So, what we will do is to distinguish non-zero numbers, that is all numbers except 0 , from just numbers which include 0 . So, all non-zero numbers have both a size and a sign.
2. Infinity. Like zero, infinity is an ancient issue: "Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers." (https://en.wikipedia.org/ wiki/Infinity)
i. There are indeed at least two difficulties with infinity:

- The semantic difficulty with infinity is that there is no such thing in the real world as an infinite collection of items or an infinite amount of stuff

EXAMPLE 0.9. Neither the number of stars in the universe, nor the amount of energy, is infinite. Hugely huge, yes, beyond our ability even to imagine, yes, infinite, no.

- Another difficulty with infinity is that, while numbers are endless, in the real world, sooner or later, we alway get to the end of the line. (https: //en.wikipedia.org/wiki/End_(topology) If we try to go farther and farther away, we have the feeling that the longer we go, the farther away we will get and that there is nothing to keep us from getting as far away as we want. But this is not really the case, nothing is endless .

EXAMPLE 0.10. Even though Magellan died in 1521 while trying to go as far away from Seville as he could, his ships kept on going west. And one of them eventually reached ... home, bearing witness that there was no going around the fact that the earth is round. (https://en.wikipedia. org/wiki/Ferdinand_Magellan\#Voyage)
non-zero number
infinity
end of the line

Isn't playing it both ways convenient?

If only as "And so on."
compact
one-point compactification
Magellan
circle
∞
origin
two-points
compactification
$+\infty$
$-\infty$

ii. As with zero, mathematicians tend to ignore the first difficulty but do acknowledge the second difficulty by occasionally compactifying numbers in either one of two ways:

- One-point compactification: Since what looks to us like a straight line is in reality just a piece of a Magellan circle, (https://www. quantamagazine.org/what-shape-is-the-universe-individuald-or-flat-20191104/), we can compactify a straight line into a Magellan circle by adding ∞, that is the point "down under" from the origin, as end of the line. (https://en.wikipedia.org/wiki/Projectively_extended_real_line)

However,

CAUTIONARY NOTE $0.3 \quad \infty$ is not a number

- Two-points compactification: The other way mathematicians use to prevent numbers from being endless is to end the positive numbers and the negative numbers separately: the positive numbers with $+\infty$ and the negative numbers with $-\infty$. (https://en.wikipedia.org/wiki/ Extended_real_number_line)

However,
CAUTIONARY NOTE $0.4 \quad+\infty$ and $-\infty$ are not numbers but what are often called extended numbers.

3 Numbers In General

If only for the sake of economy, other than in Examples, we won't deal with given numbers but with what applies to any number one could give.

1. Points. However, and in spite of Cautionary Note $0.2-0$ is a dangerous number (Page 5) and Cautionary Note $0.3-\infty$ is not a number (Page 6), and because, for all their differences, we will be using 0 , ∞, and non-zero numbers pretty much in the same way, it will be extremely convenient to use

Definition 0.1 By the word point, we will mean any of the following:

- Any non-zero number,
- 0, (Even though 0 has no sign.)
- ∞. (Even though ∞ is not a number.)

In particular, it will be extremely convenient to see the points ∞ and 0 as points that are reciprocal of each other.

Nevertheless:
variable
formula
declare
global variable
x
y

CAUTIONARY NOTE 0.5 One cannot compute with points because the rules for computing with non-zero numbers and with 0 are different and we cannot compute with ∞ very much at all.
2. Global variables. A variable is a symbol that does not denote any particular number but which works like an empty box in a formula awaiting whatever number we will declare for the formula to become a sentence. (https://en.wikipedia.org/wiki/Variable_(mathematics))

EXAMPLE 0.11.

yields the sentence at the beginning of Example A. 9 (Page 506)
Because numbers can occur in different ways, we will be using different kinds of variables:
i. When we want to deal with all numbers (Inclunding 0) we will use

DEFINITION $0.2 \boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} are (symbols for) global variables which can thus be replaced by any number we declare.

EXAMPLE 0.12. In EXAMPLE A. 7 (Page 505), until the people in

People against paving can vote for declaring 0 . Jacksville declare what they want, we can denote the length and the width of the area to be paved with the global variables x and y.

LANGUAGE NOTE 0.1 We are using the qualifier "global" to distinguish from another kind of standard variable which we will introduce in Section 12^{*} - Real Numbers (Page 55) for which we will use the qualifier "local".

CAUTIONARY NOTE 0.6 Global variables can be replaced by 0 in view of CAUTIONARY Note 0.2 - 0 is a dangerous number (Page 5) but not by ∞ in view of CAUTIONARY Note $0.3-\infty$ is not a number (Page 6)
ii. Non-zero global variables. We mentioned in Subsection 3.1 - Points (Page 7) that there are situations in which we cannot use 0 and so, in these situatuions, we cannot use global variables either and we will use

DEFINITION $0.3 \boldsymbol{x}_{\neq 0}, \boldsymbol{y}_{\neq 0}, \boldsymbol{z}_{\neq 0}$ are (symbols for) non-zero global variables which can thus be replaced by any non-zero number we declare.

EXAMPLE 0.13. One cannot write $\frac{1}{x}$ without writing somewhere not too far something like " $(x \neq 0)$ " to prevent replacement by 0 . So, we will write $\frac{1}{x_{\neq 0}}$.
iii. Set variable. There are situations where there is a particular number playing a particular role.
EXAMPLE 0.14. In a mystery novel, there usually is someone "who did it" and the detective has to use words like "the perpetrator" to say things like "the perpetrator wasn't looking for money", "the perpetrator's weapon", "Someone must have seen the perpetrator because ...". etc

So we will use
DEFINITION $0.4 \boldsymbol{x}_{\mathbf{0}}, \boldsymbol{y}_{0}, \boldsymbol{z}_{0}$ are (symbols for) set variables which can thus be replaced by any set numbers.

EXAMPLE 0.15. In Example A. 8 (Page 506), until the peope in Jillsburg
declare what length they want to be paved, we can can symbolize the length
length to be paved by y but we have to symbolize the width by x_{0} because it
EXAMPLE 0.15. In Example A. 8 (Page 506), until the peope in Jillsburg
declare what length they want to be paved, we can can symbolize the length
length to be paved by y but we have to symbolize the width by x_{0} because it
EXAMPLE 0.15. In ExAMPLE A. 8 (Page 506), until the peope in Jillsburg
declare what length they want to be paved, we can can symbolize the length
length to be paved by y but we have to symbolize the width by x_{0} because it set by the County.

LaNGUAGE NOTE 0.3 There is no standard name for the symbols x_{0}, y_{0}, z_{0} even though the symbols themselves are completely standard.

We use "set" because the set numbers by which these variables can be replaced will be reset in each new situation. (https://en.

> LANGUAGE NOTE $\mathbf{0 . 2}$ Non-zero variables are not standard symbols and, instead, symbols for global variables are used together with a separate stipulation that only non-zero numbers can be declared. But we will find non-zero variables convenient because there is then no need to interrupt the flow.
non-zero global variable
expression
generic expression
evaluate
at
declare
replace
individual expression
execute
wiktionary.org/wiki/set\#Adjective)

Example 0.16. In Example A. 8 (Page 506), while the County in which Jacksville and Jillsburg are set the width of paved roads at, say, 20 Ft , another County could set it at, say, 24 Ft .
3. Generic expression. In MATHEMATICS, an expression is formed according to rules with symbols that can be numbers, variables, operations, and 'functions', together with symbols to determine the order of operations. (Rephrased from https://en.wikipedia.org/wiki/Expression_ (mathematics))

You may also want to look at an old, classic game: https://en.wikipedia. org/wiki/WFF_\%27N_PROOF or https://americanhistory.si.edu/collections/ search/object/nmah_694594/

For our purpose, though, it will be enough to define a generic expression as an expression involving at least one global variable.
EXAMPLE 0.17. In EXAMPLE 0.49 (Page 28), the cost to Jackstown for paving an x Ft. by y Ft. rectangular area at z Dollars per Sq.Ft. would be given by the generic expression $\operatorname{Cost}(x, y, z)=x \times y \times z$.

EXAMPLE 0.18.

- To express that one times any number is equal to that number, we write the generic expression:

$$
1 \times x=x
$$

- To express that the order in which we add any two numbers does not matter, we write the generic expression:

$$
x+y=y+x
$$

- To express that the order in which we add any three wholenumbers does not matter, we write the generic expression:

$$
(x+y)+z=x+(y+z)
$$

4. Evaluation at a given number. We can usually evaluate a generic expression at a given number:

Procedure 0.1 To evaluate a given generic expression in terms of x at a given number x_{0} :
i. Declare the given number x_{0} by writing the declaration $\left.\right|_{x \leftarrow x_{0}}$, read " x to be replaced by x_{0} ", to the right of the generic expression:
generic expression in terms of x
ii. Replace every occurence of x in the generic expression in terms of x by the declared number x_{0} to get the individual expression in terms of the given number x_{0}.
individual expression in terms of x_{0}
iii. Execute the individual expression in terms of x_{0}, that is carry out the operations according to the rules.

Demo 0.1a To evaluate the generic expression $\frac{x^{+2} \ominus+7}{x \oplus+3}$ at +5
i. We declare the given +5 by writing the declaration $\left.\right|_{x \leftarrow+5}$, read " x to be replaced by +5 ", to the right of the generic expression:

$$
\frac{x^{+2} \ominus+7}{x \oplus+3}
$$

$x \leftarrow+5$
ii. We get the individual expression for the given +5 by replacing every occurence of x in the generic expression by the given +5 :

$$
\frac{+5^{+2} \ominus+7}{+5 \oplus+3}
$$

iii. We execute the individual expression in terms of +5 , that is we carry out the operations according to the rules:

$$
\begin{gathered}
\frac{+25 \ominus+7}{+5 \oplus+3} \\
\frac{+18}{+8}
\end{gathered}
$$

In standard Calculus texts, step \boldsymbol{i}. is usually omitted.

$+4.5$

Unfortunatley, there are three issues:
A. Generic expressions cannot be evaluated at ∞ in view of Cautionary Note $0.3-\infty$ is not a number (Page 6),
B. Generic expressions cannot always be necessarily evaluated at a number x_{0},

Demo 0.1b To evaluate the generic expression $\frac{x^{+2} \ominus+7}{x \oplus+3}$ at -3

i. We declare the given -3 by writing the declaration $\left.\right|_{x \leftarrow-3}$, read " x to be replaced by -3 ", to the right of the generic expression:

$$
\left.\frac{x^{+2} \ominus+7}{x \oplus+3}\right|_{x \leftarrow-3}
$$

ii. We get the individual expression for the given -3 by replacing every occurence of x in the generic expression by the given -3 :

$$
\frac{-3^{+2} \ominus+7}{-3 \oplus+3}
$$

iii. We try to execute the individual expression in terms of +5 , that is we carry out the operations according to the rules but the execution comes immediately to a halt

$$
\frac{\frac{+9 \ominus+7}{0}}{\frac{+2}{0}}
$$

because when dividing, say $\$ 2$ among 0 people we can promise any share.

And things can easily turn out even more complicated. For instance:
DEMO 0.1c To evaluate the generic expression $\frac{x^{+2} \ominus+9}{x \oplus-3}$ at +3
i. We declare the given +3 by writing the declaration $\left.\right|_{x \leftarrow+3}$, read " x to be replaced by +3 ", to the right of the generic expression:

$$
\left.\frac{x^{+2} \ominus+9}{x \oplus-3}\right|_{x \leftarrow+3}
$$

ii. We get the individual expression for the given +3 by replacing every occurence of x in the general expression by the given +3 :

$$
\frac{+3^{+2} \ominus+9}{+3 \oplus-3}
$$

iii. We try to execute the individual expression in terms of +3 , that is we carry out the operations according to the rules but the execution comes immediately to a halt:

$$
\begin{gathered}
\frac{+9 \ominus+9}{0} \\
\frac{0}{0}
\end{gathered}
$$

because dividing, say $\$ 0$ among 0 people, allows for any share.
C. Last but not least and as we will see in Section 1 - Global Input-Output Rules (Page 207), inasmuch as Calculus is intended to deal with 'change', evaluating a generic expression at a number x_{0} will not provide enough information for us to figure out changes near x_{0}.

EXAMPLE 0.19. We cannot tell the speed of a car from just a still picture.
We will be able to overcome all these dificulties but only in Section 11 Neighborhoods (Page 40) because we will first have to look at several things and then build the necessary machinery.

4 Real-world Numbers

An important feature of a decimal number is how many digits the number has. (https://en.wikipedia.org/wiki/Numerical_digit)

And then, when we want to specify, that is when we want to denote in order to bring about a specific result (https://www.thefreedictionary.
figure
significant
com/specify), there is a difference between what is necessary to specify a collection of items and what is necessary to specify an amount of stuff.

1. Non-zero digits The more non-zero digits (whether left or right or both sides of the decimal point) a number has, the less likely the number is to denote anything in the real world..

EXAMPLE 0.20. None of the following numbers
$+602528403339145485295666038294891392775987378000261234386384$ 558003000384203771790349303000000000809234329262234085108500 000002891038456666 .
$-0.602528403339145485295666038294891392775987378000261234386384$ 558003000384203771790349303000000000809234329262234085108500 000002891038456666 $+602528403339145485295666038294891392775987378000261234386384$ 558003000384203771790349303000000000809234329 . 262234085108500 000002891038456666
is likely to denote anything in the real world.

LANGUAGE NOTE 0.4 Figure is the name often used instead of digit but In this text we will stick to digit,
2. Significant digits. Indeed, only so many digits can be significant, that is can be describing anything in the real world. (https://en. wikipedia.org/wiki/Significant_figures
EXAMPLE 0.21. To say that "the estimated population of the US was "328285992 as of January 12, 2019" (https://en.wikipedia.org/wiki/ DEMOgraphy_of_the_United_States on 2019/02/06) is not reasonable because at least the rightmost digit, 2 , is certainly not significant: on that day, some people died and some babies were born so the population could just as well been denoted as, say, 328285991 or 328285994.

EXAMPLE 0.22. Thenumbers given in https://en.wikipedia.org/ wiki/Iron_and_steel_industry_in_the_United_States are much more reasonable: 'In 2014, the United States [...] produced' 29 million metric tons of pig iron and 88 million tons of steel." Similarly, "Employment as of 2014 was 149,000 people employed in iron and steel mills, and 69,000 in foundries. The value of iron and steel produced in 2014 was 113 billion."
measure
uncertainty

```
differ
```

बVEther of which will be considered in this text!

Which, of course, is not to say that people-deliberately or not- will never miscount.
4. Size of an amount of stuff. While, in order to denote the amount of stuff we want we need only give a number, in order to denote what we get is another matter because we have to measure this amount of stuff and there will always be some uncertainty in the measurement because of such things as the quality of the equipment used to measure the amount, the ability of the person doing the measurement, etc. Therefore, the measured number will always differ from the given number by some error.
EXAMPLE 0.23. We cannot really say "we have 2.3 quarts of milk" because what we really have depends on the care with which the milk was measured. The uncertainty may of course be too small to matter . . . but then may not.

As Gowers (Fields Medal 1998) put it ($6^{\text {th }}$ paragraph of https:// www.dpmms.cam.ac.uk/~wtg10/continuity.html), "[...] a measurement of a physical quantity will not be an exactly accurate infinite decimal. Rather, it will usually be given in the form of a finite decimal together with some error estimate: $x=3.14 \pm 0.02$ or something like that." [Where 3.14 ± 0.02 is to be read as $3.14 \pm$ some number smaller-size than 0.02]
5. Specifying an amount of stuff. In Section 1 - The Numbers We Will Use (Page 2), we pointed out that we use different 'numbers' to denote what we have or what we want. But while using numbers is sufficient to denote what we have, in the case of an amount of stuff using numbers is not sufficient to specify what we want

- the decimal number measured to denote how much stuff we get

At this point, you ptobably won't be able to make much of the rest of Gowers' paper but even a cursory glance will show his concern with the real world. Rare for a mathematician!
tolerance significant
will always differ by some error from

- the decimal number given to denote how much stuff we wanted,

CAUTIONARY NOTE 0.7 A number cannot specify an amount just by itself.

So, scientists and engineers use specifications that consist of two numbers:

- a number to denote how much stuff they want,
- a number to denote the tolerance that is the size of at most how much the measured number is allowed to differ from the given number (https: //en.wikipedia.org/wiki/Engineering_tolerance).
EXAMPLE 0.24. We can order " 6.4 quarts of milk" with an error of at most 0.02 quarts of milk.

But, rather unfortunately, it is standard to write, as Gowers did above:

$$
x=x_{0} \pm T
$$

that is that the measured number is equal to the given number \pm the tolerance!
EXAMPLE 0.25. Strictly speaking, it makes no sense to specify $+6.4 \pm 0.02$ because that would specify +6.42 or +6.38 . But what is meant by that is that we are specifying $+6.4 \oplus$ a signed error whose size is smaller than 0.02 where 0.02 is the given tolerance.

We can then restate Cautionary Note 0.7 - A number cannot specify an amount just by itself (Page 16) in a more constructive manner:

CAUTIONARY NOTE 0.7 (Restated) A number cannot specify an amount just by itself

EXAMPLE 0.26. While we cannot specify an amount of 6.4 quarts of milk (?? (??), we can specify an amount of 6.4 quarts of milk with a tolerance of 0.02 quarts of milk: what can then be poured will be $6.4 \pm$ a plain decimal number of quarts of milk smaller than 0.02 .

Of course, not all differences are significant, that is carry information that is relevant to the real world situation.
EXAMPLE 0.27. The difference between $\$ 3$. and $\$ 8$. is the same as the difference between $\$ 1000000003$. and $\$ 1000000008$., namely $\$ 5$.. However, while the difference between $\$ 3$. and $\$ 8$. is significant because $\$ 5$. is in the same range as \$3. and \$8., the difference between \$1000000 003. and \$1000 000008 .
is ... insignificant because $\$ 5$. is much smaller than both $\$ 1000000003$. and $\$ 1000000008$..
6. Real world numbers. Like all scientists and engineers,

Definition 0.5 By real world numbers, we will mean (signed decimal) numbers all whose digits are significant.
real world number
real world number
give
quantitative ruler
tickmark
scale
And real world numbers are not at all the same as 'Real Numbers' which will be discussed in ?? ?? - ?? (??)

And so, from now on,
AGREEMENT 3.1 (Restated) Interpolation will be short for real world number.
7. Giving a number. There are at least three ways to give a number:

- The number itself can be given

EXAMPLE 0.28. Consider the number -107.53

- The number can be given as the result of a calculation

EXAMPLE 0.29. Consider the number that results from multiplying +41.06 and +0.0317

- The number can be given as the solution of an equation.

EXAMPLE 0.30. Consider the number 3 copies of which multiply to +27 .
So, given numbers, in particular the numbers we will use in ExAMPLES and DEMOS, will of course be real world numbers.

5 Picturing Real World Numbers

1. Quantitative rulers. So, to picture numbers, we will use quantitative rulers which are essentially just what goes by the name of "ruler" in the real world, that is an oriented straight line with equidistant tickmarks together with a denominator.

The scale of a quantitative ruler is the ratio of any distance on the quantitative ruler to the corresponding distance in the real world (https: //en.wikipedia.org/wiki/Scale_(represent)
number line
axis
side

EXAMPLE 0.31. The following:

is a quantitative ruler whose scale is $\frac{\frac{1}{2} \text { inch }}{1000 \text { inch }}=\frac{1}{2000}$

LANGUAGE NOTE 0.5 Number line is the name most often used instead of quantitative ruler but another often used name is axis However, in this text we will stick to quantitative ruler.
2. Origin. Quantitative rulers must have a tickmark labeled 0 as an origin,
EXAMPLE 0.32.

To know where the origin is is necessary because:

- The sign of a number says which side of the origin the number is-as seen when facing 0 -and we will agree that

Agreement 0.3 When facing 0,

- Positive numbers (+ sign) will be to the right of the origin 0 ,
- Negative numbers (- sign) will be to the left of the origin 0 .

EXAMPLE 0.33. On a quantitative ruler, Since Sign $-5=-$, the number -5 is left of 0 .
Since Sign $+3=+$, the number +3 is right of 0 .

- The size of a number says how far from 0 the number is on a quantitative ruler. Since opposite numbers have the same size, opposite numbers are symmetrical relative to the origin.
EXAMPLE 0.34 Thenumbers -5.0 and +5.0 have the same size, namely 5.0 , so they are equally far from 0 :

6 Computing with Real World Numbers

There are also several issues we need to bring up that all have to do with the fact that computing with signed numbers automatically involves computing with plain numbers, thereby creating a risk of confusion.

1. Comparing given numbers. The most important thing to keep in mind is that:
i. Comparing signed numbers (?? ?? - ?? (??)) is quite different from comparing plain numbers - even though we use the same symbols, $<,>$, and $=$, with both plain numbers and signed numbers:

- Positive numbers compare the same way as their sizes,
- Negative numbers compare the opposite way from their sizes, and:
- given numbers with opposite signs compare regardless of their sizes.
and
ii. The everyday use of plain numbers with words instead of symbols to indicate the orientations can make using the words larger than, smaller than and equal to quite confusing.
\oplus
\ominus
addition
subtraction

EXAMPLE 0.35. In everyday language, we say that
A $\$ 700$ expense is larger than a $\$ 300$ expense
because 700 is larger than 300 but the word expense cannot be seen as just meaning - because

$$
-700 \text { is smaller than }-300 \text {. }
$$

CAUTIONARY NOTE 0.8 Larger than, smaller than, equal to have different meanings depending on whether we are comparing signed numbers or comparing plain numbers.
2. Adding and subtracting given numbers. Notice that we have been using + and - not only as symbols for addition and subtraction of plain numbers, both whole and decimal, in spite of these being already quite different sets of numbers, but now also as symbols to distinguish positive numbers from negative numbers.

So, to avoid confusion as much as possible,
DEFINITION 0.6 \oplus and \ominus, read "oplus" and "ominus", will be the symbols we will use for addition and subtraction of signed numbers.

While the main point of the \bigcirc around the symbol is to remind us to take care of the signs, another benefit is that using \oplus and \ominus lets us avoid having to use lots of parentheses.

EXAMPLE 0.36. Instead of the standard
$-23.87+(-3.03), \quad-44,29-(+22.78), \quad+12.04-(-41.38)$
we will write:
$-23.87 \oplus-3.03, \quad-44,29 \ominus+22.78, \quad+12.04 \ominus-41.38$
which makes it clear without using parentheses which are symbols for calculations and which are symbols for signs.

THEOREM 0.1 Opposite numbers add to 0 :
 $x=$ Opposite $y \quad$ iff $\quad x \oplus y=0$

3. Multiplying and dividing real world numbers.

i. While we could use the symbol \otimes for the multiplication of signed given numbers, we will use the symbol \odot because the symbol • is the usual practice in calculus texts.
ii. Similarly, while we could use the symbol \odot for the division of signed given numbers, we will use the fraction bar _ because it is the usual practice in calculus texts.
EXample 0.37.
$+2 \odot+5=+10, \quad+2 \odot-5=-10, \quad-2 \odot+5=-10, \quad-2 \odot-5=+10$
$\frac{+12}{+3}=+4, \quad \frac{+12}{-3}=-4, \quad \frac{-12}{+3}=-4, \quad \frac{-12}{-3}=+4$,
-
?? ?? - ?? (??) uses the symbols \odot and -.

For good reasons as you will see. And no circle around that one either!

THEOREM 0.2 Reciprocal non-zero numbers multiply to +1

$$
x_{\neq 0}=\text { Reciprocal } y_{\neq 0} \quad \text { iff } \quad x_{\neq 0} \oplus y_{\neq 0}=+1
$$

$=======$ Begin WORK ZONE $=======$
4. Operating with 0. As warned in Cautionary Note $0.2-0$ is a dangerous number (Page 5), the behavior of 0 with multiplication and division causes difficulties.
i. Both 0 multiplied by any number and any number multiplied by 0 result in 0 :

$$
0 \otimes x=0 \text { and } x \otimes 0=0
$$

The difficulty is that, while we are used to conclude from, say $x \otimes-7=$ $y \otimes-7$, that $x=y$, we cannot do so from $x \otimes 0=y \otimes 0$
ii. We cannot divide a number, any number, by 0 because what would be the share in the real-world if we could divide 7 apples among 0 people?

And then, while we can say that $12 \div 4=3$ because when we share in the real-world 12 apples among 4 people each person gets 3 apples, to say that $12 \div 0=$ some number would mean that $0 \times$ that number $=12$ as menioned in \mathbf{i}.
iii. Since:

- We cannot divide 1 by 0 , and
- ∞ is not even a number,
we cannot say, as much as we would want to, that 0 and ∞ are reciprocal of each other.
$========$ End WORK ZONE $=======$

5. Operating with more than two given numbers Given three numbers, let's call them Number One, Number Two, Number Three (which
rule
may or may not be the same) and two operations, let's call them operation one and operation two (which may or may not be the same):

Number One operation one Number Two operation two Number Three
the overall result will usually depend on the order in which we perform the operations.

EXAMPLE 0.38. $-3 \ominus+5 \ominus-7$

b. $\underbrace{-3 \ominus \underbrace{+5 \ominus-7}_{+12}}_{-15}$

EXAMPLE 0.39. $-3 \odot+5 \oplus-7$

So, another reason to use \oplus, i. So, to indicate which operation(s) is/are intended to be performed ahead etc as that keeps the number of parentheses down. of the other (s), one uses parentheses, ().
However, when one attempts to minimize the number of parentheses, stating "rules" to indicate the order in which operations are to be performed is actually a surprisingly complicated issue. (See https://en.wikibooks.org/ wiki/Basic_Algebra/Introduction_to_Basic_Algebra_Ideas/Order_of_ Operations and/or https://en.wikipedia.org/wiki/Order_of_operations)
Because we will want to focusii. So, in order to keep matters as simple as possible, this text will always on the Calculus rather than use however many parentheses will be necessary and we will just agree that on the Algebra.

In other words, no PEMDAS, no BEDMAS, no BODMAS, no BIDMAS. (https://en. wikipedia. org/wiki/Order_of_ operations) Just WYSIWYG.

AGREEMENT 0.4 Computable expressions are expressions that, after parentheses surrounding a single number (if any) have been removed,

Rule A. Do not include only one parenthesis (left or right),
Rule B. May include two surrounding parentheses.

Example 0.40. In example 0.16, using Agreement 0.3 - Sides of the origin (Page 18),
a. With $(-3 \ominus+5) \ominus-7$,

- We cannot perform \ominus as the expression +5$) \ominus-7$ breaks Rule \mathbf{A}.
- We can perform \ominus as the expression $(-3 \ominus+5)$ complies with Rule B.

The computation would thus be writen:

$$
(-3 \ominus+5) \ominus-7 \underbrace{=(-8) \ominus-7}=-8 \ominus-7=-1
$$

b. With $-3 \ominus(+5 \ominus-7)$,

- We cannot perform \ominus as the expression $-3 \ominus(+5$ breaks Rule A.
- We can perform \ominus as the expression $(+5 \ominus-7)$ complies with Rule \mathbf{A} and Rule B. The computation would thus be written:

$$
-3 \ominus(+5 \ominus-7) \underbrace{=-3 \ominus(+12)}_{\text {Step can be skipped }}=-3 \ominus+12=-15
$$

Example 0.41. In Example 0.17 (Page 10) 0.17, using Agreement 0.3 - Sides of the origin (Page 18),
a. With $(-3 \odot+5) \oplus-7$:

- We cannot perform \oplus as the expression +5$) \oplus-7$ breaks Rule A.
- We can performe \odot as the expression $(-3 \odot+5)$ complies with Rule B. The computation would thus be writen:

$$
(-3 \odot+5) \oplus-7 \underbrace{=(-15) \oplus-7}_{\text {Step can be skipped }}=-15 \oplus-7=-22
$$

b. With $-3 \odot(+5 \oplus-7)$:

- We cannot perform \odot as the expression $-3 \odot(+5$ breaks Rule A.
- We can perform \oplus as the expression $(+5 \oplus-7)$ complies with Rule B. The computation would thus be written:

$$
-3 \odot(+5 \oplus-7) \underbrace{=-3 \odot(-2)}_{\text {Step can be skipped }}=-3 \odot-2=+6
$$

7 Size-comparing Real World Numbers

Aside from comparing signednumbers as we did in Subsection 7.1 - Sizecomparing vs. comparing sizes (Page 24), we can also size-compare (signed) given numbers, that is we can compare the (signed) numbers in terms of only their sizes and regardless of their signs:

DEfinition 0.7 Given two (signed) numbers x and y,

- x is smaller-size than y iff Size x is smaller than Size y,
- x is larger-size than y iff Size x is larger than Size y,
smaller-size
larger-size
equal-in-size

Getting there, eh?

- x is equal-size to y iff Size x is equal to Size y, (So, iff x and y are either equal or opposite.)

EXAMPLE 0.42.

- -234 is larger-size than +32 (Even though -234 is smaller than +32)
- +71 is smaller-size than -728 (Even though +71 is larger than -728)
- -35 is equal-size to +35 . (Even though -35 and +35 are opposite.)

In particular:

THEOREM 0.3 Sizes of reciprocal numbers:

- The larger-size a non-zero number is, the smaller-size its reciprocal, and
- The smaller-size a non-zero number is, the larger-size its reciprocal.

Proof. zZZZZ

1. Size-comparing vs. comparing sizes. There is a big difference between:

- size-comparing two signed given numbers
and
- comparing the sizes of two signed numbers

In the first case, what we are talking about are signed numbers-as it happens from the point of view of their sizes, while, in the second case, what we are talking about are plain numbers-which happen to be sizes of signed numbers.
EXAMPLE 0.43. There is a big difference between

- Age-comparing two people,
and
- Comparing the ages of two people.

In the first case, what we are talking about are people while, in the second case, what we are talking about are numbers.

EXAMPLE 0.44. Since:
i. The size of -7 is 7
ii. The size of -3 is 3

Then,
The size of -7 is larger than the size of +3
is a statement about the sizes of -7 and +3 but
-7 is larger-size than +3 ,
is a statement about thenumbers -7 and +3 themselves.
2. Procedure. But size-comparing is almost invariably confused with "comparing sizes. And, because we always want to know what we are talking about and to avoid any confusion in the matter, it will be convenient to use:

Procedure 0.2 To size-compare two (signed) numbers
i. Get the plain numbers that are the sizes of the given numbers,
ii. Compare the plain numbers,
iii. Use Definition $0.4-\boldsymbol{x}_{0}, \boldsymbol{y}_{0}, \boldsymbol{z}_{0}$ (Page 9).

Demo 0.2

To size-compare the signed numbers -7.5 and +3.2
i. We get their sizes: the size of -7.5 is 7.5 and the size of +3.2 is 3.2
ii. We compare their sizes:

Since $7.5>3.2$
size -7.5 is-larger-than size +3.2
iii. Using Definition $0.4-x_{0}, \boldsymbol{y}_{0}, \boldsymbol{z}_{0}$ (Page 9), we conclude that -7.5 is-larger-size-than +3.2

The trouble in most textbooks, though, is that the first step is the only one that is explicited while the rest is supposed to "go without saying", perhaps because, unfortunately,

CAUTIONARY NOTE 0.9 There are no symbols for sizecomparisons of numbers.
so that, in view of Cautionary Note $0.4-+\infty$ and $-\infty$ are not numbers (Page 7), we will have to say larger-size and smaller-size, in so many words, as in Definition 0.3 - Non-zero global variables (Page 9).
3. Picturing size-comparisons of given numbers Given two numbers,
individualr farther

- The smaller-size number is individualr to 0 than the larger-size number,
- The larger-size number is farther from 0 than the smaller-size number.

EXAMPLE 0.45. Given the numbers -7.5 and +3.2 , we saw in ExAmPLE 1.27 (Page 93) that

- -7.5 is larger-size-than +3.2 ,
and therefore that
- +3.2 is smaller-size-than -7.5 ,

After picturing -7.5 and +3.2

Larger-in-size \quad Smaller-in-size
we see that

- -7.5 is farther from 0 than +3.2 ,
- +3.2 is individualr to 0 than -7.5 ,

8 Qualitative Sizes

Mathematicians calculate in exactly the same way with all (signed decimal) numbers, regardless of their size.
EXAMPLE 0.46. $\quad+0.3642$ and -105.71 are added, subtracted, multiplied and divided by exactly the same rules as -41008333836092.017 and -0.000001607.

And, of course, one a bit In theory, we can of course give any (signed decimal)numbers we want but, more complicated.
in the real world, things work in a different way.

1. Sizes beyond belief. To begin with, there are unbelievably many numbers that are unbelievably larger-size than any number you care to imagine as well as unbelievably many numbers that are unbelievably smaller-size than any number you care to imagine:

- We all went through a stage as children when we would count, say, "one, two, three, twelve, seven, fourteen, ..." but soon after that we were able to count properly and then we discovered that there was no largest number: we could always count one more. (Of course, counting backwards into the negative numbers has no end either so there is no largest-size number.) But that was only the tip of the iceberg.

EXAMPLE 0.47. Start with, say -73.8 , and keep multiplying by 10 by moving the decimal point to the right, inserting 0 s left of the decimal point when it becomes necessary

```
-73.8
-738.
-7380.
-73800.
-738000.
-7380000.
-7380000000000000000000000000000000.
```

This last number is probably already a lot larger-size than any number you are likely to have ever encountered.

If not, just keep inserting Os until you get there!
(See https://en.wikipedia.org/wiki/Large_numbers\#Large_numbers_ in_the_everyday_world)

- On the other hand, as children knowing only plain whole numbers, we thought there was a number smaller than all other numbers, namely 1 or perhaps 0 . With decimal numbers, though, there is no smallest-size number.

EXAMPLE 0.48. Start with, say 41.6, and keep dividing by 10 by moving the decimal point to the left, inserting 0 s right of the decimal point when it becomes necessary.
41.6
4.16
0.416
0.0416
0.00416
0.000416
0.0000416
0.00000416
0.00000000000000000000000000000000000000416

This last number is probably already a lot smaller-size than any number you are likely to have ever encountered in a real world situation.

If not, keep inserting Os until you get there!
range
metric
out-of-range
2. Ranges of numbers. For scientists and engineers, numbers fall into size ranges that depend of course on what they are doing.
EXAMPLE 0.49. The numbers that astrophysicists (https://en. wikipedia.org/wiki/Astrophysics) give and the numbers that nanophysicists (https://en.wikipedia.org/wiki/nanophysicist) give definitely fall into entirely different size ranges.

In this regard, the following are well worth looking up:

- The 9 minutes 1977 classic video at (the bottom of) http://www. eamesoffice.com/the-work/powers-of-ten/,
- Terence Tao (Fields Medal 2006, http://terrytao.files.wordpress. com/2010/10/cosmic-distance-ladder.pdf.
(Notice that it's all about distances which are sizes.)

Of course, units of the appropriate size allow the use of numbers in whatever size range is convenient-which is one reason why scientists and engineers use metric units: the conversion of metric units is easy because it involves only moving the decimal point without changing the digits.
EXAMPLE 0.50. In the US Customary System,

- Instead of talking about 38016 inches, we usually say 0.6 miles,
- Instead of talking about 0.01725 tons, we usually say 34.5 pounds.
while, in the Metric System,
- Instead of talking about \$3370000., we usually say 3.37 MegaDollars.
- Instead of talking about 0.0000074 Meters, we usually say 7.4 microMeters.
$======$ Begin WORK ZONE $=======$
Since +1 unit and -1 unit are most likely to be in any range,
AGREEMENT $0.5 \quad+1$ and -1 will always be within the range.
$========$ End WORK ZONE $=======$

3. Out-of-range numbers By the same token, for scientists and engineers," in any real world situation there will be numbers that will be out-of-range.
EXAMPLE 0.51. Numbers like
a. -7000 00

00.	cutoff size upper lower

b. -0.000

00
003
are not very likely to be within any range.
4. Cutoff sizes. So, in any real world situation, there will be two cutoff sizes that determine the range:

- An upper cutoff size above which numbers will surely not denote anything in the situation,
- A lower cutoff size below which numbers will surely not denote anything in the situation.

Unfortunately, often left to go without saying.
Of course, the upper cutoff size and the lower cutoff size will likely be different in different real world situations.

EXAMPLE 0.52. A small business could take 100000.00 and 0.01 as cutoff sizes for their accounting system as it probably would never have to deal with amounts such as $\$-1058436.39$ or $\$+0.00072$.

In contrast, the accounting system for a multinational corporation would certainly use different cutoff sizes, maybe something like:

5. Numbers we can or cannot give. Then, given cutoff sizes,
qualitative size
small-size
small variable
h
large-size

6. Qualitative sizes. We can define the following qualitative sizes for numbers:
i. The numbers whose size is too small for us to give:

DEFINITION 0.8 Small-size numbers are number that are smaller-size than the lower cutoff size

large variable
L
medium-size
appreciable number
sizable number

Definition 0.11 The large variables $\boldsymbol{L}, \boldsymbol{M}, \ldots$ will be the (nonstandard) symbols for generic large-size numbers.

CAUTIONARY NOTE 0.11 because ∞ is not a number to begin with. (Cautionary Note $0.3-\infty$ is not a number (Page 6))
iii. The numbers whose size is just right for us to give:

Definition 0.12 Medium-size numbers are numbers that are both smaller-size than the upper cutoff size and larger-size than the lower cutoff size

Appreciable numbers or sizable numbers might have been better words.
(https://www.macmillandictionary.com/thesaurus-category/ british/not-big-or-small-size)

THEOREM 0.4 Mid-size numbers are non-zero numbers. (But non-zero numbers are not necessarily medium-size numbers.)

Proof. Acording to ?? ?? - ?? (??) and as the represent illustrates,
ordinary numbers

- The upper cutoff size keeps medium-size numbers away from $-\infty$ and $+\infty$.
- The lower cutoff size keeps medium-size numbers away from 0^{-}and 0^{+}.

$======$ Begin WORK ZONE=======

Ordinary numbers are medium-size real world numbers
Agreement 3.1 (Restated) Interpolation will be short for ordinary number.

In view of ?? ?? - ?? (??), both +1 and -1 are medium-size.
$========$ End WORK ZONE $=======$
While the variables x, y, z can stand for numbers of any qualitative sizes,
Altogether, then, these qualitative sizes are illustrated by:

7. About the language.

- We all have an intuitive idea of what the everyday words large, small and medium mean and these words have the same meaning for everybody even though large, small and medium are relative concepts.

Of course, in some countries, a dollar an hour is actually a large amount of money.

Veery, veery carefully!

EXAMPLE 0.53. Nobody likes to work for a small amount of money: billionaires would no more dream of working for, say, a thousand dollars an hour than the rest of us would like to work for a dollar an hour.

However, we needed to define large, small and medium as calculus words so we had to proceed carefully.

- Here are a few dictionary definitions of large:

```
"bigger than usual in size".(https://www.macmillandictionary.com/
dictionary/british/large_1)
"exceeding most other things of like kind especially in quantity or size"
```

```
(https://www.merriam-webster.com/dictionary/large)
"Of greater than average size" (https://www.thefreedictionary.com/
Large)
"of more than average size" (https://www.dictionary.com/browse/
large)
"greater in size than usual or average" (https://www.
collinsdictionary.com/dictionary/english/large)
```

Notice that all these dictionary definitions use, essentially, larger-size and that they also use "than most other", "than average", "than usual" as some sort of upper cutoff size.

- The words large and small-even though it is very tempting to use them, if only as shorts for large-size and small-size - are too close to the everyday words larger and smaller which are used to compare plain numbers in the everyday language while in any mathematical language larger and smaller are used to compare signed numbers.
- The meanings of the words medium-size, small-size, and large-size, are very close to the meanings of

LANGUAGE NOTE 0.6 The mathematical words

- Finite (For medium-size)
(https://en.wikipedia.org/wiki/Finite_number),
- Infinitesimal (For small-size)
(https://en.wikipedia.org/wiki/Infinitesimal),
- Infinite (For large-size)
(https://www.dictionary.com/browse/infinite),
But since mathematicians understand the words finite, infinitesimal, and infinite much more strictly than we would, we will stay with the words medium-size, small-size, and large-size.

9 Computing with Qualitative Sizes

REWRITE ALL THIS SECTION USING h and L
$======$ Begin WORK ZONE======
While 0 does not exist in the real world, small-size numbers do exist in the real world
h^{n}
So, while $5 \odot 0$ does not exist in the real world so that we do not want to
finite
infinite
infinitesimal
write $5 \odot 0=\infty$, small-size number does exist in the real world and there is no problem writing $5 \odot h=L /$ Users/alainschremmer/Desktop/untitled folder small-size number \odot small-size number

$$
========\text { End WORK ZONE }=======
$$

For calculating purposes, qualitative sizes make up a rather crude system because qualitative sizes carry no information whatsoever about where the cutoffs are.

Nevertheless, as we will see, the calculations we can do with qualitative
And if you're worried about rigor, you'll be glad to know qualitative sizes lead straight to Bachmann-Landau's little o's and big O's (https: //en. wikipedia. org/ wiki/Big_ O_ notation).

You don't need extreme cutoff sizes but do pick your numbers far from the cutoffs.

A good rule of thumb for picking:

- medium-size numbers is to try ± 1,
- large-size numbers is to try ± 10.0 or ± 100.0 or ± 1000.0 etc
- small-size numbers is to try ± 0.1 or ± 0.01 or ± 0.001 etc

1. Adding and subtracting qualitative sizes.

THEOREM 0.5 Oplussing qualitative sizes numbers

\oplus	large-size	medium-size	small-size
large-size	$?$	large-size	large-size
medium-size	large-size	$?$	medium-size
small-size	large-size	medium-size	small-size

Proof. i. The non-highlighted entries are as might be expected.
EXAMPLE 0.54. $\quad-100000 \oplus+1000=-99000$

$$
-100000 \oplus-0.001=100000.001
$$

So, the reader is invited to decide on cutoff sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff sizes.
ii. When the two large-size numbers have opposite signs, the addition undetermined is undetermined because the result could then be large-size, or smallsize, or medium-size, depending on "how much" large-size the two large-size numbers are compared to each other.
EXAMPLE 0.55. Here are two additions of large-size numbers whose results are different in qualitative sizes:
$+1000000000000.7 \oplus-1000000000.4=+999000000000.3$,
but

$$
-1000000000000.5 \oplus+1000000000000.2=-0.3 .
$$

2. Multiplying qualitative sizes.

Theorem 0.6 Otiming qualitative sizes

large-size	large-size	medium-size	small-size
medium-size	large-size	large-size	$?$
medium-size	small-size		
small-size	$?$	small-size	small-size

The generic symbols have different subscripts because, even when they have the same qualitative size, they stand for different numbers.

Proof. i. The non-highlighted entries are as might be expected.
EXAMPLE 0.56. $-10000 \odot-1000=+10000000$

$$
+0.01 \odot-0.001=-0.00001
$$

So, the reader is invited to decide on cutoff sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff sizes.
ii. large-size \odot small-size is undetermined because the result could be large-size, or small-size, or medium-size, depending on "how much large-size" large-size is compared to "how much small-size" small-size is.
EXAMPLE 0.57. Here are different instances of large-size \odot small-size that result in different qualitative sizes:

$$
\begin{array}{l|l}
-1000 \odot-0.1=+100 & -100000000 \odot-0.00001=+100 \\
+1000 \odot-0.001=-1 & +1000000 \odot-0.00001=-1 \\
+1000 \odot+0.00001=+0.01 & +1000 \odot+0.00001=+0.01
\end{array}
$$

Similarly for small-size \odot large-size.

3. Dividing qualitative sizes.

Theorem 0.7 Odividing qualitative sizes

The generic symbols have different subscripts because, even when they have the same qualitative size, they stand for different numbers.

	large-size	medium-size	small-size
large-size	$?$	large-size	large-size
medium-size	small-size	medium-size	large-size
small-size	small-size	small-size	$?$

Proof. i. The non-highlighted entries are as might be expected.
EXAMPLE 0.58. $\quad \frac{-10000000}{+50}=-200000 ~\left(\begin{array}{l}\frac{+0.03}{+6000000}=+0.000000005\end{array}\right.$
So, the reader is invited to decide on cutoff sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff sizes.
ii. $\frac{\text { large-size }}{\text { large-size }}$ is undetermined because the result could be large-size, or small-size, or medium-size, depending on "how much large-size" large-size and large-size are compared to each other..

EXAMPLE 0.59. Here are three instances of $\frac{\text { large-size }}{\text { largesize }}$ that result in different qualitative sizes:

$$
\frac{-1000000}{-1000}=+1000, \quad \frac{-1000000}{-100000}=-10, \quad \frac{-100000}{-1000000000}=+0.0001
$$

And $\frac{\text { small-size }}{\text { small-size }}$ is similarly undetermined.
EXAMPLE 0.60. Here are three instances of small-size \odot small-size that result in different qualitative size:
$-0.001 \odot+0.1=-0.01,+0.001 \odot+0.001=+1,-0.01 \odot-0.001=+10$
4. Reciprocal of a qualitative size. We really would like the reciprocal of a small-size number to be a large-size number and, the other way round, the reciprocal of a large-size number to be a small-size number.
i. Unfortunately, because we defined qualitative sizes in terms of cutoff sizes which we set independently of each other, this is not necessarily the case and the reciprocal of a small-size number need not be a large-size number and, the other way round, the reciprocal of a large-size number need not be a small-size number because the upper cutoff size and the lower cutoff size are not necessarily reciprocal of each other.

EXAMPLE 0.61. The following cutoff sizes are probably suitable for the accounting system of a small business:

i. +0.009 is below the positive lower cutoff $(+0.009<+0.01=+0.010)$ and is therefore a small-size number,
ii. The reciprocal of +0.009 is +111.1 (Use a calculator.)
iii. +111.1 is below the positive upper cutoff and is therefore not a large-size number.
ii. Fortunately, it is always possible to take the cutoff sizes so that

- the upper cutoff size is the reciprocal of the lower cutoff size and, the other way round,
- the lower cutoff size is the reciprocal of the upper cutoff size because all that will happen is that with the adjusted cutoff sizes there will now be more numbers that will be medium-size than is really needed.
EXAMPLE 0.62. We can change the lower cutoff size in ?? (??) to 0.000001 :

so that now the lower cutoffs and the upper cutoffs are reciprocal of each other:
i. +0.0009 is below the positive lower cutoff $(+0.0009<+0.001=+0.0010)$ and is therefore a small-size number,
ii. The reciprocal of +0.0009 is +1111.1 (Use a calculator.)
iii. +1111.1 is above the positive upper cutoff and is therefore a large-size number.
The price is just thatnumbers whose size is between 0.01 and 0.000001 will now also be medium-size-but most probably will never be used.
iii. So then, from now on,

Agreement 0.6 The lower cutoff size and the upper cutoff size will be reciprocal of each other.
iv. We then have:

THEOREM 0.8 Reciprocity of qualitative sizes

- Reciprocal of large-size number $=\frac{+1}{\text { large-size number }}$
$=$ small-size number
- Reciprocal of small-size number $=\frac{+1}{\text { small-size number }}$
$=$ large-size number
- \quad Reciprocal of medium-size number $=\frac{+1}{\text { medium-size number }}$

$$
=\text { medium-size number }
$$

Proof.

- If a given number is large-size,
- By Definition 0.5 - Real world numbers (Page 17), the given number is larger-size than the upper cutoff size
- By Theorem 0.1 - Opposite numbers add to 0: (Page 20), the reciprocal of the given number is then smaller-size than the reciprocal of the upper cutoff size.
- But by Agreement 0.5 - (Page 28), the reciprocal of the upper cutoff size is the lower cutoff size.
- So, the reciprocal of the given number is smaller-size than the lower cutoff size.
- And so, by Definition 0.5 - Real world numbers (Page 17), the reciprocal of the given large-size number is a small-size number
- The reader is invited to make the case for the reciprocal of a small-size given.
- The reader is invited to make the case for the reciprocal of a mediumsizegiven number that is medum-size

10* Computing with Extended Numbers.

As it happens, we will not compute with extended numbers so this section can be safely skipped. On the other hand, it is interesting to see how it x_{+}
y_{+} At star next to a Section Dumber is the standard way to say you can skip the section. But, eventually, goes.

1. Positive and negative variables.

To denote the operations for extended numbers, we need a few more kinds of variables:

DEFINITION 0.13 are resticted variables:

- For positive variables, only positive numbers can be substituted, and
- For negative variables, only negative numbers can be substituted,

CAUTIONARY NOTE 0.12

- $x_{<0}, y_{<0}, z_{<0}, x_{>0}, y_{>0}, z_{>0}$ are restricted variables, while
- $x<0, y<0, z<0 . x>0, y>0, z>0$, are inequations involving the global variables x, y, z.

2. Operation tables.

\oplus	$-\infty$	$y_{<0}$	0^{-}	0^{+}	$y_{>0}$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$?$
$x_{<0}$	$-\infty$	z	$x_{<0}$	$x_{<0}$	$z_{?}$	$+\infty$
0^{-}	$-\infty$	$z_{<0}$	0^{-}	$0^{?}$	$z_{>0}$	$+\infty$
0^{+}	$-\infty$	$z_{<0}$	$0^{?}$	0^{+}	0^{+}	$+\infty$
$x_{>0}$	$-\infty$	$z_{?}$	$x_{>0}$	$x_{>0}$	$z_{>0}$	$+\infty$
$+\infty$	$?$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$

\ominus	$-\infty$	$y_{<0}$	0^{-}	0^{+}	$y_{>0}$	$+\infty$
$-\infty$	$?$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
$x_{<0}$	$+\infty$	$z_{?}$	$x_{<0}$	$x_{<0}$	$z_{<0}$	$-\infty$
0^{-}	$+\infty$	$y_{>0}$	$0^{?}$	0^{-}	$y_{<0}$	$-\infty$
0^{+}	$+\infty$	$y_{>0}$	0^{+}	$0^{?}$	$y_{<0}$	$-\infty$
$x_{>0}$	$+\infty$	$z_{>0}$	$x_{>0}$	$x_{>0}$	$z_{?}$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$?$

\odot	$-\infty$	$y_{<0}$	0^{-}	0^{+}	$y_{>0}$	$+\infty$
$-\infty$	$+\infty$	$+\infty$	+?	-?	$-\infty$	$-\infty$
$x_{<0}$	$+\infty$	$z_{>0}$	0^{+}	$0{ }^{-}$	$z_{<0}$	$-\infty$
0^{-}	+?	0^{+}	0^{+}	0^{-}	0^{-}	-?
0^{+}	-?	0^{-}	0^{-}	0^{+}	0^{+}	+?
$x_{>0}$	$-\infty$	$z_{<0}$	0^{-}	0^{+}	$z_{>0}$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	-?	+?	$+\infty$	$+\infty$
\odot	$-\infty$	$y_{<0}$	0^{-}	0^{+}	$y_{>0}$	$+\infty$
$-\infty$	+?	$+\infty$	$+\infty$	$-\infty$	$-\infty$	-?
$x_{<0}$	$0_{>0}$	$z_{>0}$	$+\infty$	$-\infty$	$z_{<0}$	$0_{<0}$
0^{-}	0^{+}	0^{+}	+?	-?	0^{-}	0^{-}
0^{+}	0^{-}	0^{-}	-?	+?	0^{+}	0^{+}
$x_{>0}$	0^{-}	$z_{<0}$	$-\infty$	$+\infty$	$z_{>0}$	0^{+}
$+\infty$	-?	$-\infty$	$-\infty$	$+\infty$	$+\infty$	+?

One reason we will not compute with extended numbers is of course the yellow boxes in the above operation tables.
3. Are ∞ and 0 reciprocal? Another reason for not computing with extended numbers is that,

- From the division table, we get that $\frac{x_{>0}}{-\infty}=0^{-}$and therefore, in particular, that $\frac{+1}{-\infty}=0^{-}$so that, as would be expected, the reciprocal of $-\infty$ is 0^{-}and, similarly, we get that the reciprocal of $+\infty$ is 0^{+},
- However, from the multiplication table we get only that $-\infty \odot 0^{-}=+$? and that $+\infty \odot 0^{+}=+$?
While not contradictory, this would be annoying and, as we will see in Theorem 0.6 - Otiming qualitative sizes (Page 35), we will have a much more satisfying way to compute whether or not 0 and ∞ are reciprocal.

11 Neighborhoods

As we saw in Size of an amount of stuff (Subsection 4.4, Page 15), while

- We certainly cannot evaluate generic expressions at ∞ because ∞ is not a number (Cautionary Note 0.3, Page 6),
more generally,
- We cannot even always evaluate generic expressions at a given number x_{0} because of the difficulties with 0 and division: 0 is a dangerous number (Cautionary Note 0.2, Page 5)

-

1. Nearby numbers. Evaluating a generic expression at a point, though, is to ignore the real world and, in fact, since, as we will see in Subsection 3.4 - Sparseness of sets of plot dots (Page 80), Calculus deals with 'change', instead of wanting to investigate what happens at a given point, we will investigate what happens at nearby numbers.

EXAMPLE 0.63. As opposed to Example 0.19 (Page 13), we can tell a car is moving from a movie, that is from still pictures during a short time span.

More precisely:
i. As we saw in Section 2 - Zero and Infinity (Page 4), nothingness does not exist in the real world,
EXAMPLE 0.64. We use 0 quart of milk to denote the amount of milk that appears to be in an empty bottle but it might just be that the amount of milk in the bottle is just too small for us to see.

So, in accordance with the real world, we will use nearby numbers that is, in this case, numbers near 0 , that is small-size numbers,

EXAMPLE 0.65. -0.002 .078 and +0.000 .928 are both near 0 .
ii. As we saw in Subsection 0.3 - (Page xxii), infinity does not exist in the real world,
EXAMPLE 0.66. We may say that the number of molecules in a spoonful of milk is infinite, but of course it's just that the number of molecules is too large for us to count under a microscope.

So, in accordance with the real world, we will use nearby numbers, that is, in this case, numbers near ∞, that is large-size numbers,

EXAMPLE 0.67. -12729000307 and +647809010374 are both near ∞
iii. As we saw in ?? ?? - ?? (??), measured numbers will always differ from a given number x_{0} by some error
EXAMPLE 0.68. I can give you 3 apples but I cannot give you a 3 foot long stick as it will always be a bit too long or a bit too short.

So, in accordance with the real world, we will use nearby numbers that is, in this case, numbers near x_{0}, that is numbers that differ from x_{0} by only small-size numbers.
nearby number
near 0
near ∞

In a crime novel, the victim is never the story. The story is always around the victim. (Anonymous crime writer.)
neighborhood
thicken
center
indeterminate number circa variable

EXAMPLE 0.69. $-87.36 \oplus-0.000 .032=-87.360032$ and $-87.36 \oplus$ $+0.000 .164=-87.359836$ are both near -87.36

Actually, it is completely standard to speak of a
DEFINITION 0.14 Neighborhood of a point:

- A neighborhood of 0 consists of the numbers near 0 .
- A neighborhood of ∞ consists of the numbers near ∞,
- A neighborhood of x_{0} consists of the numbers near x_{0}.
(https://en.wikipedia.org/wiki/Neighbourhood_ (mathematics))

And, in fact, we will often speak of thickening a given point, that is we will be looking at that point as just the center of a neighborhood of that point.
2. Evaluation near a given point. So, in order to evaluate a generic expression near a given point, we will evaluate the generic expression at an indeterminate number near the given point. In other words:

- Instead of declaring 0 , we will declare the small variable h,
- Instead of declaring ∞, we will declare the large variable L,
- Instead of declaring x_{0}, we will declare:

DEFINITION 0.15 The circa variables $x_{0} \oplus \boldsymbol{h}, \boldsymbol{x}_{0} \oplus \boldsymbol{k}$ are the (standard) symbols for numbers near x_{0}.
"Circa" because the numbers are "around" h, "variable" because of h.

Why "circa"? Because nearby is already used.

In other words, we will use Procedure 0.1 - Evaluate a generic expression at a given number (Page 10) but with an indeterminate number instead of a given number.

Procedure 0.3 To evaluate a given generic expression in terms of x near a given point:
i. Declare an indeterminate numbers near the given point, that is:

- If the given point is 0 , declare the small variable h by writing the declaration $\left.\right|_{x \leftarrow h}$, read " x to be replaced by h ", to the right of the generic expression:
generic expression in terms of x

- If the given point is ∞, declare the large variable L by writing the declaration $\left.\right|_{x \leftarrow L}$, read " x to be replaced by L ", to the right of the generic expression:
generic expression in terms of x \square
- If the given point is x_{0}, declare the local variable $x_{0} \oplus h$ by writing the declaration $\left.\right|_{x \leftarrow x_{0} \oplus h}$, read " x to be replaced by $x_{0} \oplus h$ ", to the right of the generic expression:

$$
\text { generic expression in terms of } x
$$

$x \leftarrow x_{0} \oplus h$
ii. Replace every occurence of x in the generic expression in terms of x by the declared variable to get the generic expression for numbers near the given point :

- generic expression in terms of h for numbers near 0
- generic expression in terms of L for numbers near ∞
- generic expression in terms of $x_{0} \oplus h$ for numbers near x_{0}
iii. Execute the general expression in terms of the declared variable according to the relevant rules in Section 9 - Computing with Qualitative Sizes (Page 33)

In contradistinction with Demo 0.1a - From x to +5 (Page 11), we have:

Demo 0.3a To evaluate the generic expression $\frac{x^{+2} \ominus+7}{x \oplus+3}$ near +5
i. We declare that the numbers are to be near +5 by writing the declaration $\left.\right|_{x \leftarrow+5 \oplus h}$, read " x to be replaced by $+5 \oplus h$ ", to the right of the generic expression:

$$
\frac{x^{+2} \ominus+7}{x \oplus+3}
$$

$$
x \leftarrow+5 \oplus h
$$

ii. We replace every occurence of x in the generic expression in terms of x by the local variable $+5 \oplus h$ to get the generic expression for numbers near +5 :
$\frac{+5 \oplus h^{+2} \ominus+7}{+5 \oplus h \oplus+3}$
iii. We execute the generic expression in terms of $+5 \oplus h$:

$$
\begin{gathered}
\frac{+25 \oplus+10 h \oplus+h^{2} \ominus+7}{+5 \oplus+h \oplus+3} \\
\frac{+18 \oplus+10 h \oplus+h^{2}}{+8 \oplus+h}
\end{gathered}
$$

Since the division probably won't stop by itself and since where we wiil stop the division will depend on the information we will want, the last expression just above is not an executed expression.

In contradistinction with Demo 0.1b - From x to -3 (Page 12), we have:

$$
\text { DEMO 0.3b To evaluate the generic expression } \frac{x^{+2} \ominus+7}{x \oplus+3} \text { near }-3
$$

i. We declare that the numbers are to be near -3 by writing the declaration $\left.\right|_{x \leftarrow-3 \oplus h}$, read " x to be replaced by $-3 \oplus h$ ", to the right of the generic expression:

$$
\left.\frac{x^{+2} \ominus+7}{x \oplus+3}\right|_{x \leftarrow-3 \oplus h}
$$

ii. We replace every occurence of x in the generic expression in terms
of x by the local variable $-3 \oplus h$ to get the generic expression for numbers near -3 :
$\frac{-3 \oplus h^{+2} \ominus+7}{-3 \oplus h \oplus+3}$
iii. We execute the generic expression in terms of $-3 \oplus h$:

$$
\begin{gathered}
\frac{+9 \oplus-6 h \oplus h^{2} \ominus+7}{-3 \oplus+3 \oplus h} \\
\frac{+2 \oplus-6 h \oplus h^{2}}{h} \\
+2 h^{-1} \oplus-6 \oplus h
\end{gathered}
$$

Since the division was by h, the last expression just above is an executed expression.

In contradistinction with Demo 0.1c - From x to +3 (Page 12), we have:

Demo 0.3c To evaluate the generic expression $\frac{x^{+2} \ominus+9}{x \oplus-3}$ near +3
i. We declare that the numbers are to be near +3 by writing the declaration $\left.\right|_{x \leftarrow+3 \oplus h}$, read " x to be replaced by $+3 \oplus h$ ", to the right of the generic expression:

$$
\left.\frac{x^{+2} \ominus+9}{x \oplus-3}\right|_{x \leftarrow+3 \oplus h}
$$

ii. We replace every occurence of x in the generic expression in terms of x by the local variable $+3 \oplus h$ to get the generic expression for numbers near +3 :

$$
\frac{+3 \oplus h^{+2} \ominus+9}{+3 \oplus h \oplus-3}
$$

iii. We execute the generic expression in terms of $+3 \oplus h$:

$$
\begin{gathered}
\frac{+9 \oplus+6 h \oplus h^{2} \ominus+9}{+3 \oplus-3 \oplus h} \\
\frac{+6 h \oplus h^{2}}{h} \\
+6 \oplus h
\end{gathered}
$$

Note that, here, the division being by h, we just did it and the expression just above is an executed expression.

And here is how it goes near ∞ :

$$
\text { Demo 0.3d To evaluate the generic expression } \frac{x^{+2} \ominus+9}{x \oplus-3} \text { near } \infty
$$

i. We declare that the numbers are to be near ∞ by writing the declaration $\left.\right|_{x \leftarrow L}$, read " x to be replaced by L ", to the right of the generic expression:

$$
\left.\frac{x^{+2} \ominus+9}{x \oplus-3}\right|_{x \leftarrow L}
$$

ii. We replace every occurence of x in the generic expression in terms of x by the local variable L to get the generic expression for numbers near ∞ :

$$
\frac{L^{+2} \ominus+9}{L \oplus-3}
$$

iii. We execute the generic expression in terms of L :

$$
\begin{aligned}
& \frac{L^{2} \ominus+9}{L \ominus-3} \\
& \frac{L^{2} \ominus[\ldots]}{L \ominus[\ldots]} \\
& \frac{L^{2}}{L} \oplus[\ldots]
\end{aligned}
$$

$$
L \oplus[\ldots]
$$

The last expression just above is the executed expression.
3. Picturing a neighborhood of 0. In Definition 0.8 - Small-size numbers (Page 30), small-size numbers were pictured with

which is not really a representation because the three qualitative sizes are represented at different scales. (https://en.wikipedia.org/wiki/Scale_ (represent)\#Large_scale,_medium_scale,_small_scale).
i. On a quantitative ruler, at just about any scale (https://en.wikipedia. org/wiki/Scale_(represent)\#Large_scale,_medium_scale,_small_scale), the negative lower cutoff for medium-size numbers and the positive lower cutoff for medium-size numbers will both be on top of 0 and we won't be able to see small-size numbers.
So, in order to see a neighborhood of 0 , we would need some kind of magnifier:

The fact though, that, the neighborhood needs to be representd at a scale larger than the scale of the quantitative ruler creates a problem. One way
qualitative ruler compactor
out, of course, would be to draw the neighborhood of 0 just under the quantitative ruler:

ii. But on a qualitative ruler, that is on a ruler without scale therefore without tickmarks-not even for 0 - but with $-\infty$ and $+\infty$ as end of the line symbols in accordance with Agreement 0.3 - Sides of the origin (Page 18):

we can draw a neighborhood of 0 as

4. Picturing a neighborhood of ∞. In DEfinition 0.10 - Largesize numbers (Page 30) large-size numbers were pictured with

which, again, is not a representation because the three qualitative sizes are representd at different scales. (https://en.wikipedia.org/wiki/Scale_ (represent)\#Large_scale,_medium_scale,_small_scale)
i. On a quantitative ruler, at just about any scale, the negative upper cutoff for medium-size numbers and the positive upper cutoff for medium-size numbers will both be way off the represent so we would need some kind of compactor.
ii. In the spirit of one-point compactification, using a Magellan circle

on which large-size numbers are representped as

the advantage is that positive large-size numbers and negative large-size numbers are representped right next to each other the same way as positive small-size numbers and negative small-size numbers:

which represents large-size numbers as a neighborhood of ∞ just the way Nicely! small-size numbers make up a neighborhood of 0 .
iii. In the spirit of two-points compactification, we can also represent a neighborhood of ∞, that is large-size numbers, on a qualitative ruler as:

Ahed,cafter all, 0 is the center of our neighborhood.

Here, the advantage is that we are still facing 0 but the disadvantage is, as opposed to the Magellan represent, that positive large-size numbers and negative large-size numbers are separated from each other, the opposed way of positive small-size numbers and negative small-size numbers which are right next to each other:

This is often referred to as a Mercator represent. (https://en. wikipedia. org/wiki/Mercator_projection)
iv.
$========$ End WORK ZONE $======$
5. Picturing a neighborhood of $\boldsymbol{x}_{\mathbf{0}}$. In Definition 0.12 - Mediumsize numbers (Page 31) medium-sized numbers were pictured wirh

which, again, is not a represent because the three qualitative sizes are representd at different scales. (https://en.wikipedia.org/wiki/Scale_ (represent)\#Large_scale,_medium_scale,_small_scale)

The situation with a neighborhood of x_{0} is similar to the situation with a neighborhood of 0 :
i. On a quantitative ruler, at just about any scale (https://en.wikipedia. org/wiki/Scale_(represent)\#Large_scale,_medium_scale,_small_scale), the medium-size numbers smaller than x_{0} and the medium-size numbers larger than x_{0} leave no room between them and we won't be able to see the numbers near x_{0}
So, in order to see a neighborhood of x_{0}, that is numbers near x_{0}, that isnumbers that differ from x_{0} by only small-size numbers, we would need to aim a magnifier at x_{0}, the center of the neighborhood.

side-neighborhoods left-neighborhood right-neighborhood 0^{+}
right
0^{-}
left

Again, the fact that a neighborhood needs to be representd at a scale larger than the scale of the quantitative ruler creates a problem. And again, a way out would be to represent the neighborhood of x_{0} just under the quantitative ruler:

ii. But on a qualitative ruler we can represent a neighborhood of x_{0} as

6. Side-neighborhoods. In order to deal separately with each side of a neighborhood we will often have to distinguish the side-neighborhoods. Pinning down the left-neighborhood from the right-neighborhood, though, depends on the nature of the point:

- - A left-neighborhood of 0 consists of the negative numbers near 0 (negative small-size numbers),
- A right-neighborhood of 0 consists of the positive numbers near 0 (positive small-size numbers),
In order to deal separately with each side of a neighborhood of 0 , we will use the symbols
- $\mathbf{0}^{+}$(namely 0 with a little + up and to the right) which is standard expression for positive small-size numbers.
Positive small-size numbers are right of of 0 , that is they are to our right when we are facing 0 , the center of the neighborhood.
- $\mathbf{0}^{-}$(namely 0 with a little - up and to the right) which is standard expression for negative small-size numbers.
Negative small-size numbers are left of 0 , that is they are to our left when we are facing 0 , the center of the neighborhood.
$+\infty$
$-\infty$

EXAMPLE 0.70. 0^{+}refers tosmall-sizenumbers right of 0 (such as for instance +0.37) and 0^{-}refers tosmall-sizenumbers left of 0 (such as for instance -0.88):

So, never forget that

CAUTIONARY NOTE $\mathbf{0 . 1 3} \quad+$ or ${ }^{-}$up to the right and by itself is not an 'exponent' but indicates which side of 0 .

- - A left-neighborhood of ∞ consists of the positive numbers near ∞ (positivelarge-size numbers),
- A right-neighborhood of ∞ consists of the negative numbers near ∞ (negative large-size numbers),
Just as we will often have to refer separately to each side of a neighborhood of 0 , we will often have to refer separately to each side of a neighborhood of ∞
So we will use:
- $+\infty$ as symbol for positive large-size numbers,
- $-\infty$ as symbol for negative large-size numbers, even though
We will then use as qualitative ruler:

- Keep in mind that it is easy to forget which side is left of ∞ and which side is right of ∞ because it is easy to forget that one must face the center of the neighborhood, namely ∞ :
- Positive large-size numbers are left of ∞ because, to face the center of the neighborhood, we have to imagine ourselves facing ∞, and then positive numbers will be to our left.

EXAMPLE 0.71. +724873336.58 is left of ∞

- negative large-size numbers are right of ∞ because, to face the center of the neighborhood, we have to imagine ourselves facing ∞, then negative numbers would be to our right.

- - A left-neighborhood of x_{0} consists of the numbers near x_{0} that are smaller than x_{0},(medium-size numbers that differ from x_{0} by only small-size numbers).
- A right-neighborhood of x_{0} consists of the numbers near x_{0} that are larger than x_{0},

7. Interplay between 0 and ∞. As already mentioned in Section 3 - Numbers In General (Page 7), both Numbers In General have intrigued people for a long time:
i. While, as mentioned in Section 3 - Numbers In General (Page 7), both 0 and ∞ are literally without meaning, both 0 and ∞ are absolutely and
completely indispensable.
EXAMPLE 0.73. When we have eaten three apples out of five apples, we indicate that there are two apples left by writng:

$$
5 \text { apples }-3 \text { apples }=2 \text { apples }
$$

But when we have eaten three apples out of three apples, how do we indicate that there is none left?

$$
3 \text { apples }-3 \text { apples }=? \text { apples }
$$

EXAMPLE 0.74. When we count "eight, nine, ten, eleven" we use a rhythm as indicated by the commas, say:
eight 1 sec nine 1 sec ten 1 sec eleven
And in fact, when we start counting with "eight", we think we are counting from "seven" and precede "eight" with the same silence:

1 sec eight 1 sec nine 1 sec ten 1 sec eleven
But from what number are we thinking we are starting from when we start counting with "one" and precede "one" by the same silence?

1 sec one 1 sec two 1 sec three 1 sec fout

EXAMPLE 0.75. When we get impatient and want to stop counting, we probably end the counting with "etc"

EXAMPLE 0.76. When a number is so large that we cannot even begin to

As in "The number of people who want to teach you is infinite." imagine it, we often use the word "infinite".
ii. Even though, as an input, 0 is usually not particularly important, there is an intriguing "symmetry" between ∞ and 0 namely:

More precisley, small numbers are some sort of inverted image of large numbers since the reciprocal of a large number is a small number and vice versa.
EXAMPLE 0.77. The opposite of the reciprocal of -0.001 is +1000 . In a Magellan view, we have

real number
iii. Moreover, since by Definition 0.12 - Medium-size numbers (Page 31), small-size numbers are near 0 and large-size numbers are near ∞, Theorem 0.8 - Reciprocity of qualitative sizes (Page 38) can be restated as

THEOREM 0.8 (Restated) Reciprocity of qualitative sizes

- The reciprocal of a number near ∞ is a number near 0 ,
- The reciprocal of a number near 0 is a number near ∞.

It then seems somewhat artificial, even though Cautionary Note 0.2-0 is a dangerous number (Page 5) and Cautionary Note $0.3-\infty$ is not a number (Page 6), not to extend the reciprocity of numbers near 0 (small-size numbers) and numbers near ∞ (large-size numbers) to a reciprocity of 0 and ∞ themselves. So,

AGreement 0.7 Since we will not compute with ∞, this will only be a shorthand for Theorem (Restated) 0.8 - Reciprocity of qualitative sizes (Page 55).

12* Real Numbers

This section is only for those readers who want to know what are the real numbers used by most Calculus texts, and what using real numbers instead of real-world numbers would entail.

1. What are real numbers? Even though most college mathematics textbooks claim to use real numbers, the individualst they ever come to defining real numbers is something along the lines of "a real number is a value of a continuous quantity that can represent a distance along a
ing. Moreover, the wording

roit time! A sign of unease?
line." (https://en.wikipedia.org/wiki/Real_number or https://math.
vanderbilt.edu/schectex/courses/thereals/)
And of course, there is a very good reason for this vagueness (https: //en.wikipedia.org/wiki/Vagueness_and_Degrees_of_Truth): in contrast with real-world numbers, real numbers are so extremely complicated to define that it is only done in Real Analysis, long after Calculus.

$$
\begin{aligned}
& \text { "The real number system }(\mathbb{R} ;+; \cdot ;) \text { can be defined axiomatically [...] } \\
& \text { There are also many ways to construct "the" real number system, for ex- } \\
& \text { ample, starting from whole numbers, (https://en. wikipedia.org/wiki/ } \\
& \text { Natural_number) then defining rationalnumbers algebraically (https://en. } \\
& \text { wikipedia.org/wiki/Rational_number), and finally defining realnumbers } \\
& \text { as equivalence classes of their Cauchy sequences or }\left({ }^{*}\right) \text { as Dedekind cuts, } \\
& \text { which are certain subsets of rational numbers." (https://en.wikipedia. } \\
& \text { org/wiki/Real_number\#Definition) } \\
& \left({ }^{*}\right) \text { One does not really have a choice between the Dedekind route and the } \\
& \text { Cauchy route and one should both: } \\
& \text { i. go the Dedekind route and extend the metric and then prove that the } \\
& \text { quotient is metric-complete, } \\
& \text { and } \\
& \text { ii. go the Cauchy route and extend the order and then prove that the quotient } \\
& \text { is order-complete, } \\
& \text { and finally } \\
& \text { iii. prove that the two quotients are both metric-isomorphic and order- } \\
& \text { isomorphic. }
\end{aligned}
$$

2. Fractions and roots In fact, at best, that is even when the real number is a fraction or a root, a real number is only like a Birth Certificate in that the real number is just a name that says where the real number is coming from. But this name certainly does not provide by itself any indication of what the size of the real number is.

EXAMPLE 0.78.

- The fraction $\frac{4168}{703}$ is just a name for the solution of the equation $703 x=$ 4168 (Assuming the equation has a solution!)
- The root $\sqrt[3]{-17.3}$ is just a name for the solution of the equation $x^{3}=-17.3$. (Assuming the equation has a solution!)

However, this best case is actually extremely rare and most real numbers do not tell us by themselves where they are coming from which leaves us with no way to get even a rough idea of what the size of that real number
might be

EXAMPLE 0.79.

- π is just a name that does not say by itself that π is "the ratio of a circle's circumference to its diameter". (https://en.wikipedia.org/wiki/Pi)
- e is just a name that does not say by itself that e is "a mathematical constant which appears in many different settings throughout mathematics". (https://en.wikipedia.org/wiki/E_(mathematical_constant))

3. Calculating with real numbers. This can be done directly from the names only with the same two kinds of real numbers, that is when the real numbers are fractions or roots:
i. When the real numbers are fractions, there are procedure to compare, add, subtract, multiply and divide directly from the whole numbers that make up the fractions. (https://en.wikipedia.org/wiki/Rational_ number\#Arithmetic)

EXAMPLE 0.80. To know which is the larger of $\frac{4168}{703}$ and $\frac{5167}{831}$ there is a procedure that involves only the wholenumbers $4168,703,5167$ and 831.
ii. When the real numbers are roots, there are procedures to multiply and divide directly with the whole numbers that make up the roots but not to add or subtract. (https://en.wikipedia.org/wiki/Nth_root\# Identities_and_properties)

EXAMPLE 0.81. $\quad \sqrt[2]{5} \times \sqrt[3]{7}=\sqrt[2 \times 3]{5^{3} \times 7^{2}}$
iii. However, it is usually not possible to calculate with both kinds of real numbers at the same time.
EXAMPLE 0.82. Add e and π and/or figure out which of the two is larger. (Hint: you can't do either from the names.)

And, even when the real numbers are fractions and roots, things can still be difficult.
EXAMPLE 0.83. Add $\sqrt[3]{64}$ and $\frac{876}{12}$ and/or figure out which of the two is larger. (Hint: in this case you can do both but not in the only slightly different case of $\sqrt[3]{65}$ and $\frac{875}{12}$.)
iv. Of course, the examples in textbools use mostly fractions and/or roots even though it is at the expense of being immensely misleading if only because most real numbers are neither fractions nor roots.

And at the expense of forcing memorization of scattered recipes.
approximate procedure

13* Approximating Real Numbers

The reason engineers and physicists, chemists, biologists, don't worry about real numbers is because they approximate real numbers with ... real-world numbers!!!

1. Approximation procedures. To begin with, one way or the other, all real numbers, including fractions and roots, come with a procedure for calculating approximations by numbers.
i. To approximate fractions, we use the division procedure.

EXAMPLE 0.84. To approximate $\frac{4168}{\frac{703}{} \text {, we divide } 703 \text { into } 4168 .}$
Few divisions end by themselves. Fortunately, though, when they don't, the more we push the division, the better the approximation.
ii. To approximate roots, we essentially proceed by trial and error.

EXAMPLE 0.85. To approximate $\sqrt[3]{17.3}$, we go:

- $1.0^{3}=1.0$
- $2.0^{3}=8.0$
- $3.0^{3}=27.0$,

Since 17.3 is between 8.0 and $27.0, \sqrt[3]{17.3}$ must be somewhere between 2.0 and 3.0. (But how do we know that it must?) So now we go:

- $2.1^{3}=9.261$
- $2.5^{3}=15.620$
- $2.6^{3}=17.576$

Since 17.3 is between 15.620 and $17.576, \sqrt[3]{17.3}$ must be between 2.5 and 2.6 .
(But how do we know that it must?)
And so on. (The actual procedure is more efficient but that's the idea.)
Of course, the more "exotic" the real number is, the more complicated the procedure for approximating is going to be:
EXAMPLE 0.86. There are many ways to approximate π. The simplest one is the Gregory-Leibniz series whose first few terms are:
$\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\frac{4}{13} \ldots$
However, even with "500,000 terms, it produces only five correct decimal digits of π " (https://en.wikipedia.org/wiki/Pi\#Approximate_value) But
there are shorter if more complicated ways to approximate π.
[...]
largest permissible error

EXAMPLE 0.87. One of the very many ways to approximate e is:
$1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \cdots$
(https://en.wikipedia.org/wiki/E_(mathematical_constant) \#Asymptotics)
2. Approximation error. Since a real number is usually not equal to the real-world numbers used to approximate it, in order to write equalities we will have to use:

DEFINITION 0.16 will be the symbol for "some small-size number, positive or negative, whose size is too small to matter here".

In other words, [...] is a signed number about which the only thing we know is that the size of $[\ldots]$ is less than the largest permissible error whichi is the equivalent here of a tolerance.

EXAMPLE 0.88.

- $\frac{4168}{703}=5.929+[\ldots]$ where $[\ldots]$ is less than 0.001 which is the largest permissible error. (Else the procedure would have generated 5.928 or 5.930 instead of 5.929.)
- $\sqrt[3]{17.3}=2.586318666944673+[\ldots]$ where [...] is less than 0.000000000000001 which is the largest permissible error. (Else the procedure would have generated 2.586318666944672 or 2.586318666944674 instead of 2.586318666944673.)
- $\pi=3.1415+[\ldots]$ where $[. .$.$] is less than 0.00001$ which is the largest permissible error. (Else the procedure would have generated 3.1414 or 3.1416 instead of 3.1415 .)
- $e=2.71828182+[\ldots]$ where [...] is less than 0.00000001 which is the largest permissible error. (Else the procedure would have generated 2.71828181 or 2.71828183 instead of 2.71828182 .)

Conclusion

So, "the wheel is come full circle" (King Lear), from the real numbers all the way back to the real-world numbers, with just one question left:

And a good question it is. But then, it surely depends on what you mean by "learn"

Why should people who want to learn calculus have to use real numbers which they would then have to approximate with real-world numbers anyhow?

Well, since,

- To fully quote from Gowers in ?? ?? - ?? (??), "Physical measure-

And even if you wanted to become a mathematician, "Real Analysis becomes more intuitive when [one thinks of real numbers] as infinite decimals." (Gowers' https: // www. dpmms. cam. ac. uk/ ~wtg10/decimals.html)
ments are not real numbers. That is, a measurement of a physical quantity will ..."
and

- Just like people, " $[\mathrm{m}]$ ost calculators do not operate on real numbers.

Instead, they work with finite-precision [decimal] approximations."(https: //en.wikipedia.org/wiki/Real_number\#In_computation.)
the answer must surely be, as Engineers used to be fond of saying, that
"The real real numbers are the decimal numbers."

And now, Ladies and Gentlemen, let Calculus begin!

Part I

Functions Given By Data

The simplest way to give a function is to give the rekevant data, that is the numbers connected by the function.

Functions of various kinds are "the central things of investigation" in most fields of modern mathematics.

Michael Spivak ${ }^{0}$

connect
pair
2-tuple

Chapter 1

The Name Of The Game

Relations, 63 • Picturing Relations, 73 • Relations Given By Sets Of Plot ...is 'function' of course! (https://idioms. thefreedictionary. com/ the + name + of the + game) Dots, 77 • Functions, 87 • Functions Given by I-O Plots, 95 • Functions Given By Curves, 107 • "Simple" Functions?, 116 • Local graph near a point, 119 .

1 Relations

Leonardo da Vinci is often quoted as having said that Everything Connects to Everything Else. ${ }^{1}$ (https://medium.com/@nikitavoloboev/everything-connects-to-everything-els And, indeed, Da Vinci's statement is at the very heart of all SCIENCES. Even if we can't always see

EXAMPLE 1.1. Everything sits on something else: people sit on chairs the connections. that sit on floors that sit on joists that sit on walls that sit on...

1. Ordered pairs. An ordered pair of things is two things in a given order. (https://en.wikipedia.org/wiki/Ordered_pair)

LANGUAGE NOTE 1.1 An ordered pair is also called a 2-tuple but we will not use the word.

[^5]relation
thing
left thing
right thing
diagram

The standard format for writing an ordered pair is to write the two things in the given order, separated by a comma, between parentheses.
EXAMPLE 1.2. The ordered pair (Eiffel Tower, Empire State Building) is not the same as the ordered pair (Empire State Building, Eiffel Tower)

CAUTIONARY NOTE 1.1 In mathematics:

- An ordered pair
is not to be confused with
- A pair, which is just a collection of two things so that the order in which the two things are given is irrelevant.

Nevertheless, since, in this text, we will be using ordered pairs to record how things are connected, the order in which two things are given will always be relevant and so

Just as in "a pair of gloves".
Agreement 1.1 We will let the qualifier "ordered" go without saying and use the word pair as short for ordered pair.
But, as usual, for a while we will write (ordered) pair as a reminder.
2. Connected things. The mathematical concept behind Da Vinci's connections is that of a relation (https://en.wikipedia.org/wiki/Relation_ (mathematics)) which has two components:
A. The first component of a relation is two collections of things namely:

- A collection of things we will refer to as left things,
- A collection of things we will refer to as right things

Agreement 1.2

To make it easier to distinguish left things from right things, we will use:

- Pink boxes for left things as in, for instance,

$$
\text { Jill, } x,-0.053, x_{0}, 0 \infty, \text { small, large }
$$

- Green boxes for right things as in, for instance,

$$
\text { Jack, } y,+32.14, y_{0}, 0 \infty, \text { small, large }
$$

There are essentially two ways to give the two collections of things:

- One way is by way of diagrams which is the most immediately intuitive way, (https://en.wikipedia.org/wiki/Diagram)

EXAMPLE 1.3. Diagrams for: A collection of Persons:

connector
related
arrow connector
arrow diagram

- The other way is by way of lists, which is the way that lends itself to Procedures.
EXAMPLE 1.3. (Continued) Lists for:
A collection of Persons:
Andy, Beth, Cathy .
A collection of activities
walk, sing, cook, prove, read.
B. The second component of a relation is the connector, that is anything that pairs some of the left things with some of the right things. When the connector pairs a left thing to a right things, we will say that the left thing is related to the right things and/or that the (ordered) pair (left thing, right thing) is a related pair.
- When the collections of things are given with diagrams, the connector will be in the shape of an arrow connector which will give the relation as an arrow diagram.
Example 1.4. The collections in Example 1.3 (Page 65) could for instance be connected into the arrow diagram:

which, for instance, says that (Andy, walk) and (Andy, sing) are both related pairs but (Cathy, cook) is not a related pair.

In everyday language: Andy likes both walking
and singing but Cathy doesn't like cooking.

- When the collections in a relation are given by lists, the connector will
be given by the list of all related (ordered) pairs taken from among all possible (ordered) pairs
EXAMPLE 1.4. (Continued) The connector could also be given as the list of related pairs:
(Andy, walk) (Andy, sing)
(Cathy, prove) (Cathy, walk) (Cathy, read)
taken from from the list of all possible pairs

Andy, cook	(Andy, prove)	(Andy, walk)	Andy, sing)	Andy, read)
Beth, cook	Beth, prove)	Beth, walk)	Beth, sing) (Berser	Beth, read)
Cathy, cook	(Cathy, prove	(Cathy, walk)	(Cathy , sing) (Cathy, read

3. (left thing, right thing) pairs. Since we will be dealing with relations, the (ordered) pairs we will be dealing with will always be the (left thing, right thing) pairs in some relation. But of course, given a relation, other (ordered) pairs could always be floating around that have little or nothing to do with the given relation.

Example 1.4. (Continued)

- Since Jack is not in the collection of Persons, (Jack, prove) is an (ordered) pair but not a (Person, activity) pair
- Since swimming is not in the collection of activities, (Beth, swim) is an (ordered) pair but not a (Person, activity) pair.
- Since Cathy does not like to cook, (Cathy, cook) is a (Person, activity) pair but not a related (Person, activity) pair.
- Since Andy likes to walk, (Andy, walk) is not only a (Person, activity) pair but a related (Person, activity) pair.

Given a relation, the set of (left thing, right thing) pairs is the collection of all the related (left thing, right thing) pairs.

EXAMPLE 1.4. (Continued) The set of (Person, activity) pairs is: (Andy, walk), (Andy, sing), (Cathy, walk),

(Cathy, read), (Cathy, prove) | table |
| :--- |
| row |
| column |
| list table |
| Cartesian table |

4. Tables. Using lists to give a relation, though, is tedious and rela-
Descartes
tions are often given in the shape of tables in which the collections of things
are listed in rows and columns in a way that shows the (left thing, right thing $)$
pairs. (https://en.wikipedia.org/wiki/Table_(information))

Among other kinds of tables, there are:

- List tables in which the collection of left things is listed in the lefthand column and for each left thing the related right thing(s), if any, are listed horizontally in the righthand column.

Example 1.5. The list table for the relation in Example 1.4 (Page 65) is

Persons	activities, if any, that Persons, if any, like	
Andy	walk	sing
Beth		
Cathy	read	walk prove
	cook	

- Cartesian table - named after René Descartes (https://en.wikipedia. org/wiki/Ren\%C3\%A9_Descartes) ${ }^{1}$ - which are much more systematic than list tables:

Just a bit less obvious to

- All the left things are listed in a vertical column on the left, read, though.
- All the right things are listed in a horizontal row on top,
- For each (left thing, right thing) the word yes or no at the intersection of the horizontal row of the left thing and the vertical column of the right thng indicates whether or not the left thing is related to the right thing .

EXAMPLE 1.6. The Cartesian table for the relation in Example 1.4 (Page 65) is:

[^6]| likes to | walk | sing | read | prove |
| :---: | :---: | :---: | :---: | :---: |
| cook | | | | |
| Andy | yes | yes | no | no |
| Beth | no | no | no | no |
| Cathy | yes | no | yes | yes |

where, for instance,

	likes to
	prove
Cathy	yes

says that Cathy likes to prove.
5. Endorelations. There is no reason why the collection of left things Just for the sake of precision! and the collection of right things cannot be one and the same.

EXAMPLE 1.7.

Arrow diagram:

Persons	Persons, if any, whom	Persons like
Alma	Alma	Carla
Brad		
Carla	Alma	
Brad		
Emava		
	Carla	
	Emma	

	likes	Alma	Brad	Carla	Dave	Emma	
	Cartesian table:	Alma	yes	yes	yes	no	no
Brad	no	no	no	no	no		
Carla	yes	yes	no	no	no		
Dave	no	no	no	no	no		
	Emma	no	no	yes	no	no	

Language note 1.2 While relations in which left things and right things are from one and the same collection are called endorelations, we will just keep on using the word relation. https://en.wikipedia.org/wiki/Homogeneous_relation
6. Relation problems. Given a relation, there are of course many questions we can ask.
a. How we will proceed to answer these questions will depend on how the relation is given:

- Arrow diagrams are intuitive but only so long as there are very few things in the collections and so we will not use arrow diagrams very often.
- List tables are clear and allow for quite a few things in the collectionsbut still not too many,
- Cartesian tables allow for just about any number of things in the collections.
b. The simplest question we may ask is if a given (left thing, right thing) pair is or is not related.
EXample 1.8. In Example 1.4 (Page 65) we may ask:

This question will in fact turn out to be basic for picturing relations.

Does Cathy like to sing?
Answer: No, so the pair (Cathy, sing) is not a related pair
Does Cathy like to prove?
Answer: Yes, so the pair (Cathy, prove) is a related pair.
c. A consequence of Da Vinci's statement is that, in fact, any given thing is known only by what is known of the things that the given thing is connected to.
relation problem left problem

EXAMPLE 1.9. Variants of the idea that things are known by what is known of the things they are connected to are found in many cultures:
You tell me the company you keep, I will then tell you what you are (Dutch)
You tell me who's your friend, I will then tell you who you are (Russian)
You tell me your company, I will then tell you who you are
You tell me what you are eager to buy, I will then tell you what you are
You tell me with whom you go, I will then tell you what you do
You tell me who your father is, I will then tell you who you are
You tell me what you eat, I will then tell you what you are

So, the more consequential questions we may ask about a given relation fall into two general kinds of relation problems:

- Left thing problems in which we want to find information about a given left thing in terms of the right thing(s), if any, that the given left thing is related to.
i. List tables make it particularly easy to solve left thing problems: look up the given left thing in the left column and you will see the right things that the given left thing is related to listed on that row.

Example 1.10. If, for the relation given in Example 1.4 (Page 65), we ask for all the activities which Cathy likes, the list table in Example 1.5 (Page 67) shows:

Cathy | read walk prove

If we ask for all the activities which Beth likes, the list table in Example 1.5 (Page 67) shows:

Beth

And, similarly, the list table in Example 1.5 (Page 67) even gives answers to questions such as:
Is there any activity Beth likes? (Answer: No)
Does Cathy like all activities? (Answer: No)
Does Andy like at least one activity? (Answer: Yes)
ii. Cartesian tables are just a bit harder to use: look up the given left thing in the left column and the right things that the given left thing is related to, if any, will be in the columns with the word yes.

EXAMPLE 1.11. If we ask for all the activities which Cathy likes, the right problem Cartesian table in Example 16.16 (Page 490) shows:

And if we ask for all the activities whichh Beth likes, the Cartesian table in Example 16.16 (Page 490) shows:

And, similarly, the Cartesian table in Example 16.16 (Page 490) even gives answers to questions such as:
Is there any activity Beth likes? (Answer: No)
Does Cathy like all activities? (Answer: No)
Does Andy like at least one activity? (Answer: Yes)

- Right thing problems in which we want to find information about a given right thing in terms of the left thing(s), if any, that are related to the given right thing.
i. List tables are fairly unsuited to solving right thing problems because you have to hunt for the given right thing in all the rows of the right hand column.

Example 1.12. If, for the relation given in Example 1.4 (Page 65), we ask for all the Persons who like to walk, the list table in Example 1.5 (Page 67) showa:

Persons	activities, if any, that Persons like
Andy	walk sing
Beth	
Cathy	read walk prove

If we ask for all all the Persons who like to cook, the list table in ExamPle 1.5 (Page 67) showa:

Persons	activities, if any, that Persons like
Andy	walk sing
Beth	
Cathy	read walk prove
	cook

And similarly, the list table in Example 1.5 (Page 67) even gives answers to questions such as:
Is there at least one Person who likes cook? (Answer: No)
Is there at least one Person who likes walk? (Answer: Yes) Do all Persons like walk? (Answer: No)
ii. Cartesian tables make it just as easy to solve right thing problems as to solve left thing problems: look up the given right thing in the top row and the left thing(s) that are related to the given right thing, if any, will be in the rows with the word yes.

EXAMPLE 1.13. If we ask for all the Persons who like to walk, the Cartesian table in Example 16.16 (Page 490) shows:

likes to	walk
Andy Beth	yes
no	
Cathy	yes

If we ask for all the Persons who like to cook, the Cartesian table in ExamPle 16.16 (Page 490) shows:

likes to	
Andy	nook
Beth	no
Cathy	no

And, similarly, the Cartesian table in Example 16.16 (Page 490) even gives answers to questions such as:
Is there at least one Person who likes to cook? (Answer: No)
Is there at least one Person who likes to walk? (Answer: Yes)
Do all Persons like to walk? (Answer: No)

2 Picturing Relations

Arrow diagrams are a very natural and very visual way to picture relations but we will need ways to picture relations that are a lot more systematic.

1. Basic picture. A relation that involves only just a few related (left thing, right thing) pairs can be easily pictured with just a ruler for left things and a ruler for right things .

Procedure 1.1 To picture a (left thing, right thing) pair,
i. Mark the given left thing as in Subsection 6.1-Comparing given numbers (Page 19) on the ruler for left things,
ii. Mark the given right thing as in Subsection 6.1 - Comparing given numbers (Page 19) on the ruler for right things,
iii. If the given left thing is related to the given right thing draw a link from the given left thing marked on the ruler for left things to the given related right thing marked on the ruler for right things.

DEMO 1.1 Picture the related pair (Andy, walk) in EXAMPLE 1.7 (Page 68)

(Ruler for left things)
where the link says that Andy likes to walk,
2. Quantitative Cartesian setup. Now, while relations can involve any kind of things, this text will deal only with (endo)relations involving numbers-hence left numbers and right numbers - and so the set of
quantitative Cartesian setup
screen
quantitative ruler for left numbers
quantitative ruler for right numbers
left number level line right number level line plot dot

Yeah, sure enough, Cartesian setups are upside down from Cartesian tables.
related pairs will usually be large and so picturing those relations will require a more efficient setup than just two rulers.

A quantitative Cartesian setup consists of:

- A rectangular area which we will call the screen.
- A quantitative ruler for left numbers below the screen (horizontal)
- A quantitative ruler for right numbers left of the screen (vertical)

EXAMPLE 1.14.

3. Plotting pairs of numbers.

Procedure 1.2 To plot a given pair of numbers,

i. Tickmark the given left number on the quantitative ruler for left numbers (horizontal),
ii. Draw a left number level line, that is a vertical line through the tickmark for the given left number,
iii. Tickmark the given right number on the quantitative ruler for right numbers (vertical),
iv. Draw a right number level line, that is a horizontal line through the tickmark for the given right number,
v. Then, at the intersection of the left number level line and the right number level line, mark the plot dot with:

- A solid dot if the (left number, right number) pair is related. or, as we wll need occasionally,
- A hollow dot if the (left number, right number) pair is not related
solid dot hollow dot data point plot point

DEMO 1.2

Plot the related pair $(-3,+40)$.
i. We tickmark -3 on the ruler for left numbers,
ii. We draw a left number level line (vertical) through -3 ,
iii. We tickmark +40 on the ruler for right numbers,
iv. We draw a right number level line (horizontal) through +40 ,
v. Since the given pair is related, we use a solid dot to
 mark the intersection of the left number level line with the right number level.

Note that the plot dot is at the elbow of the link.

LANGUAGE NOTE 1.3 The word usually used in MATHEMATICS instead of plot dot is plot point and, in the experimental sciences, data point but we cannot do that since we are already using the word point with a different meaning. Subsection 4.1 - Non-zero digits (Page 14)
4. Reading plot dots. The other way round,

Procedure 1.3 To get the pair of numbers from a given plot dot,
i. Draw a left number level line (vertical) through the given plot dot, ii. Read the left number where the left number level line intersects the ruler for left numbers,
iii. Draw a right number level line (horizontal) throught the given plot dot.
iv. Read the right number where the right number level line intersects the ruler for right numbers,

Demo 1.3

Given the plot dot

Right numbers

get the pair of numbers.

3 Relations Given By Sets Of Plot Dots

1. Sets of plot dots. Since quantitative Cartesian setups allow us to picture large sets of pairs, we can picture a given relation with a set of plot dots, that is with the plot dots for all the related left number right number pairs.

EXAMPLE 1.15.

EXAMPLE 1.16.

histogram
bar graph
x-axis
y-axis
axis
2. Axes. Keeping the ruler for left numbers and the ruler for right numbers away from the screen as we do in the Cartesian setup is not the usual practice in Mathematics even though it is standard practice in the real world:

Cartesian Table

Histogram ${ }^{2}$

Bar graph ${ }^{3}$

As indicated by the word Cartesian, the quantitative Cartesian setup is due to Descartes who, since he did not use negative numbers, had no problem using the 0 level line as ruler for left numbers and the 0 level line as ruler for right numbers since they were not in the way.

Descartes
But when mathematicians eventually did accept negative numbers, they continued to use:

- the 0 level line as ruler for left numbers - which they then called \boldsymbol{x}-axis and
- the 0 level line as ruler for right numbers - which they then called y axis
even though :
CAUTIONARY NOTE 1.2
Since axes are in the middle of the picture

Modern
using the x-axis as ruler for left numbers can be confusing because:

[^7]- The plot dot for the pair $\left(x_{0}, 0\right)$ will then be on top of the tickmark for the left number x_{0} which makes it unclear which is intended,
and, similarly, using the y-axis as ruler for right numbers can be confusing because:
- The plot dot for the pair $\left(0, y_{0}\right)$ will then be on top of the tickmark for the right number y_{0} which makes it unclear which is intended.

EXAMPLE 1.17. When using the axes as rulers.

The plot dot for the pair ($+4,0$) is on top of the tickmark for the left number +4 :

The plot dot for the pair $(0,-50)$ is on top of the tickmark for the right number -50:

3. The quincunx. We will call quincunx (https://en.wikipedia. org/wiki/Quincunx) the set of plot dots for the following five pairs:
left number problem

$$
\begin{aligned}
& (-1,+1) \quad(0,0) \\
& (-1,-1) \quad(+1,+1) \\
& (+1,-1)
\end{aligned}
$$

Note that here the plot dots are hollow dots because, at this time, we don't know which of the five left number right number pairs in the quincunx, if any, are related. In fact, we will see that which of the five left number right number pairs in the quincunx are related will play a central role with 'power functions'.
4. Sparseness of sets of plot dots. In engineering and the experimental sciences, aside from being given by Cartesian tables, relations are often given by a set of plot dots generated by some machinery (https: //en.wikipedia.org/wiki/Plotter) on the screen of a quantitative Cartesian setup.

However, while, when the relation is given by a set of plot dots, the Procedures for solving relation problems are fairly obvious as we will now see, what can complicate matters is that

CaUtionary note 1.3 Sets of plot dots are sparse, that is, there are only so many plot dots surrounded by a lot of empty space.
5. Left number problems. To solve a left number problem when the relation is given by a set of plot dots, we use

Procedure 1.4 To get the right number(s) (if any) related to a given left number when the relation is given by a set of plot dots,
i. Tickmark the given left number on the ruler for left numbers,
ii. Draw a left number level line through the tickmark for the given left number,
iii. Mark the plot dot(s), if any, where the left number level line intersect the given set of plot dots, (This is where the fact that sets of plot dots are sparse can come in with a vengeance.)
iv. Draw a right number level line through each plot dot,
v. Read the right number(s) related to the given left number, if any, where the right number level line(s) intersect(s) the ruler for right numbers,

Demo 1.4a

Given the set of plot dots

the left number -2 , get the right number(s) related to -2 , if any.
i. We tickmark -2 on the ruler for left numbers
ii. We draw a left number level line through the tickmark for -2 ,
iii. We mark the plot dot(s) where the left number level line through -2 intersects the set of plot dots, if at all
iv. We draw the right number level line through the marked plot $\operatorname{dot}(\mathrm{s})$, if any,
v. We read the right number related to -2 where the right number level line intersect the ruler for right numbers: +30 .

Demo 1.4b

Given the set of plot dots

the left number +2 , get the right number(s) related to +2 , if any..
i. We tickmark +2 on the ruler for left numbers
ii. We draw a left number level line through the tickmark for +2 ,
iii. We mark the plot $\operatorname{dot}(\mathrm{s})$ where the left number level line through +2 intersects the set of plot dots, if at all
iv. We draw the right number level line through eacn of the marked
 plot dot(s), if any,
v. We read the right number(s) related to +2 where the right number level line intersect the ruler for right numbers : +30 and -60..

Demo 1.4c

Given the set of plot dots

the left number +1 , get the right number(s) related to +1 , if any.
right number problem
i. We tickmark +1 on the ruler for left numbers
ii. We draw a left number level line through the tickmark for +1 ,
iii. There is no plot dot where the left number level line through +1 intersects the set of plot dots. (This is where the fact that sets of plot dots are sparse comes in.)

iv. We cannot draw any
right number level line since there isn't any marked plot dot,
\mathbf{v}. There is no right number
related to +1 .
6. Right number problems. To solve a right number problem when the relation is given by a set of plot dots, we use

Procedure 1.5 To get the left number(s) (if any) related to a given right number when the relation is given by a set of plot dots,
i. Tickmark the given right number on the ruler for right numbers,
ii. Draw a right number level line through the tickmark for the given right number
iii. Mark the plot $\operatorname{dot}(\mathrm{s})$, if any, where the right number level line intersect the given set of plot dots, (This is where the fact that sets of plot dots are sparse can come in with a vengeance.)
iv. Draw a left number level line through each plot dot,
v. Read the left number(s) related to the given right number, if any, where the left number level line(s) intersect(s) the ruler for left numbers,

Demo 1.5b

Given the set of plot dots

the right number -50 , get the left number related to -50 , if any.
i. We tickmark -50 on the ruler for right numbers
ii. We draw a right number level line through the tickmark for -50 ,
iii. We mark the single plot point where the right number level line intersects the set of plot dots,
iv. We draw a left number level line through the marked plot dot,
v. We read the related

left number where the left number level line intersect the ruler for
left number: -2 .

Demo 1.5c

Given the set of plot dots

the right number -30 , get the left number related to -30 , if any.
i. We tickmark -30 on the ruler for right numbers
ii. We draw a right number level line through the tickmark for -30 ,
iii. There is no plot point where the right number level line intersects the set of plot dots. (This is where the fact that setx of plot dots are sparse comes in.)
iv. We cannot draw a
 left number level line through a marked plot dot,
v. There is no left number related to the given -30 .

4 Functions

To see that something is changing, and to record the change, we must look at that thing in relation to something else.
EXAMPLE 1.18. To realize that:

- The airplane we are sitting in is moving, we must look out the window.
- The tree we see out our window is growing, we must look at it in relation with somethings like a building..

This is even more the case for quantitative changes.
EXAMPLE 1.19. We might say that someone's income tax was $\$ 2270$ but, by itself, that wouldn't be much information because, for instance,

- \$2 270 of income tax was a lot more money in Year 1913 -the year income tax was first established, than, say, a century later, in Year 2013. So, for saying that someone's income tax is $\$ 2270$ to be information, we would have to have some relation pairing years with Income Tax,
- \$2270 of income tax is a lot more money for the rest of us than for billionaires. So, for saying that someone's income tax is $\$ 2270$ to be information, we would have to have some relation pairing Incomes with
function
function requirement

Income Tax.

However, the fact that a relation can relate one same left number to many different right numbers can make differences difficult to see.

EXAMPLE 1.20. Consider the following:

- A slot machine can pair a number of coins with just about any number of coins which makes it quite hard to decide if this slot machine is better for gambling than that other slot machine.
- A parking meter can pair a number of coins with only one number of minutes which makes it easy to decide if this parking meter is better for parking than that other parking meter.

1. Function requirement. So, from now on we will restrict ourselves to functions, that is to relations that meet

DEFINITION 1.1 The function requirement for a relation:
No left number can be related to more than one right number . that is, in other words,
A left number can be related to no more than one right number . that is, still in other words,
A left number can be related to at most one right number.

EXAMPLE 1.21. In EXAMPLE 1.14 (Page 74)

- The slot machine does not meet the Local behaviour coding format (Definition 2.1, Page 135) because even when two Persons put the same amount of money in a given slot machine, the slot machine can give different amounts of money to the two Persons.
- The parking meter does meet the Local behaviour coding format (Definition 2.1, Page 135) because whenever two Persons put the same amount of money into a given parking meter, the parking meter will always give the two Persons the same number of minutes.

EXAMPLE 1.22. As opposed to the relation in EXAMPLE 1.5 (Page 67), the relation given by the table

Persons:	Activities, if any, these Persons like:
Dave	skate
Eddy	
Fran	sing

input/output device
I-O device
input
output
return
satisfies the Local behaviour coding format (Definition 2.1, Page 135)
2. Inputs and outputs. The Local behaviour coding format (Definition
2.1, Page 135) actually makes a big qualitative difference among relations in that, while relations are essentially embodiments of Da Vinci's statement so that there is no precedence whatsoever between left things and right things, with functions, as we will see, left things somehow come "before" right things and, in fact, functions are seen as input/output devices, I-O device for short. (https://en.wikipedia.org/wiki/Input/ output)

So, to acknowledge this precedence in the case of a function, we will use the word input instead of left number and the word output instead of right number. Then, instead of saying that an output is related to an input we will say that the function returns the output for the given input.

We can then rephrase the Local behaviour coding format (Definition 2.1, Page 135) as follows:

DEFINITION 2.1 (Restated) Local behaviour coding format

Given an input, a function cannot return more than one output. words

Given an input, a function can return no more than one output. that is, still in other words,

Given an input, a function can return at most one output.

So, according to Definition (Restated) 2.1 - Local behaviour coding format (Page 89):
domain

And even inside "casual" Mathematics!

In other words, this text is trading rigor for expository simplicity. And this theoretical difficulty wouldn't come up any time soon anyhow.

Of course, you might say that no tax $=\$ 0.00$ so this may not a very good example for Cautionary Note 1.4 - Inputs with no output (Page 90).
A. Given an input, a function may or may not return an output, that is there may or may not be an output related to the given input.

Now, while this is fairly standard practice outside of MATHEmATICS, strictly speaking, functions should not be allowed to return no output because that would eventually cause a theoretical difficulty and so one should introduce the word domain for the collection of inputs for whch the function does return an output.

EXAMPLE 1.22. (Continued) For a mathematician, the given relation is not a function and only its restriction to its domain, that is Dave, Fran, is a function. satisfies the Local behaviour coding format (Definition 2.1, Page 135)

However, inasmuch as we will not be anywhere near encountering this theoretical difficulty:

CAUTIONARY NOTE 1.4 In this text, given an input, a function may return no output.

EXAMPLE 1.23. The relation given by the income tax tables of the IRS satisfies the Local behaviour coding format (Definition 2.1, Page 135) and is thus, in the real world, a function even though incomes below the minimum income cause no income tax.
B. On the other hand, it is quite possible for a function to pair many different inputs to one and the same output. In other words, the very same output may be returned by a function for many different inputs .

CAUTIONARY NOTE $\mathbf{1 . 5}$ A function may return the same output for several different given insputs

EXAMPLE 1.24. A business may be looked upon as the function given by the input-output table of its profits/losses over the years:

Fiscal Year	Profit/Loss
1998	+5000
1999	-2000
2000	
2001	+5000
2002	-2000
2003	-1000
2004	
2005	+5000

capital script letters
f
$f(x)$

In 1998, 2001, and 2005 the business returned the same profit/loss namely $+5000$
3. Language for functions. Since functions "are widely used in science, and in most fields of mathematics." (https://en.wikipedia.org/ wiki/Function_(mathematics)), just as with Arithmetic, a whole language was created as the development of Calculus proceeded, with variants depending on what aspect of Calculus was being developed, so we will now descrlbe the particular variant we will use.
i. Individual symbols: We will use capital script letters to write the names of given functions.
EXAMPLE 1.25. Say $\mathcal{J O E}$ is the name of our favorite parking meter. Then 25 cents might be what we want to input in the function $\mathcal{J O E}$ and 10 minutes might be the parking time that $\mathcal{J O E}$ will return.
ii. Generic symbols: The following symbols are completely standard:
a. We will use \boldsymbol{f} as symbol for a generic function.
b. We will use x as a global variable for input numbers, that is as a placeholder fot insputs
c. We will then use $\boldsymbol{f}(\boldsymbol{x})$, to be read f of x, as symbol for the output, if any, that the function f returns for the input x

CAUTIONARY NOTE 1.6 Even though, because of the color boxes, we could write just $f x$ instead of $f(x)$, we will still use parentheses because that's what is done by absolutely everybody.

By the way, there is an alternate, parenthesis-free, notation:

arrow notation
send
function problem
direct problem

Try to find a CALCULUS text that does!

Er, \xrightarrow{f} isn't standard in ...standard Calculus texts.

LANGUAGE NOTE 1.4 Reverse Polish Notation

The Reverse Polish Notation (RPN) is another way to write the output of a function f for an input x, namely $x f$ instead of $f(x)$.
RPN is a much better notation, if only because $x f$ is parenthesis free, but we shall not use it as, unfortunately, about no one in the mathematical world does.
(https://en.wikipedia.org/wiki/Reverse_Polish_notation)
d. We will use the symbol \xrightarrow{f} to write functions in arrow notation:

$$
x \xrightarrow{f} f(x)
$$

Inasmuch as we read from left to right, though, the arrow notation

$$
x \xrightarrow{f} f(x)
$$

tends to place an emphasis on the input rather than on the function f and there is an

LANGUAGE NOTE 1.5 Alternate arrow notation. In order to place the emphasis on the function instead of on the input, a standard alternative is to write:

$$
f: x \longrightarrow f(x)
$$

which is read

$$
f \text { sends } x \text { to } f(x)
$$

While we will not use the alternate arrow notation, we will use the worf send because it is symmetrical to the word return.
4. Function problems. Just as in the general case of Relation problems (Subsection 1.6, Page 69), there will be two kinds of function problems whose name acknowledge the fact that with functions, going from input to output is the privileged direction.

- A direct problem is a function problem in which we are given an input and we are looking for the output that the function may return.

EXAMPLE 1.26. In EXAMPLE 1.22 (Page 88), a direct problem might for instance be: What was the profit/loss in 1999?
Answer: -2000

EXAMPLE 1.27. In Example A. 18 (Page 511), a direct problem might for instance be:

$$
75 \text { cents } \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(75 \text { cents })=y \text { minutes }
$$

reverse problem input-output pair I-O pair
that is, how many minutes parking time will $\mathcal{J O E}$ return for 75 cents ?
We will see that direct problems are generally relatively easy to solve.
EXAMPLE 1.28. Solving direct problem in the real world like figuring how much parking time will three quarters buy you is easy: if nothing else, just put three quarters in the parking meter and see how much parking time you get!

- A reverse problem is a function problem in which we are given an output and are looking for the input for which the function returns the given output.

EXAMPLE 1.29. In EXAMPle A. 18 (Page 511), a reverse problem might for instance be:

$$
x \text { cents } \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(x \text { cents })=50 \text { minutes }
$$

that is, how many cents should we input for $\mathcal{J O E}$ to return 50 minutes parking time?

EXAMPLE 1.30. In Example 1.22 (Page 88), a reverse problem might for instance be: In what year(s) (if any) did the business return +5000 ?
Answer: 1998, 2001, 2005.
Of course, neither direct problems nor reverse problems need have a solution.
Example 1.31. In Example 1.22 (Page 88),

- There is no Profit/Loss for Year 2000.
- There is no Year for which the Profit/Loss is 6000 .

5. Input-Output pairs. Given a function, an input and an output, we will use the word input-output pair, I-O pair for short, when the function returns the given output for the given input.

We will continue to use in the case of input-output pairs the format which we introduced in Subsection 1.6 - Relation problems (Page 69), par-
input-output function format
I-O function format
"function" because of DEFInition 2.1-Local behaviour coding format (Page 135)
ticularly for plotting purposes, but in the cae of functions we will also use another two formats:

DEFINITION 1.2 The two input-output formats which say that x_{0} and y_{0} are related by a function f, are:

- For computational purposes, the equality $f\left(x_{0}\right)=y_{0}$
- For conceptual purposes, the arrow notation $x_{0} \xrightarrow{f} y_{0}$

And of course, we can combine the two as: $x_{0} \xrightarrow{f} f\left(x_{0}\right)=y_{0}$

EXAMPLE 1.32. In EXAMPLE A. 18 (Page 511), we could have written:

- For computational purposes, the equality $\mathcal{J O E}(25$ cents $)=10$ minutes or
- For conceptual purposes, the arrow notation 25 cents $\xrightarrow{\mathcal{J O E}} 10$ minutes

Of course, we can combine the two:

$$
25 \text { cents } \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(25 \text { cents })=10 \text { minutes }
$$

Usually, though, we will not include units in either inputs or outputs.
EXAMPLE 1.33. To say that -5 and +6.75 are related by the function $\mathcal{J I} \mathcal{L} \mathcal{L}$, we can write

- For computational purposes, the equality $\mathcal{J} \mathcal{I} \mathcal{L} \mathcal{L}(-5)=+6.75$
or
- For conceptual purposes, the arrow notation $-5 \xrightarrow{\mathcal{J I L L}}+6.75$

Of course, we can combine the two: $-5 \xrightarrow{\mathcal{J I L L}} \mathcal{J I} \mathcal{L} \mathcal{L}(-5)=+6.75$
6. I-O pair problems. In a I-O pair problem, we will be given both an input and an output and we will want information about the inputoutput pair, for instance whether or not the function returns the output or whether the input and the output have the same sign or whether the output is larger than the input, etc.
EXAMPLE 1.34. In Example 1.22 (Page 88), we may ask In 2002, did the business really return +5000 ?

As might perhaps have been expected, it is solving reverse problems (which, as we will see, is what 'solving equations' is all about) that matters
most in the real world.
EXAMPLE 1.35. What we usually need to solve in the real world is, for instance, figuring how many quarters we need to get, say,

Input-Output plot I-O plot
input level line output level line two hours parking time .

5 Functions Given by I-O Plots

In keeping with our introduction in Subsection 4.2 of the words inputs and outputs instead of left number and right number in the case of functions,

- instead of the words set of plot dots which we introduced in Subsection 3.5 for relations, in the case of functions we will use the word InputOutput plot, I-O plot for short, .
- instead of the words left number level line and right number level line which we introduced in Subsection 2.1 for relations, in the case of functions we will use the words input level line and output level line

1. Input - Output plots. Since functions are a special kind of relation, Input-Output plots can give functions but we need to restate the ?? (?? ??, ??) in words of set of plot dots:

DEFINITION 2.1 (Restated) Local behaviour coding format
In order for a set of plot dots to give a function,
No input level line shall intersect the set of plot dots more than once.
that is, in other words,
Any input level line shall intersect the set of plot dots at most once.

EXAMPLE 1.36. Given the set of plot dots
interpolate
intermediate plot dot

since there is at least one input-level line that does intersect the set of plot dots more than once, the set of plot dots does not give a function

EXAMPLE 1.37. Given the I-O plot

since no input-level line intersects the I-O plot more than once, the I-O plot does give a function
2. Interpolation As visual as I-O plot can be, a major difficulty with functions given by I-O plots is that sets of plot dots are sparse (CAUTIONARY Note 1.3, Page 80) so that functions given by an I-O plot cannot return any output for most inputs.

So, in many real world situations, one has to interpolate the I-O plot, that is somehow create intermediate plot dots. For instance, one can reset the plotter and make another run. The trouble, though, is that just about anything can happen with these intermediate plot dots:
i. There is not even any guarantee that the interpolated I-O plot will still meet the Local behaviour coding format (Definition (Restated) 2.1, Page 95).

EXAMPLE 1.38. The I-O plot in Example 1.16 (Page 77),
Outputs

meets the Local behaviour coding format (Definition (Restated) 2.1, Page 95) but:
while with the blue intermediate plot dots, the new I-Of plot

still gives a function,
with the red intermediate plot dots, the new I-O plot

does not give a function.
ii. Even wnen the interpolated I-O plot does give a function, that function can be just about any function

Example 1.39. In the case of the I-O plot in Example 1.16 (Page 77)

the following two interpolations both give a function but
While the intermediate plot dots the intermediate plot dots could just could of course be:

iii. In fact, how to interpolate an I-O plot is not at all a simple matter and there are many methods for coming up with likely outputs for missing intermediate inputs. (https://en.wikipedia.org/wiki/Interpolation)
3. Direct function problems Keeping in mind that I-O plots are sparse:
i. When the given input is a number, solving direct problems goes exactly as with a relation given by an I-O plot and we just use, suitably rephrased, Procedure 1.3 - Read a Plot dot (Page 76):

Procedure 1.6 To get $f\left(x_{0}\right)$ for a given x_{0} when f is given by
an I-O plot,
i. Tickmark x_{0} on the input ruler,
ii. Draw an input level line through x_{0},
iii. Mark the plot dot at the intersection, if any, of the input level line with the I-O plot,
iv. Draw an output level line through the plot dot (if any),
v. Read $f\left(x_{0}\right)$ where the output level line intersects the output ruler,

Demo 1.6a With the function $\mathcal{J I M}$ given by the $\mathrm{I}-\mathrm{O}$ plot

get $\mathcal{J I M}(-2.5)$
i. We tickmark -2.5 on the input ruler,
ii. We draw an input level line through the tickmark,
iii. We mark the plot dot at the intersection of the input level line with the I-O plot,
iv. We draw an output level line through the plot dot,
v. We read $\mathcal{J I M}(-2.5)$ where
 the output level line intersects the output ruler: +20
regular input
Demo 1.6b With the function $\mathcal{G W E N}$ given by the I-O plot

get $\mathcal{G W E N}(+0.7)$
i. We tickmark +0.7 on the input ruler,
ii. We draw an input level line through the tickmark,
iii. There is no plot dot at the intersection of the input level line with the l-O plot,
iv. $\mathcal{G W E N}$ does not return any output for +0.7

A function given by an I-O plot cannot of course return ∞.

A regular input will be an input number for which the function returns an output number.
ii. When the given input is infinity, since inputs and outputs are mid-size numbers, an I-O plot cannot provide any information about the outputs for large-size input numbers.

However, occasionally, the I-O plot can hint at what the function might return near infinity

EXAMPLE 1.40. It might seem that

but of course the I-O plot could equally well be almost anything, for instance

EXAMPLE 1.41. It might seem that, near ∞,
the I-O plot

hints at

but of course the I-O plot could equally well be almost anything, for instance

4. Reverse function problems For a given functions, a reverse problem is to locate the input(s) if any for which the function returns a given output

When the given output is a number, we just use, suitably rephrased, Procedure 1.5-right number for a left number (set of plot dots (Page 84):

Procedure 1.7 To get x_{0} for a given y_{0} when f is given by an I-O plot
i. Tickmark y_{0} on the output ruler,
ii. Draw an output level line through y_{0},
iii. Mark the plot $\operatorname{dot}(\mathrm{s})$, if any, where the output level line intersects the I-O plot
iv. Draw an input level line through each marked plot dot,
v. Read x_{0} where the input level line(s) intersect the input ruler.

Demo 1.7a Get the input(s), if any, for which the function $\mathcal{R O N}$ given by the I-O plot

returns the output -30 .
i. We tickmark the output number -30 on the output ruler,
ii. We draw an output level line through the tickmark,
iii. We mark the plot point(s), if any, at the intersection of the output level line with the I-O plot iv. We draw an input level line through the plot $\operatorname{dot}(\mathrm{s})$, if any,
v. The input number(s), if any,
 is/are at the intersection(s), if any, of the input level line(s), if any, with the input ruler: -4

Demo 1.7b Get the input(s), if any, for which the function $\mathcal{M A E}$ given by the I-O plot

returns the output -30 .
i. We tickmark the output number -30 on the output ruler,
ii. We draw an output level line through the tickmark,
iii. We mark the plot point(s), if any, at the intersection of the output level line with the I-O plot
iv. We draw an input level line through each plot dot(s), if any, v. The input number(s), if any,
 is/are at the intersection(s), if any, of the input level line(s), if any, with the input ruler: $-4,+3,+5$

Demo 1.7c Get the input(s), if any, for which the function $\mathcal{S} \mathcal{A} \mathcal{L} \mathcal{Y}$ given by the I-O plot

returns the output -62.5 .
i. We tickmark the output number -62.5 on the output ruler,
ii. We draw an output level line through the tickmark,
iii. We mark the plot point(s), if any, at the intersection of the output level line with the I-O plot
iv. There is no intersection therefore there is no input level line through the plot dot(s), if any,
v. The input number(s), if any,
 is/are at the intersection(s), therefore there is no input number.
5. Zeros. The fact that reverse problems usually have in fact no solution because I-O plots are sparse is particularly unfotunat when we are looking for the zero(s) of a given function, that is for the inputs whose output is 0 .

And, even though 0 is a dangerous number (Cautionary Note 0.2, Page 5), a zero is a regular input.

However, with functions given by I-O plots, we will have to keep even more seriously in mind that ?? (?? ??, ??).

Zeros will be important because, as we will see, inputs whose output is 0 often separate inputs whose output is positive from inputs whose output is negative.

EXAMPLE 1.42. The function $\mathcal{E M M \mathcal { Y }}$
given by the I-O plot

but it certainly looks like $\mathcal{E M} \mathcal{M Y}$ also has a zero between -3 and -4
6. Poles . An actually even more important reverse problem will be locating the pole(s) if any, of a function, that is those inputs for which the function returns ∞.

Of course, a pole is not a regular input since a function given by a I-O plot cannot have pole(s) since all the outputs are medium-size numbers. Yet, I-O plots can hint at possible pole(s).

EXAMPLE 1.43. It might seem that the l-O plot

but of course the I-O plot could equally well be almost anything, for instance

7. Discrete Calculus. In this text, though, we discussed functions given by I-O plots only for introductory purposes and, from now on, functions will not be given by I-O plots anymore.
Nevertheless,
Language note 1.6 Functions given by I-O plots are a particular kind of functions usually called discrete functions.

And in fact, the Discrete Calculus, that is the calculus of discrete functions is a very important piece of Mathematics. (https://en.wikipedia. org/wiki/Discrete_calculus)

6 Functions Given By Curves

Functions given by I-O plot involved only medium-size numbers but functions given other than by I-O plots will also involve both

- small-size numbers.
and
- large-size numbers,

So, we will not be able to use quantitative Cartesian setups any more than we could use quantitative rulers back in Section 12* - Real Numbers (Page 55).

1. Qualitative Cartesian setup. In order to use large-size numbers and small-size numbers as well as medium-size numbers, we will then:

- Give functions with curves instead of with I-O plot,
qualitative Cartesian setup
offscreen
B98'bal worry you don't have to know the calculus meaning of smootlir carve and go by solid the everyday meaning 84tcrean cranartways look-up Aqttysd lipen. wikipedia. graph hrdat/ Curve
Mercator view
and
- Use qualitative Cartesian setups that is Cartesian set ups in which:
- The screen is within a surrounding area we will call offscreen,
- The input ruler is a qualitative ruler,
- The output ruler is a qualitative ruler.

Then, a curve that satisfies the ?? (?? ??, ??) will give a function

- whose global graph is the given curve,
- whose onscreen graph is the part of the global graph which is on the screen. We will picture the onscreen graph with a solid line.
- whose offscreen graph is the part of the global graph which is not on the screen. We will picture the offscreen graph with a dotted line.

Also, in the case of functions given by curves, we will use the word graph dot instead of the word plot dot.

Since our purpose in this Part I - Functions Given By Data (Page 63) is introductory, we will use curves to give functions but eventually we will want curves to picture functions that will have been given otherwise in Part II - Functions Given By Rules (Page 207) and after. In any case,

CAUTIONARY NOTE 1.7 Functions given by curve are not necessarily simple and certainly not as simple as those used here.
2. Mercator view. By far the simplest way to view a qualitative Cartesian setup is by way of a Mercator view which is a flat view that shows the 2 pt compactification of each ruler:

Example 1.44. The curve

conclusive
3. Mercator views are not conclusive. But even though the Mercator view is by far the most commonly used, it is important to be aware of the severe limitations to the information which Mercator views can provide about a function as the Mercator view shows mostly the onscreen graph and therefore depends very much on the cutoff sizes for medium-size numbers.
The problem is a difficulti. How much an onscreen graph shows about a function depends very much one and Mercator's solution, on the cutoff size for medium-size input numbers.
https://en.wikipedia. org/wiki/Mercator_ projection, was the first in a long list: https:// en.wikipedia.org/wiki/ List_of_map_projections

For instance, Mercator views do not necessarily show all the zeros of a function.
EXAMPLE 1.45. The following onscreen graphs of the function $\mathcal{Z A N Y}$ are all at the same scale and differ only by the cutoff size for medium-size input numbers:

With medium-size input numbers cutoff at 15 , the onscreen graph shows no zero

With medium-size input numbers cutoff at 25 , the onscreen graph shows two zeros:

With medium-size input numbers cutoff at 20 , the onscreen graph shows one zero:

With medium-size input numbers cutoff at 30 , the onscreen graph shows three zeros:

In other words, the Mercator views of a given function are not conclusive
as to the zeros of that function.
ii. How much an onscreen graph shows about a function depends also very much on the cutoff size for medium-size output numbers.

For instance, another very important reverse problem will be locating the pole(s), if any, of a function, that is those inputs for wich the function returns ∞ but of course Mercator views cannot do that.

EXAMPLE 1.46. The following onscreen graphs of the function $\mathcal{C O T Y}$ are all at the same scale and differ only by the cutoff size for medium-size output numbers:

With medium-size output numbers cutoff at 500, the onscreen graph does not show whether or not there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

With medium-size output numbers cutoff at 1000, the onscreen graph still does not show whether or not there is an input between - 15 and +15 whose output is larger than the output of neighboring inputs:

tube view

With medium-size input numbers cutoff at 1500, the onscreen graph still does not show whether or not there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

With medium-size input numbers cutoff at 2000, the onscreen graph does show there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

In other words, the Mercator views of a given function are not necessarily conclusive as to the inputs whose output is larger than the output of nearby inputs.

Altogether then:

CAUTIONARY NOTE 1.8 On-screen graphs are not necessarily conclusive as to the output(s), if any, for medium-size inputs.

To see why axes rather than rulers, just try to draw rulers in any of the following compact views!
4. Compact views. In order to see the off-screen graph which shows the 'behavior' of a function for large-size inputs and for pole(s), if any, we need to use one-point compactifications of the axes instead of using rulers.
i. We can get a tube view by compactifying the input axis:

ii. We can another kind of tube view by compactifying the output axis:

iii. We can get two kinds of donut views by compactifying the input axis and the output axis one after the other:

Magellan view

Input axis then output axis

Output axis then input axis
iv. We can get a Magellan view by compactifying the input axis and the output axis simultaneously:

5. Compact views are conclusive. Magellan views are particularly good at showing why a Mercator view cannot give a function: different functions can have the same onscreen graph but different off-screen graphs.

EXAMPLE 1.47. The onscreen graph

is the onscreen graph of any of the following functions viewed in Magellan view

as well as, in fact, many, many others.
So, in order for an onscreen graph to be able to give a function, we will make the following

AGREEMENT 1.3 With functions given by curve, the upper cutoff sizes for medium-size inputs and medium-size outputs will be such that the off-screen graph is simply a smooth continuation of the onscreen graph. (However, with other types of functions, there are different kinds of continuations as, for instance, with the 'periodic'
functions investigated in Vol. II.)

EXAMPLE 1.48.

Given the onscreen graph in Example 2.37 (Page 160):

by Agreement 1.3 - (Page 115), the global graph can only be

7 "Simple" Functions?

Aaargh!

$$
=======\text { Begin HOLDING }=======
$$

As we saw in Subsection 8.2 - Output level band (Page 121) and xxx, the information provided by the plot dot for an input need not necessarily extend to even just nearby inputs.

For instance, we might expect that the outputs for inputs near a given input will have outputs that are near the output for the given input but, while this is often the case, this is absolutely not necessarily the case.

EXAMPLE 1.49. The function given by the global graph

$=======$ End HOLDING $=======$
So far, the reader would have every right to think that functions are something essentially fairly "simple" but, not only are there many functions whose 'behavior' is unimaginably 'complicated', it is impossible to draw the line and define anything like "simple" functions.

Basically, the difficulty is that there is nothing in what we have said so far about functions, including the functional requirement, to prevent abrupt, even wild, changes in the outputs for nearby inputs,

The use of nearby inputs instead of the given input raises a most important question: To what extent are the nearby outputs (outputs for nearby inputs) all near the output at the given input? And, as it turns out, the question has no simple answer. So, as a backdrop to the functions which we will investigate in this text, we will just illustrate some of the many different possible answers.
https://en.wikipedia.org/wiki/Extended_real_number_line. https:
//math.stackexchange.com/questions/354319/can_a_function_be_considered_ heightcontinuous_if_it_reaches-infinity-at-one-point

This poses a most vexing expository problem inasmuch as making general statements about functions becomes extremely difficult ... and dangerous in that we may end up stating on the basis of something true for 'nice' functions something that would be false for these unimaginably 'complicated' functions. More precisely,

- If general statements about functions are worded so as to apply to really all functions, including 'complicated' functions-which the reader is not likely to encounter anytime soon, the reader is going to have a very hard time - for no good reason, and
- If general statements about functions are worded so as to apply only to

Mathematicians and scientists keep being amazed at the behavior of some of the functions which have recently come up in mathematics and the sciences.
simple
smooth
'simple' functions, how is the reader to know when the functions have become too 'complicated' for the general statement to height continue to apply?

EXAMPLE 1.50. It is fairly intuitive that plot dots should make up some probably curved line. But, while this is indeed the case for many functions, it is not necessarily the case and in fact not the case, for most functions.

One way out would be to define, say, Type A functions and then Type B functions and then Type C functions, etc and to make general statements for each type of functions as we go. This of course would work but would force us to restate a lot as we go from Type A functions to Type B functions, and then again as we go to Type C functions, etc. Another drawback aside from the hassle of having to keep restating, is that this tends to lose the bigger represent and there is a price to that too.

Nevertheless, one look at the TABLE of Contents of this text will show that this is indeed what we will do in the following chapters but, before that, if only for the sake of not having to repeat things and of the bigger represent, we will spend the rest of this chapter discussing the possible behaviors of 'nice' functions.

So, even though we cannot define 'simple' functions and we cannot even pin down some of the things it would mean for a functions to be 'simple' so as to prevent general statements from applying to complicated functions,

AGREEMENT 1.4 will be, by the sole fact that they appear in this text, guaranteed to be simple functions and the general statements we will make in this text are guaranteed to apply to these functions. (Which does not imply that these general statements apply only to these functions.)

Roughly, smoothness extends to slope and concavity the requirements that height continuity made on the height namely that slope and concavity should not change abruptly. There is a big difference though:

- In the case of height continuity, we need to look at what happens at the given input and then to what happens near the given input but only to see if there is a jump and not even when there is a gap at x_{0}.
- In the case of slope and concavity, on the other hand, even with local graphs, neither slope nor concavity makes sense at the given input and what matters is only what happens near the given input.

CAUTIONARY NOTE 1.9 Most unfortunately, the usual mathematical concept of smoothness implies height continuity which is not the way we think of smoothness in the real world.

EXAMPLE 1.51. A PVC sewer and drain pipe is usually perceived as being "smooth" regardless of whether or not it is solid or perforated and a smoothly bending copper pipe doesn't stop being so if and when it develops a pinhole.
isolated input input level band

For that matter, educologists well know that, in order to define smoothness at x_{0} in the usual way one needs room in which to have a limit.

So, in this text and in trying to represent smoothness, we will go by $f\left(x_{0}+h\right)$ and not pay any attention to $f\left(x_{0}\right)$.
https://en.wikipedia.org/wiki/Smoothness.
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Singularity_(mathematics)
https://en.wikipedia.org/wiki/Nowhere_heightcontinuous_function
https://en.wikipedia.org/wiki/Weierstrass_function
https://en.wikipedia.org/wiki/Fractal_curve

8 Local graph near a point

The main reason we will be dealing with functions given by curves is that, in contrast with functions given by I-O plot, in the case of functions given by curves we will be able to look at the neighborhoods of the inputs instead of having to deal with isolated inputs inasmuch as sets of plot dots are sparse (Cautionary Note 1.3, Page 80).

But we will first need to do a bit of preparatory work, and, in this section, we will introduce in the case of functions given by curves, several different

In other words, in the case of functions given by curves, we will have "elbow room"!

1. Input level band. In order to observe the 'behavior' of a function near a given point, be it a number x_{0} or ∞, we will of course need to fatten the point into a neighborhood of that point bur we will also need to fatten the input level line into an input level band, that is a band centered on the input level line whose width is equal to the width of the neigborhood.

The details of the Procedure, though, depend on whether the given input point is a number x_{0} or is ∞ :

Procedure 1.8 To get the Input level band for a neighborhood of a given point.

- When the given point is a number x_{0} :
i. Draw the input level line for x_{0},
ii. Fatten x_{0} into a neighborhood of x_{0},
iii. Fatten the input level line for x_{0} into an input level band for the neighborhood of x_{0}
- When the given point is ∞ :
i. Draw the input level lines for $+\infty$ and $-\infty$
ii. Fatten ∞ into a neighborhood of ∞ (In Mercatot view), iii. Fatten the input level lines for $+\infty$ and $-\infty$ into rectangles corresponding to the width of the half neighborhoods of $+\infty$ and $-\infty$

Demo 1.8a To get the input level band for a neighborhood of the input number -31.6
i. We draw the input level line for Δ Outputs
-31.6
ii. We mark a neighborhood of
-31.6 on the input ruler,
iii. We draw the input level band $d_{i-\text { Input level line }}$ as a rectangle with the width of the neighborhood of -31.6 ,

Demo 1.8b To get the input level band for a neighborhood of the input ∞

2. Output level band. When we fatten a given output point, be it a number y_{0} or ∞, into a neighborhood, we must also fatten the output level line for y_{0} or ∞ into an output level band for the neighborhood of the point, y_{0} or ∞, that is a rectangle corresponding to the width of the neighborhood of the point.

The details of the Procedure, though, depend on whether the given output point is a number y_{0} or ∞ :

PROCEDURE 1.9 To get the output level band for a given output point.

- When the given output point is a number y_{0} :
i. Draw the output level line for y_{0},
ii. Fatten y_{0} into a neighborhood of y_{0},
iii. Fatten the output level line for y_{0} into an input level band for the neighborhood of y_{0}
- When the given output point. is ∞ :
i. Draw the output level lines for $+\infty$ and $-\infty$,
ii. Fatten ∞ into a neighborhood of ∞ (In Mercaator view), iii. Fatten the output level lines for $+\infty$ and $-\infty$ into rectangles corresponding to the width of the half neighborhoods of $+\infty$ and $-\infty$

Demo 1.9a

To get the output level band for a neighborhood of the output number -7.83
i. We draw the output level line for -7.83
ii. We fatten a neighborhood of -7.83 on the output ruler, iii. We draw the output level band as a rectangle with the width of the neighborhood of -7.83 ,

Demo 1.9b

To get the output level band for a neighborhood of the output point ∞
i. We draw the output level lines for $-\infty$ and $+\infty$
ii. We fatten ∞ into a neighborhood in Mercator view,
iii. We fatten the output level lines for $-\infty$ and $+\infty$ into rectangles the width of the half neighborhoods of $-\infty$ and $+\infty$

In the above Mercator view, there appears to be two level bands for ∞ but a tube view shows they are only the two sides of the level band near ∞ :
3. A Few Words of Caution Though. Starting with Part II Functions Given By Rules (Page 207) though, functions will cease to be given by a global graph and will be given instead by an I-O rule

When a function will be given by an I-O rule instead of a global graph, though, we will have to be very careful before we use ?? because

In Subsection 8.4 - Frames (Page 124) we discussed how to get a local graph when the function is given by a curve. When the function is given by an I-O rule, though, we start out with no global graph, though, and getting a local graph is much more complicated and will require the knowledge of the global graphs of 'power functions'.

Since $x_{0} \oplus h$ is a fattening of x_{0}, it is most tempting and natural to think of $f\left(x_{0} \oplus h\right)$ as a fattening of $f\left(x_{0}\right)$ but, even though it is "often" the case, unfortunately
mostly the case in Calculus According to the Real World texts that $f\left(x_{0} \oplus h\right)$ is a neighborhood of some output number, be it $f\left(x_{0}\right)$ or some other output number y_{0} so that one can fatten the output level line

into an output level band

Not even in the privacy of the reader's mind!

CAUTIONARY NOTE 1.10 One should absolutely never use the words "neighboring outputs" as a short for outputs for neighboring inputs because the output numbers $f\left(x_{0} \oplus h\right)$ returned by the function f for $x_{0} \oplus h$, that is for the input numbers in a neighborhood of x_{0}, need not make up a neighborhood of any output number y_{0}, let alone make up a neighborhood of the output number $f\left(x_{0}\right)$

EXAMPLE 1.52. In Example 1.29, even though the inputs 27.2 and 27.4 can be considered to be near, their outputs, respectively around +70 and -25 , certainly cannot be considered anywhere near each other.
4. Frames. However, just like the plot dot for an ordinary input x_{0}, that is for an input-output pair of numbers $\left(x_{0}, y_{0}\right)$, is at the intersection of:

- the input level line for the input number x_{0}
- the output level line for the output number y_{0},
similarly, the local graph for a neighborhood of a point will be within the frame which is the border of the intersection of the input level band and the output level band:

Procedure 1.10 To get the frame for an (point, point):
$\left(x_{0}, y_{0}\right)$ or $\left(x_{0}, \infty\right)$ or $\left(\infty, y_{0}\right)$ or (∞, ∞)
i. Get the input level band for x_{0} or ∞
ii. Get the output level band for y_{0} or ∞
iii. Frame the intersection of the input level band and the output level band

Demo 1.10a

To get the frame for the input-output pair $(-3.16,-7.83)$
i. We get the input level band for -3.16
ii. We get the output level band for -7.83
iii. We frame the intersection of the input level bands for -3.16 and -7.83

Demo 1.10b

To get the frame for the input-output pair $(-3.16, \infty)$
i. We get the input level band for -31.6
ii. We get the output level band for ∞
iii. We frame the intersection of the input level band for -31.6 and the output level band for ∞

In the above Mercator view, there appears to be two frames for ∞ but a donut view shows they are only the two halves of the same frame.

Demo 1.10c

To get the frame for the input-output pair of numbers $(\infty,+71.6)$

But then Magellan views are a lot harder to draw.
i. We get the input level band for ∞
ii. We get the output level band for +71.6
iii. We frame the intersection of the input level band for ∞ and the output level band for +71.6

In the above Mercator view, there appears to be two frames for ∞ but a donut view shows they are only the two halves of the same frame.

Demo 1.10d
To get the frame for (∞, ∞)
i. We get the input level band for ∞
ii. We get the output level band for ∞
iii. We frame the intersection of the half input level bands for ∞ and the half input level bands for ∞

What appears to be four frames are actually parts of the frame because we are using a Mercator view instead of a Magellan view in which they would appear as the four quarters of a single frame.

5. zzzzzzzzzzzzzzz Just the way a plot dot shows the inpui-output pair for a given input number, a local graph will show the inpui-output pairs for the input numbers in a neighborhood of a given input point:

Procedure 1.11 To get the local graph for inputs in a neighborhood of a given point when the function is given by a global graph
i. Mark a neighborhood of the point on the input ruler,
ii. Draw the input level band for the neighborhood of the point using ?? ?? - ?? (??),
iii. The local graph near the point is at the intersection of the input level band and the global graph.

While the procedure is the same regardless of the nature of the point, we will look at the difference cases separately

6. Local graph near x_{0}.

Demo 1.11a

To get the local graph near -3 of the function $\mathcal{M A R E}$ whose global graph is

i. We mark a neighborhood of -3 on the input ruler,
ii. We draw the input level band for the neighborhood of -3 ,
iii. The local graph of $\mathcal{M A \mathcal { A } \mathcal { E }}$ near -3 is at the intersection of the input level band with the global graph,

DEMO 1.11b

To get the local graph near the pole +5 of the function $\mathcal{J E N}$ whose global graph is

i. We mark a neighborhood of +5 on the input ruler,
ii. We draw the input level band through the neighborhood of +5 , iii. The local graph of $\mathcal{J E N}$ near +5 is the intersection of the input level band with the global graph,

7. Local graph near ∞.

Keep in mind that even for large inputs, a function may return outputs of any qualitative size, medium-size: large-size or small-size.

Demo 1.11c

To get the local graph near ∞ of the function $\mathcal{R E N}$ whose global graph is

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{R E N}$ near ∞ is the intersection of the input level band with the global graph,

Demo 1.11d

To get the local graph near ∞ of the function $\mathcal{M I N \mathcal { N }}$ whose global graph is

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{M I N} \mathcal{A}$ near ∞ is the intersection of the input level band with the global graph,

Demo 1.11e

To get the local graph near ∞ of the function $\mathcal{R H E A}$ whose global graph is

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{R H E A}$ near ∞ is the intersection of the input level band with the global graph,

Chapter 2

Local Features Functions May Have

Local Code, 133 • Local Height, 136 • Local extreme, 141 • Zeros And
Poles, 146 • Local Slope, 148 • Local Concavity, 150 • Feature
Sign-Change Inputs, 153 .

Keep in mind that:
-
CAUTIONARY NOTE 2.1 We will define 'local behavior' as a calculus word later. In the meantime, we will use 'local behavior' as an everyday word.

CAUTIONARY NOTE 2.2 The functions we are discussing in this Part I - Functions Given By Data (Page 63) are given by curves and, while in this text what we will say will also apply to the functions given other than by a curve, this will not necessarily be the case for any and all functions.

1 Local Code

There is no reason to expect the local behavior of a function to be the same on both sides of a input point, be it x_{0} or ∞, see ?? ?? - ?? (??)) and ??
?? - ?? (??)).

1. Facing the neighborhood. In order to deal separately with each side of a neighborhood of a given point, we first need to state precisely which side of the given point is going to be LEFT of the given point and which side of the given point is going to be RIGHT of the given point.
EXAMPLE 2.1. Given a neighborhood of the number +3.27 , JILL can face the center of the neighborhood and then:

- what is to JILL's left will be what is LEFT of +3.27
and
- what is to JILL's right will be what is RIGHT of +3.27 .

EXAMPLE 2.2. Given a neighborhood of ∞, JILL cannot face the center of the neighborhood and so, using a Magellan circle, she must imagine JACK facing a neighborhood of ∞ and then:

- what is to JACK's left will be what is LEFT of ∞ and
- what is to JACK's right: will be what is RIGHT of ∞

2. Local code. in order to describe separately the 'local behavior' on basic format each side of the given input, we will use the following format:
angle

DEFINITION 2.1 To code the features of the local graph near a given point, we will write the codes for the feature on each side between two angles with a comma to separate the behaviors on the sides of the neighborhood of the given point :

Features for nearby inputs
LEFT of the given point will be coded
LEFT of the comma

Features for nearby inputs
RIGHT of the given point will be coded
RIGHT of the comma

EXAMPLE 2.3. When the local graph is near a number, JILL can face the center of the neighborhood:

EXAMPLE 2.4. When the local graph is near ∞ and since JILL can only imagine JACK facing infinity on the far side of a Magellan circel:
height

2 Local Height

The height of a function f at a given number x_{0} is just the output $f\left(x_{0}\right)$ provides almost no information about the graph of the function.
EXAMPLE 2.5. To say that the height of a function at +82.73 is -3.27 gives

which could come from any of the following functions

... and from many more.

1. Local height near a given point. Given a function f and given local height-sign a point, the height of f near x_{0} is
we want a thick version of the height of f at x_{0} that is the height of f near x_{0}.

EXAMPLE 2.6. Given a function f, to say that

Height f at $+3=-12$
says

Local height f near $+3=-12 \oplus h$
sats

As will become clear why, though, we have to introduce and discuss the sign and the size of the local height separately.
2. Local height-sign. The local height-sign of f near x_{0} is the $\operatorname{sign},+$ or - , of the outputs for nearby inputs on each side of the given input.

Procedure 2.1 To get the local height-sign near x_{0} of a function given by a curve,
i. Highlight the local graph near x_{0} using Procedure 5.2-Local graphs of a $\mathcal{U N} \mathcal{I} \mathcal{T}$ function (Page 230)
ii. Get from the local graph the sign, + or - , of the outputs for nearby inputs on each side of the given input,
iii. Code the local height-sign f using ?? ?? - ?? (??)

Demo 2.1 To get the local height-sign near +5 for the function $I A N$ from the local graph near +5

i. We get from the local
ii. We code the local height-sign:
graph the sign of the
outputs for nearby inputs

$$
\text { Local height-sign } I A N \text { near }+5=\langle-,+\rangle
$$

on each side of +5 :

- The sign of the outputs
left of +5 is -
- The sign of the outputs
right of +5 is +

3. Height-size The local height-size of f near a given input is the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of the given input.

Procedure 2.2 To get the height-size near a given input of a function from its global graph,
i. Highlight the local graph near the given input using Procedure 5.2

- Local graphs of a $\mathcal{U N} \mathcal{I} \mathcal{T}$ function (Page 230)
ii. Mark a neighborhood of the given point
iii. Get from the local graph the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of the given input, iv. Code height-size f according to ?? ?? - ?? (??)

Demo 2.2a Get height-size near +5 for the function IAN from the local graph near +5

i. We get from the local graph the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of +5 :

- The size of the outputs left of +5 is medium
- The size of the outputs right of +5 is medium

Demo 2.2b Get height-size near ∞ for the function IAN from the local graph near ∞

i. We get from the local graph the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of
ii. We code the height-size:
∞ :

- The size of the height left of ∞ is large
- The size of the height right of ∞ is small
$x_{\infty \text {-height }}$
$x_{0 \text {-height }}$ height

Demo 2.2c For the function

the Magellan input ∞ is a zero because:
the outputs for nearby inputs, both inputs right of ∞ and inputs left of ∞, are all small,

$$
==========\text { OK SO FAR }==========
$$

4. Local height near ∞ The concept of height provides us with conveniently systematic names:

- For a pole: $\boldsymbol{x}_{\infty \text {-height }}$
- For a zero: $\boldsymbol{x}_{0 \text {-height }}$

The height near ∞

is -large for inputs left of ∞ and -small for inputs right of ∞
Given a function f, we will thicken the output at a given input, be it x_{0} or ∞, into the height near the given input.

EXAMPLE 2.7.

is -12

The height near +3

is $-12 \pm$ small

The height near ∞

is -large for inputs left of ∞ and - small for inputs right of ∞
local maximum-height input
$x_{\text {maxi-height }}$

3 Local extreme

We will often compare the output at a given medium-size input with the height near the given medium-size input.

1. Local maximum-height input. A local maximum-height input is a medium-size input whose output is larger than the height near the medium-size input. In other words, the output at a local maximum-height input is larger than the outputs for all nearby inputs.

$$
x_{0} \text { is al local maximum-height input whenever } f\left(x_{0}\right)>f\left(x_{0}+h\right)
$$

We will use $\boldsymbol{x}_{\text {max-height }}$ as a name for a local maximum-height input.

LANGUAGE NOTE $2.1 \boldsymbol{x}_{\text {max }}$ is the usual name for a local maximum-height input but $x_{\text {max }}$ tends to suggest that it is the input x that is maximum while it is the output, $f\left(x_{\max }\right)$, which is "maximum".

Graphically, the local graph near $x_{\text {max-height }}$ is below the output-level line for $x_{\text {max-height }}$.
local minimum-height input
$x_{\text {min-height }}$

EXAMPLE 2.8. The function

Example 2.9. The function

has a local maximum at -23.07 because the output at -23.07 is larger than the outputs for nearby inputs
has a local maximum at +4.32 because the output at +4.32 is larger than the outputs for nearby inputs
2. Local minimum-height input. A local minimum-height input is a medium-size input whose output is smaller than the height near the given input. In other words, the output at a local minimum-height input is smaller than the outputs for all nearby inputs.
x_{0} is al local minimum-height input whenever $f\left(x_{0}\right)<f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {min-height }}$ as name for a local minimum-height input.

LANGUAGE NOTE $2.2 x_{\text {min }}$ is the usual name for a local minimum-height input but $x_{\text {min }}$ tends to suggest that it is the input x that is minimum while it is its output, $f\left(x_{\min }\right)$, which is "minimum".

Graphically, the local graph near $x_{\text {min-height }}$ is above the output-level line for $x_{\text {min-height }}$.

EXAMPLE 2.10. The function

EXAMPLE 2.11. The function

has a local minimum at +81.35 because the output at +81.35 is smaller than the outputs for nearby inputs.

3. Local extreme-height input. Local extreme-height input

 are medium-size inputs which are either a local maximum-height input or a local minimum-height input.CAUTIONARY NOTE 2.3 can only be medium-size inputs.
4. Optimization problems. Minimization problems and maximization problems (https://en.wikipedia.org/wiki/Mathematical_optimization) as well as min-max problems (https://en.wikipedia.org/wiki/Minimax) are of primary importance in real life. So,

- It would be pointless to allow ∞ as a local extreme-height input since it cannot be reached in the real world,
- It would be meaningless to allow $+\infty$ as a locally largest output since $+\infty$ is always larger than any output or to allow $-\infty$ as a locally smallest output since $-\infty$ is always smaller than any output.
local maximum-height input
$x_{\text {maxi-height }}$
local minimum-height input

5. Local extreme We will often compare the output at a given medium input with the height near the given medium input.
6. Local maximum-height input. A local maximum-height input is a medium input whose output is larger than the height near the medium input. In other words, the output at a local maximum-height input is larger than the outputs for all nearby inputs.
x_{0} is al local maximum-height input whenever $f\left(x_{0}\right)>f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {max-height }}$ as a name for a local maximum-height input.
LANGUAGE NOTE $2.3 \boldsymbol{x}_{\text {max }}$ is the usual name for a local maximum-height input but $x_{\text {max }}$ tends to suggest that it is the input x that is maximum while it is the output, $f\left(x_{\max }\right)$, which is "maximum".

Graphically, the local graph near $x_{\text {max-height }}$ is below the output-level line for $x_{\text {max-height }}$.

EXAMPLE 2.12. The function

EXAMPLE 2.13. The function

7. Local minimum-height input. A local minimum-height input is a medium input whose output is smaller than the height near the
given input. In other words, the output at a local minimum-height input is smaller than the outputs for all nearby inputs.
x_{0} is al local minimum-height input whenever $f\left(x_{0}\right)<f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {min-height }}$ as name for a local minimum-height input.
LANGUAGE NOTE $2.4 \boldsymbol{x}_{\text {min }}$ is the usual name for a local minimum-height input but $x_{\min }$ tends to suggest that it is the input x that is minimum while it is its output, $f\left(x_{\min }\right)$, which is "minimum".

Graphically, the local graph near $x_{\text {min-height }}$ is above the output-level line for $x_{\text {min-height }}$.

EXAMPLE 2.14. The function

EXAMPLE 2.15. The function

has a local minimum at +81.35 because the output at +81.35 is smaller than the outputs for nearby inputs.

8. Local extreme-height input. Local extreme-height input

 are medium inputs which are either a local maximum-height input or a local minimum-height input.CAUTIONARY NOTE 2.4 can only be medium inputs.
zero
parity
even zero
odd zero
9. Optimization problems. Minimization problems and maximization problems (https://en.wikipedia.org/wiki/Mathematical_optimization) as well as min-max problems (https://en.wikipedia.org/wiki/Minimax) are of primary importance in real life. So,

- It would be pointless to allow ∞ as a local extreme-height input since it cannot be reached in the real world,
- It would be meaningless to allow $+\infty$ as a locally largest output since $+\infty$ is always larger than any output or to allow $-\infty$ as a locally smallest output since $-\infty$ is always smaller than any output.

4 Zeros And Poles

Given a function f, a zero of f is a medium input whose height-size is \langle small, small〉.

1. Zeros. We will distinguish two kinds of zeros according to their parity: https://en.wikipedia.org/wiki/Zeros_and_poles

- An even zero is a zero whose height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.

EXAMPLE 2.16. For the function f given by the global graph

the medium input +6 is an even zero because:

- the outputs for inputs near +6 are all small,
- height-sign f near $+6=\langle-,-\rangle$ (Same signs.)
- An odd zero is a zero whose height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.

EXAMPLE 2.17. For the function f given by the global graph

the medium input +6 is an odd zero because:

- the outputs for inputs near +6 are all small,
- height-sign f near $+6=\langle+,-\rangle$ (Opposite signs.)

2. Poles. Given a function f, a pole of f is a medium input whose height-size is \langle large, large \rangle. We will distinguish two kinds of poles according to their parity:

We will distinguish two kinds of poles according to their parity:

- An even pole is a pole whose height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.

EXAMPLE 2.18. For the function f given by the global graph

the medium input +6 is an even pole because:

- the outputs for inputs near +6 are all large,
- height-sign f near $+6=\langle-,-\rangle$ (Same signs.)
- An odd pole is a pole whose height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.
slope
slope-sign

EXAMPLE 2.19. For the function f given by the global graph

the medium input +-4 is an odd pole because:

- the outputs for inputs near -4 are all large,
- height-sign f near $-4=\langle+,-\rangle$ (Opposite signs.)

5 Local Slope

1. Slope-sign. Inasmuch as, in this text, we will only deal with qualitative information we will be mostly interested in the slope-sign: .

Procedure 2.3 To get Slope-sign near a given input for a function given by a global graph
i. Mark the local graph near the given input
ii. Then the slope-sign is:
/ when the local graph looks like $/$ or $ノ$, that is when the outputs are increasing as the inputs are going the way of the input ruler, when the local graph looks like \backslash or \backslash, that is when the outputs are decreasing as the inputs are going the way of the input ruler.
iii. Code Slope-sign f according to ?? ?? - ?? (??)

Language note 2.5 Slope-sign The usual symbols are + Instead of / and - instead of \backslash but, in this text, in order not to overuse + and - , we will use $/$ and $\backslash .{ }^{1}$

Demo 2.3a Let HIC be the function whose Mercator graph is

[^8]
and let the given input be +2 . Then to get Slope-sign HIC near +2
i. We get the local graph near the given input:

ii. We then get

The slope sign left of +2 is \backslash
The slope sign right of +2 is \backslash which we code as:

Slope-sign $H I C$ near $+2=\langle\backslash, \backslash\rangle$

Demo 2.3b Let HIP be the function whose Mercator graph is

and let the given input be ∞. Then to get Slope sign HIP near ∞
i. We get the local graph near the given input:

ii. We then get that:
-The slope sign left of ∞, that is near $+\infty$, is /
-The slope sign right of ∞, that is near $-\infty$, is \backslash
which we code as:
Slope-sign HIP near $\infty=\langle/, \backslash\rangle$
slope-size
concavity
concavity-size
concavity-sign
2. Slope-size In this text, we will not deal with slope-size other than in the case of a 0 -slope input that is an input, be it x_{0} or ∞, near which slope-size is small. This is because 0 -slope inputs will be extremely important in global analysis as finding 0 -slope inputs comes up all the time in direct "applications" to the real world:

EXAMPLE 2.20. The function

EXAMPLE 2.21. The function

has both -17 and ∞ as 0 -slope inputs Only +3.4 is a 0 -slope input.

6 Local Concavity

1. Concavity-sign Inasmuch as, in this text, we will be only interested in qualitative analysis we will not deal with the concavity-size but only with the concavity-sign:

Procedure 2.4 To get Concavity-sign near a given input for a function given by a global graph
i. Mark the local graph near the given input
ii. Then the concavity-sign is:
\cup when the local graph is bending up like \backslash or ノ,
\cap when the local graph is bending down like $/$ or \backslash.
iii. Code Slope-sign f according to ?? ?? - ?? (??)

Language note 2.6 Concavity-sign The usual symbols are + Instead of \cup and - instead of \cap but, in this text, in order not to overuse + and - , we will use \cup and $\cap .{ }^{2}$

[^9]Demo 2.4 Let $K I P$ be the function whose Mercator graph is

and let the given input be -1 . Then to get Concavity sign KIP near -1
i. We get the local graph near the given input:

ii. We then get that:

The concavity sign left of -1 , is \cup
The concavity sign right of -1 , is \cap
which we code as:
Concavity Sign KIP near $-1=\langle\cup, \cap\rangle$
2. 0-concavity input. Given a function f, the inputs whose Concavitysize is 0 will be particularly important in global analysis:

A medium input x_{0} is a 0 -concavity input if inputs that are near x_{0} have small concavity. We will use $x_{0 \text {-concavity }}$ to refer to 0 -concavity inputs.

EXAMPLE 2.22. Given the functionEXAMPLE 2.23. Given the function
whose Mercator graph is

whose Mercator graph is

Under Agreement 1.2 - Colors for left things and Tight things (Page 64), with only a Mercator view of the global graph, there is of course no way we can get the whole local graph near ∞ and we will have to content ourselves with just the extremities of the local graph near ∞. However, since we cannot face ∞ and can only face the screen, we have to keep in mind ?? ?? - ?? (??)) so that

- The extremity of the local graph near $+\infty$ (left of ∞) is to our right,
- The extremity of the local graph near $-\infty($ right of $\infty)$ is to our left.

Example 2.24.

Jill is facing the screen so she can only see the extremities of the local graph near ∞ and she must keep in mind ?? ?? - ?? (??)) so that the local graph near $+\infty$ (to her right) is left of ∞ and the local graph near $-\infty$ (to her left) is right of ∞.

EXAMPLE 2.25.

When facing the screen, though, Jill can only see the extremities of the local graph near ∞ and she must keep in mind that the local graph near $+\infty$ (left of ∞) is to Jill's right and the local graph near $-\infty$ (right of ∞) is to Jill's left.

When facing the screen, though, Jill can only see the extremities of the local graph near ∞. As a result, the local graph near $+\infty$ (left of ∞) is to Jill's right and the local graph near $-\infty$ (right of ∞) is to Jill's left.
that is the largest error that will not change the qualitative information we are looking for. The largest permissible error, which is the equivalent of a tolerance, will turn out to be easy to determine.

We can see from Chapter 3 that the reason could not possibly give us a global graph is that, if a plot point may tell us where the global graph "is at", a plot point certainly cannot tell us anything about where the global graph "goes from there". And, since the latter is precisely what local graphs do with slope and concavity, we are now in a position to:
$===========================$
Something wrong with references here

1. Describe how to interpolate local graphs into a global graph. This corresponds to the second of the ?? ?? - ?? (??)
2. Discuss questions about interpolating local graphs which correspond to the other two ?? ?? - ?? (??)
i. How will we know near which inputs to get the local graphs?
ii. After we have interpolated the local graphs, how will we know if the curve we got is the global graph?

7 Feature Sign-Change Inputs

We will often need to find medium inputs such that the outputs for nearby inputs left of x_{0} and the outputs for nearby inputs right of x_{0} have given feature-signs.

1. height sign-change input An input is a height sign-change inputwhenever height sign $=\langle+,-\rangle$ or $\langle-,+\rangle$. We will use $x_{\text {height sign-change }}$ to refer to a medium height sign-change input.

EXAMPLE 2.26.
Let f be the function given by the global graph

Then,

- $x_{0 \text {-height }}$ is not a height signchange input,
- $x_{\infty-h e i g h t ~}$ is a height signchange input.
- ∞ is a height sign-change input.

EXAMPLE 2.27.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-height }}$ is a height signchange input,
- $x_{\infty \text {-height }}$ is not a height signchange input,
- ∞ is a height sign-change input.

2. Slope sign-change input An input is a Slope sign-change inputwhenever Slope sign $=\langle/\rangle$,$\rangle or \langle\backslash, /\rangle$. We will use $x_{\text {Slope sign-change }}$ to refer to a Slope sign-change input.

EXAMPLE 2.28.
Let f be the function given by the global graph

Then,

- $x_{0 \text {-slope }}$ is a Slope sign-change input,
- $x_{\infty-\text { height }}$ is a Slope signchange input,
- ∞ is not a Slope sign-change input.

EXAMPLE 2.29.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-slope }}$ is not a Slope signchange input,
- $x_{\infty \text {-slope }}$ is not a Slope signchange input,
- ∞ is not a Slope sign-change input.

3. Concavity sign-change input An input is a Concavity signchange inputwhenever Concavity sign $=\langle\cup, \cap\rangle$ or $\langle\cap, \cup\rangle$. We will use $x_{\text {Concavity sign-change }}$ to refer to a Concavity sign-change input.

EXAMPLE 2.30.
Let f be the function given by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty \text {-height }}$ is a Concavity signchange input.
- ∞ is not a Concavity signchange input.

EXAMPLE 2.31.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty \text {-height }}$ is not a Concavity sign-change input,
- ∞ is a Concavity sign-change input.

One case where the picture gets a bit complicated is when the output point is ∞, that is when the input point is a pole

The two other cases where the picture gets a bit complicated are when the input point is ∞, whether the output point is a number y_{0} or ∞.

EXAMPLE 2.32. Local box for the input-output pair $(\infty,+71.6)$
sided local graph box
i. We get the input level band for ∞
ii. We get the output level band for $+71,6$
iii. We box the intersection of the input level bands for ∞ and +71.6

What appears to be two boxes are actually parts of one box. This is because we are using the Mercator view. In a Magellan view they would appear as a single box.

EXAMPLE 2.33. Local box for the input-output pair (∞, ∞)
i. We get the input level band for ∞
ii. We get the output level band for ∞
iii. We box the intersection of the input level bands for ∞ and ∞

What appears to be four boxes are actually parts of one box. This is because we are using the Mercator view. In a Magellan view they would appear as a single box.

Actually, we will very often want to keep the two sides of. separate and the sided local graph box will then consist of two smaller rectangles, one on each side of the input level line. To get a sided local graph place then,

Procedure 2.5

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The place for the given input - output pair is at the intersection of the corresponding sides of the level bands.

Demo 2.5 Get the sided place for $(+3,-5)$ given that:

- $+3^{-} \longrightarrow-5^{+}$
- $+3^{+} \longrightarrow-5^{-}$
i. We mark a neighborhood of +3 on the input ruler,
ii. We draw the input level band through the neighborhood of +3 , iii. We mark a neighborhood of -5 on the output ruler, iv. We draw the output level band through the neighborhood of -5 , v. Mark:
- left of $+3 \rightarrow$ above -5

- right of $+3 \rightarrow$ below
-5
vi. The sided graph box for $(+3,-5)$ is at the intersection of the corresponding sides of the level bands.

We are now going to sketch the way we will graph functions given by I-O rules which we will illusttrate with an extended Example.

The big missing piece is that we will only be able to get the local framees and will nut be able to really justify the local graphs until Chapter 3 .

The general idea will be to
4. Offscreen graph. Local graph(s) near the control input(s)
i. Local graph near ∞. We saw in ?? that $(L,-2 \oplus[\ldots])$

ii. Local graph(s) near the pole(s), if any.

We saw in Example 1.30 that -7 is a pole for the function $J I L L$.
We saw in Example 1.32 that $(-7 \oplus h, L+[\ldots])$

iii. Offscreen graph.

Quite a long way away from "just plugging" numbers into the global input-output rule and joining smoothly the plot dots". But that will be graphing that makes sense.

Very roughly speaking! The smooth talk will begin in the next chapter.

EXAMPLE 2.34. Consider the offscreen graph of the function $I A N$ in Example 1.29:

Joining smoothly this offscreen graph on-screen gives something like:

which is pretty much like $I A N$'s actual on-screen graph and even shows IAN's 'essential' features, namely that:

- IAN has a 'minimum point', (But of course does not show what the inputoutput pair is.)
- IAN has a 'maximum point', (But of course does not show what the inputoutput pair is.)
but does not show that $I A N$ has an 'inflection point'.

$$
=============\text { OK SO FAR }=============
$$

EXAMPLE 2.35. Say the following is the global graph of a function given by some I-O rule:

We can see from the picture that the given function has:

- What we will call a 'pole': $(+27.3, \infty)$.
and
- What we will call a 'minimum point': ($+13.6,-21.3$),
- What we will call an 'inflection point': $(+21.4,+48.7)$,
- What we will call a 'maximum point': $(+33.8,+20.1)$,

Most important!

EXAMPLE 2.36. In EXAMPLE 1.31, the local graphs are:

Conversely, our approach to getting the global graph of a function given by an I-O rule will be to use the I-O rule to get the poles of the given function, if any, and then join smoothly the local graphs near the pole(s), if any, and near ∞.

EXAMPLE 2.37. To get the global graph in Example 1.32 we first get the control local graphs:

which we then join smoothly:

Notice, though, that we while we did recover the 'existence' of a 'maximum point' right of +27.3 and the 'existence' of a 'minimum point' left of +27.3 , we did not recover the 'existence' of an 'inflection point'.

5. Sided local frame.

We obtain the procedure to get a sided local graph frame just by thickening ?? (??):

Procedure 2.6

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The local graph box for the given input - output pair is at the intersection of the corresponding sides of the level bands.

Demo 2.6 Get the sided local graph frame for $(-4, \infty)$ given that:

- $-4^{-} \longrightarrow-\infty$
- $-4^{+} \longrightarrow+\infty$
i. We mark a neighborhood of -4 on the input ruler,
ii. We draw the input level band through the neighborhood of -4 ,
iii. We mark a neighborhood of ∞ on the output ruler,
iv. We draw the output level band through the neighborhood of ∞, v. Mark:
- left of $-4 \rightarrow$ near $-\infty$
- right of $-4 \rightarrow$ near vi. Fhe sided graph box for $(-4, \infty)$ is at the intersection of the corresponding sides of the level bands.

Demo 2.7 Get the sided local graph frame for $(\infty,+2)$ given that:

- $-\infty \longrightarrow+2^{+}$
- $+\infty \longrightarrow+2^{-}$
i. We mark a neighborhood of ∞ on the input ruler, ii. We draw the input level band through the neighborhood of ∞, iii. We mark a neighborhood of +2 on the output ruler, iv. We draw the output level band through the neighborhood of +2 , v. Mark:
- $-\infty \rightarrow+2^{+}$
- $+\infty \rightarrow+2^{-}$

vi. The sided graph box for $(\infty,+2)$ is at the intersection of the corresponding sides of the level bands.

Demo 2.8 Get the sided local graph frame for (∞, ∞) given that:

- $-\infty \longrightarrow-\infty$
- $+\infty \longrightarrow-\infty$
i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. We mark a neighborhood of ∞ on the output ruler,
iv. We draw the output level band through the neighborhood of ∞, v. Mark:
- $-\infty \rightarrow-\infty$
- $+\infty \rightarrow-\infty$

vi. The sided graph box for (∞, ∞) is at the intersection of the corresponding sides of the level bands.

With a Magellan view of the global graph, we proceed pretty much as in ?? and once we imagine facing ∞, we can see which side is which.

EXAMPLE 2.38.

Jack is facing ∞ so the local graph near $+\infty$ which is to his left is left of ∞ and the local graph near $-\infty$ which is to his right is right of ∞.

Chapter 3

Global Ways Functions May Behave

Height-Continuity, 165 - Slope-Continuity, 172 • Concavity-Continuity, 173 • Feature Sign-Change, 178 • Smooth Interpolations, 178 • Essential Onscreen Graph, 181 • Interpolating An Offscreen Graph, 187 • Essential Feature-Sign Changes Inputs, 191 • Dilation of Functions, 201 • Addition of Functions, 202 - Linear Combinations of functions, 203 .

Investigating a function consists essentially in finding how the function 'behaves' and, in the case of a function given by a curve, as we will discuss in Chapter 2 - Local Features Functions May Have (Page 133) and Chapter 3 - Global Ways Functions May Behave (Page 165), we can see on the curve how the function behaves.

1 Height-Continuity

The first kind of abrupt change that can occur is in the size of the outputs for nearby inputs.

1. Height-continuity at $\boldsymbol{x}_{\mathbf{0}}$. Given a medium-size input x_{0}, we tend to expect that functions will be Height height continuous at x_{0}, that is that the outputs for nearby inputs will themselves be near $f\left(x_{0}\right)$, the output at x_{0}.

EXAMPLE 3.1.

height discontinuous
height discontinuous at x_{0} jump hollow dot

The function

EXAMPLE 3.2.

The function

is height continuous at +13.06 because:

- the output at +13.06 is -52.42 and
- the outputs for all nearby Inputs, both left of +13.06 and right of +13.06 , are themselves near -52.42 .
is height continuous at -18.71 because
- the output at -18.71 is -12.28 and
- the outputs for all nearby Inputs, both left of -18.71 and right of -18.71 , are themselves near -12.28 .

2. Height-discontinuity at x_{0}. Given a medium-size input x_{0}, a function is height discontinuous at $\boldsymbol{x}_{\mathbf{0}}$ when not all the outputs for nearby inputs are near $f\left(x_{0}\right)$, the output at x_{0}.

- A function can be height discontinuous at x_{0} because the function has a jump at x_{0}, that is because the outputs for nearby inputs on one side of x_{0} are all near one medium-size output while all the outputs for nearby inputs on the other side of x_{0} are near a different medium-size output.

Since we use solid dots to represent input-output pairs, we will use hollow dots for points that do not represent input-output pairs.

EXAMPLE 3.3.

The function

is height discontinuous at +3 be-gap cause the function has a jump at +3 that is:

- the outputs for nearby inputs right of +3 are all near +15 ,
but
- the outputs for nearby Inputs left of +3 are all near +13 .

EXAMPLE 3.4.
The function
is height discontinuous at -9 be-
 cause the function has a double jump at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- the output for -9 itself is +11.6 .
- A function can be height discontinuous at x_{0} because the function has a gap at x_{0}, that is because the function does not return a medium-size output for x_{0}

EXAMPLE 3.5.
The function

is height discontinuous at -9 because the function has a gap at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- there is no output for -9 itself.

EXAMPLE 3.6.

The function

EXAMPLE 3.7.

The function whose global graph is

is height discontinuous at +8 not only because the function has a jump at +8 but also because the function has a gap at +8 .
is height discontinuous at +3 because the global graph has a jump at +3 :

- the outputs for nearby inputs right of +3 are all near +15 ,
but
- the outputs for nearby Inputs left of +3 are all near +13 .

EXAMPLE 3.8.

The function whose global graph is

is height discontinuous at -9 because the global graph has a gap at -9 :

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- the output for -9 itself is +11.6 .

EXAMPLE 3.9.

The function whose global graph is

is height discontinuous at +8 not only because the global graph has a jump at +8 but also because the global graph has a gap at +8 .
cut-off input on-off function transition function transition

- Actually, height discontinuous functions are quite common in Engineering.
EXAMPLE 3.10. The following on-off functions are both height discontinuous but are different since the outputs for the cut-off inputs are different.

EXAMPLE 3.11. The following transition functions are both height discontinuous but are different since the outputs at the transitions are different.

- And, finally, there are even functions that are height discontinuous everywhere! (https://en.wikipedia.org/wiki/Nowhere_continuous_function)

$$
\begin{aligned}
& \text { Magellan height } \begin{array}{l}
\text { continuous at } \\
\text { limit }
\end{array}===============\text { Oegin WORK ZONE }=========
\end{aligned}
$$

3. Magellan height-continuity at x_{0}. A function is Magellan height continuous at x_{0} when we could remove the height discontinuity at x_{0} by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan output.
EXAMPLE 3.12. The function in ?? is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

4. Height-continuity at ∞ The use of nearby inputs instead of the raises a crucial question: Are the outputs for nearby inputs all near the output at the given input?

Any answer, though, will obviously depend on whether or not ∞ is allowed as Magellan input and Magellan output and the reader must be warned that the prevalent stand in this country is that ∞ does not exist and that one should use limits. (For what limits are, see https://en. wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason and certainly for none ever given. ${ }^{1}$

As for us, we will allow ∞ as Magellan input and Magellan output, an old, tried and true approach. See https://math.stackexchange.com/ questions/354319/can_a_function_be_considered_heightcontinuous_ if_it_reaches_infinity_at_one_point and, more comprehensively, https: //en.wikipedia.org/wiki/Extended_real_number_line.

As a backdrop to what we will be doing with Algebraic Functions, we will now show some of the many different possible answers to the above question. For clarity, we will deal with medium-size inputs and medium-size outputs separately from ∞ as Magellan input and Magellan output.

[^10]Keep in mind that we use solid dots to represent input-output pairs as opposed to hollow dots which do not represent input-output pairs.
5. Magellan height-continuity at ∞. A function is Magellan height continuous at ∞ when we could remove the height discontinuity at ∞ by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan input and/or as Magellan output.
EXAMPLE 3.13. The function

is height discontinuous at ∞ but is Magellan height continuous since we could remove the height discontinuity with an input-output table involving ∞ as Magellan input and Magellan output,

EXAMPLE 3.14. The function

is height discontinuous at ∞ but is Magellan height continuous since we could remove the height discontinuity with an input-output table involving ∞ as Magellan input and Magellan output

quasi-height continuous at removable height discontinuity at remove override supplement
6. Quasi height-continuity at x_{0}. A function is quasi-height continuous at x_{0} if the height discontinuity could be removed by overriding or supplementing the global input-output rule with an input-output table.

LANGUAGE NOTE 3.1 Removable height discontinuity at $\boldsymbol{x}_{\mathbf{0}}$ is the standard term but, for the sake of language consistency, rather than saying that a function has (or does not have) a removable height discontinuity at x_{0}, we will prefer to say that a function is (or is not) quasi-height continuous at x_{0}.

EXAMPLE 3.15. The function in EXAMPLE 3.5 is height discontinuous at -9 but the height discontinuity could be removed by overriding the input-output pair $(-9,+11.6)$ with the input-output table

Input	Output
-9	+7.2

A function can be height discontinuous at x_{0} because the function has a pole at x_{0}.

EXAMPLE 3.16. The function

is height discontinuous at -4 because not only does the function have a gap at -4 but the function has a pole at -4 that is:

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large,
but
- -4 has no medium-size output.

2 Slope-Continuity

1. Tangent. The first degree of smoothness is for the slope not to kink have any abrupt change.
to be height continuous, that is, to borrow a word from plumbing, we don't want the curve to have any kink. More precisely, we don't want any input x_{0} for which there is a "jump in slope" from one side of x_{0} to the other side of x_{0}. In other words, we don't want any input x_{0} for which the slope on one side differs from the slope on the other side by some medium-size number.

3 Concavity-Continuity

1. Osculating circle. The second degree of smoothness is for the concavity not to have any abrupt change.
to be height continuous but this is much harder to represent because it is hard to judge by just looking how much a curve is bending.
$=======$ Begin WORK ZONE $=======$
$=======$ End WORK ZONE========
2. Dealing with poles. The difficulty here stems only from whether or not it is "permisible" to use ∞ as a given input and/or as an output.

Even though, because ?? ?? - ?? (??) (?? ?? - ?? (??)), ?? ?? - ?? (??) we do use ∞ as a (Magellan) input and as a (Magellan) output because, as explained in ?? (??), we will only declare nearby inputs. (Which will shed much light on the local behavior of functions, in particular on the question of height continuity.)

However, the reader ought to be aware that many mathematicians in this country, for reasons never stated, flatly refuse to use nearby inputs with their students.

Another reason we do is because Magellan views are a very nice basis on which to discuss the local behavior of functions for inputs near ∞ and when outputs are near ∞. In particular, we can see that disheight continuiities caused by poles can be removed using ∞ as a Magellan output.

When ∞ as is not permissible as Magellan input and/or Magellan output, many functions are height discontinuous
EXAMPLE 3.17. The height discontinuity at -4 of the function in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

Input	Output
-4	∞

If we imagine the Mercator graph compactified into a Magellan graph, we have

EXAMPLE 3.18. The height discontinuity at ∞ of the function $B I B$ in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

Input	Output
∞	∞

EXAMPLE 3.19. The function whose the global graph in Mercator view is

is height discontinuous at ∞ not only because the global graph has a gap at ∞ since ?? ?? - ?? (??) but also because the global graph has a jump at ∞.

If we imagine the Mercator graph compactified into a Magellan graph, we have

If we imagine the Mercator view compactified into a Magellan view, we have

3. At ∞ The matter here revolves around whether or not ∞ should be allowed as a given input. We did but,

Also, in this section, for a reason which we will explain after we are done, we will have to deal separately with the case when the given input is x_{0} and the case when the given input is ∞.

In accordance with ??, we should say that all functions are height discontinuous at ∞ since the outputs for inputs near ∞ cannot be near the output for ∞ for the very good reason that we cannot use ∞ as input to
begin with.

LANGUAGE NOTE 3.2 Continuity at ∞ At ∞, things are a bit sticky:

- With a Magellan view, we can see if a function is height continuous at ∞ or not.
- Technically, though, to talk of height continuity at ∞ requires being able to take computational precautions not worth taking here but many teachers feel uneasy dealing with height continuity at ∞ without taking these precautions. So, we will not discuss height continuity at ∞ in this text.

EXAMPLE 3.20. The function whose global graph in Mercator view is

is height discontinuous at ∞ because, even though the outputs of inputs near ∞ are all large, the global graph has a gap at ∞ since ??.

If we imagine the Mercator view compactified into a Magellan view, we have

EXAMPLE 3.21. The function

is height discontinuous at -4 because the global graph has a pole at -4 :

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large,
but, since ??,
- -4 itself has no output.

4. Magellan height-continuity at a pole x_{0}. We will say that a function is Magellan height continuous at x_{0} when we can remove the height discontinuity at x_{0} supplementing the offscreen graph with an input-output table involving ∞ as Magellan output.
EXAMPLE 3.22. The function in ?? is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

EXAMPLE 3.23. The function in ?? is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

interpolation smooth interpolation transition

4 Feature Sign-Change

1.
2.
3.

5 Smooth Interpolations

We now introduce a major tool for extending local graphs and which, starting in ?? ?? - ?? (??), we will use to get an approximate global graph for smooth functions not given by a curve.

1. interpolation

Given two local graphs, smoothly interpolating these local graphs consists in drawing inbetween the two given local graphs a curve that:

- is itself smooth
and
- has no jump in height, slope, or concavity at the two transition inputs.

Thus, the single curve that results of a smooth interpolation, the single curve that consists of the given local graphs together with the inbetween curve will itself be smooth.

In this chapter, though, since we will only be dealing with given curves we will only be able to "eyeball" compatibility.
EXAMPLE 3.24. The curve inbetween the local graphs

i. is height continuous,
ii. is slope continuous,
iii. is concavity continuous,
but
iv. there is a slope-jump at the transition +41.76 ,
So, this inbetween curve is not a smooth interpolation.

EXAMPLE 3.25. The curve inbetween the local graphs

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous,
but
iv. there is a height-jump at the transition +18.02 ,
So, this inbetween curve is not a smooth interpolation.

EXAMPLE 3.26. The curve inbetween the local graphs

i. is not height-continuous,

So, this inbetween curve is not a smooth interpolation.

EXAMPLE 3.27. The curve inbetween the local graphs

i. is height-continuous,
ii. is not slope-continuous,

So, this inbetween curve is not a smooth interpolation.
extraneous
essential forced

EXAMPLE 3.28. The curve inbetween the local graphs

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous, and polation
iv. there are no jumps at the transitions,

So, this inbetween curve is a smooth inter-
2. However, we will not want the smooth interpolations to introduce extraneous features, that is features unwarranted by whichever way the function will be given.

So we will use essential smooth interpolations in that the feature change inputs for the inbetween curve will all be forced by the local graphs being interpolated

EXAMPLE 3.29. The curve inbetween the local graphs

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous,
and
iv. there are no jumps at the transitions,
v. the max and the min are forced by the given local graphs,
So, this inbetween curve is an essential smooth interpolation.

EXAMPLE 3.30. The curve inbetween the local graphs

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous,
iv. there are no jumps at the transitions, and
v. the inflection is forced by the offscreen graph.
So, this inbetween curve is an essential smooth interpolation.

EXAMPLE 3.31. The curve inbetween the local graphs

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous,
iv. there are no jumps at the transitions,
but
v. the min and the max are not forced by the given local graph.
So, this inbetween curve is not an essential smooth interpolation. (Compare with Example 3.52)

6 Essential Onscreen Graph

The onscreen graph and the offscreen graph are very different in nature and the difference between the offscreen graph and the onscreen graph will be The essential difference! central to the way we will get the global graph of a function given by an 'input-output rule' in Section 1 - Global Input-Output Rules (Page 207).

1. Offscreen vs. onscreen. The main difference between the offscreen graph and the onscreen graph is that:

- The offscreen graph depends only on:
- The local graph near ∞
- The local graph near the pole(s), if any.
- The onscreen graph will depend on local information which will depends very much on the particular function being investigated.

EXAMPLE 3.32. The following functions all have exactly the same offscreen graoh since:

- They all have the same local graphs near ∞
- They all have the same local graphs near the poles -3 and +5 Yet each function has a different onscreen graph:

2. Seen from far away. However, the onscreen graphs for a given offscreen graph "all look the same at sufficiently small scales" https://www. math.columbia.edu/~abouzaid/ because, seen from further and further away, the features of the onscreen graph which are not
forced
by the offscreen graph become too small to be made out.

EXAMPLE 3.33. Given the global graph,

here is what we see from further and further away:

The difference between essential feature changes and non-essential feature changes is that even when seen from very far away, and even if we cannot see the part of the onscreen graph where the feature change actuallly occurs, inasmuch as essentiall feature changes are forced by the offscreen graph, we can infer essential onscreen feature changes from the offscreen graph.

EXAMPLE 3.34.

Example 3.35. The first global graph in Example 3.40 (Page 188) seen from progessively further and further:

ii.

Moreover, since all the global graphs in Example 3.40 (Page 188) have the same offscreen graph, we would get the "same" last global graph as vi. above.
3. Forcing Inasmuch as a function is smooth, the offscreen graph forces the onscreen graph to have local features which we will qualify as essential.

EXAMPLE 3.36.

forces the onscreen graph to have
(at least) one maximum point and (at least) one minimum point:

but neither where the points are located nor what the outputs are.

CAUTIONARY NOTE 3.1 Locating essential inputs is a totally different question from finding how many essential inputs there are. Locating essential inputs is usually a much more difficult question which, except in a very few cases, we will not deal with in this text.

Thus, the essential onscreen graph of a smooth function is the global graph with no non-essential feature.

4. Essential interpolation vs Non-essential Interpolation

Definition 3.1 An essential onscreen graphis a simplest possible smooth interpolation of the offscreen graph, that is without any nonessential feature-sign change inputs and without any nonessential features.

EXAMPLE 3.37. Given the offscreen graph,

the following

are all smooth interpolations but only \mathbf{c}. is an essential onscreen graph.
EXAMPLE 3.38. Given the offscreen graph,

the following

are all smooth interpolations but only \mathbf{a}. is an essential onscreen graph.

5. Smoothing out non-essential features

- The essential onscreen graph is how we see the actual graph from "faraway" inasmuch as nonessential features such as bumps, hiccups and fluctuations are too small to be seen from faraway.
- The essential onscreen graph is what we would get if the onscreen graph were a wire being pulled out so as to straighten it.

EXAMPLE 3.39. Given the global graph,

we can imagine the non-essential onscreen graph as a "wire" being pulled by the offscreen graph so as to smooth it out into an essential medium-size graph.

$========$ End WORK ZONE $=======$

AGREEMENT 3.1 From now on we will just say interpolation for essential smooth interpolation.

7 Interpolating An Offscreen Graph

Getting the global graph of a function not given by a curve is usually not a simple matter (https://en.wikipedia.org/wiki/Interpolation).

As already mentioned in Section 5 - Smooth Interpolations (Page 178), we will use smooth interpolations to get the global graph of functions not given by a curve which we will do by smoothly interpolating the offscreen graph to get an onscreen graph.

1. Functions without pole. When the function does not have a pole, we interpolate smoothly the local graph near ∞ by drawing across the screen an inbetween curve from one transition input to the other transition input.

EXAMPLE 3.40. The curve inbetween the offscreen graph

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous, and
iv. there are no jumps at the transitions.

So, this inbetween curve

- gives an onscreen graph,
- does not give an essential onscreen graph because the min and the max are not forced by the offscreen graph

EXAMPLE 3.41. The curve inbetween the offscreen graph

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous, but
iv. there are two jumps at transitions,

So, this inbetween curve cannot the onscreen graph (Even though it could be the onscreen graph for a function that is not smooth.)

EXAMPLE 3.42. The curve inbetween the offscreen graph

i. is not height-continuous,

So: This inbetween curve cannot be the onscreen graph.

EXAMPLE 3.43. The curve inbetween the offscreen graph

introduces a pole.
So, this inbetween curve cannot be the onscreen graph.

EXAMPLE 3.44. The curve inbetween the offscreen graph

i. is height-continuous,
ii. is slope-continuous,
iii. is concavity-continuous,
and
iv. there are no jumps at the transitions

So, this inbetween curve gives an onscreen graph but not an essential onscreen graph because one of the two inflections is not forced by the offscreen graph.
2. Functions with pole(s). When the offscreen graph consists of the local graph near ∞ together with at least the local graph near the pole $x_{\infty \text {-height }}$, we must interpolate with:

- one curve inbetween :
- the local graph near $-\infty$
and
- the local graph near the pole $x_{\infty \text {-height }}$,
and
- another curve inbetween :
- the local graph near the pole $x_{\infty \text {-height }}$,
and
- the local graph near $+\infty$

In example 3.45 and example 3.46 we will examine whether or not the inbetween curve is an interpolation for the

EXAMPLE 3.45. The curves inbetween the two offcreen local graphs
the inbetween curve

i. are both height-continuous,
ii. are both slope-continuous,
iii. are both concavity-continuous,
but
iv. there is a slope-jump at one of the transitions.
So, these inbetween curves cannot give an onscreen graph..

EXAMPLE 3.46. The curves inbetween the two offcreen local graphs

i. are both height continuous,
ii. are both slope continuous,,
iii. are both concavity continuous,
and
iv. there is no jumps at the transitions,.

So, these in-beweern curves give an onscreen graph which is in fact essential since the $\mathbf{~ m i n}$ is forced by the offscreen graph.
$=========$ OK SO FAR $==========$
3. Interpolating an offscreen graph. So, based on the preceding EXAMPLES, to draw an interpolation, we proceed as follows

Procedure 3.1 Interpolate an offscreen graph
i. Going from left to right, mark the features where the offscreen graph enters the screen and where the offscreen graph exits the screen
ii. Draw the inbetween curve(s) from the point(s) where the offscreen graph enters the screen to the point(s) where the offscreen graph exits
the screen making sure that:

- Each inbetween curve is smooth,
- Each transition between a inbetween curve and the local graph is smooth
- The inbetween curves do not introduce any infinite height input.

Demo 3.1

To interpolate,
i. Mark the features where the offscreen graph enters and exits the screen:

ii. Draw the inbetween curve(s) smoothly

$=======$ End HOLDING $======$
$=======$ Begin WORK ZONE $=======$

8 Essential Feature-Sign Changes Inputs

1. Essential sign-change input A feature sign-change input is essential whenever its existenceis forcedby the offscreen graph. So, given the offscreen graph of a function, in order

Procedure 3.2 To establish the existence of essential feature sign change inputs in a inbetween curve
i. For each piece of the inbetween curve, check the feature sign at both end of the piece.

- If the feature signs at the two ends of the piece are opposite, there has to be a feature sign change input for that piece.
- If the feature signs at the two ends of the piece are the same, there does not have to be a feature sign change input for that piece.
ii. For each ∞ height input, if any, check the feature sign on either side of the ∞ height input:
- If the feature signs on the two sides of the ∞ height input are opposite, the ∞ height input is a feature sign change input.
- If the feature signs on the two sides of the ∞ height input are the same, the ∞ height input is not a feature sign change input..
iii. Check the feature sign on the two sides of ∞
- If the feature signs on the two sides of ∞ are opposite, ∞ is a feature sign change input.
- If the feature signs on the two sides of ∞ are the same, ∞ is not a feature sign change input..

Demo 3.2a

To establish the existence of Height-sign change inputs

- Since the Height signs near $-\infty$ and left of $x_{\infty-\text { height }}$ are opposite there is an essential Height sign-change between $-\infty$ and $x_{\infty-h e i g h t . ~}^{\text {. }}$
- Since the Height signs right of $x_{\infty-\text {-height }}$ and near $+\infty$ are the same there is no essential Height sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

Demo 3.2b

To establish the existence of Slope-sign change inputs

- Since the Slope signs near $-\infty$ and left of $x_{\infty-\text { height }}$ are opposite there is an essential Slope sign-change between $-\infty$ and $x_{\infty-\text { height }}$.
- Since the Slope signs right of $x_{\infty-\text { height }}$ and near $+\infty$ are the same there is no essential Slope sign-change between $x_{\infty-\text { height }}$ and $+\infty$.

Demo 3.2c

To establish the existence of Concavity-sign change inputs

- Since the Concavity signs near $-\infty$ and left of $x_{\infty \text {-height }}$ are opposite there is an essential Concavity sign-change between $-\infty$ and $x_{\infty \text {-height }}$.
- Since the Concavity signs right of $x_{\infty \text {-height }}$ and near $-\infty$ are the same there is no essential Concavity sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

2. more complicated However, things can get a bit more complicated.

Demo 3.2d

To establish the existence of Concavity-sign change inputs

- Since the concavity-sign at the transitions from $-\infty$ is \cup and the concavity-sign at the transition to $+\infty$ is also \cup, one might be tempted to say that there is no essential concavity sign-change input.
- However, attempting a smooth interpolation shows that things are a bit more complicated than would at first appear.
i. Since the slope-signs at the transition from $-\infty$ is / and the slope-sign at the transition to $+\infty$ is \backslash there has to be an essential Slope sign-change input near which Concavity sign $=$ $\langle\cap, \cap\rangle$

ii. Since the concavity-signs near $-\infty$ and left of $x_{0 \text {-slope }}$ are opposite, there is an essential Concavity sign-change input between $-\infty$ and $x_{0 \text {-slope }}$.

iii. Since the concavity-signs right of $x_{0 \text {-slope }}$ and near $+\infty$ are opposite, there is an essential Concavity sign-change input between $x_{0 \text {-slope }}$ and $+\infty$.

3. non-essential That there is no essential feature sign-change input does not mean that there could not actually be a non-essential feature signchange input.

EXAMPLE 3.47.
Let f be the function whose offscreen graph is

- There is no essential Height sign-change input, no essential Slope sign-change input, and no essential Concavity sign-change input.
- However, the actual medium-size graph could very well be:

4. Essential Extreme-Height Inputs An extreme-height input is an essential local extreme-height input if the existence of the local extreme-height input is forced by the offscreen graph in the sense that any smooth interpolation must have a local extreme-height input.

EXAMPLE 3.48.

Let f be a function whose offscreen graph is

Then,
i. Since the Slope signs near $-\infty$ and $+\infty$ are opposite there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. Since the Height of $x_{\text {Slope sign-change }}$ is not infinite, the slope near $x_{\text {Slope sign-change }}$ must be 0

iii. $x_{0 \text {-slope }}$ is a local essential Maximum-Height input.

EXAMPLE 3.49.
essential $_$local $_$extremeheight_input

Let f be a function whose offscreen graph is

Then,
i. Since the Slope signs near $-\infty$ and near $+\infty$ are opposite there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. But since there is an ∞-height input, the Height near $x_{\text {slopesign-change }}$ is infinite and there is no essential local maximum height input.
5. Non-essential Features While, as we have just seen, the offscreen graph may force the existence of certain feature-sign changes in the onscreen graph, there are still many other smooth interpolations of the offscreen graph that are not forced by the onscreen graph.

EXAMPLE 3.50. The moon has an influence on what happens on earthfor instance the tides-yet the phases of the moon do not seem to have an influence on the growth of lettuce (see http://www. almanac.com/content/ farming-moon) or even on the mood of the math instructor.

We will say that a global feature is non-essentialif it is not forced by the offscreen graph.

1. As we saw above, feature sign-change inputs can be non-essential.

EXAMPLE 3.51.

Let f be a function
whose graph is

Then,
i. The two Height sign-change inputs left of $x_{\infty \text {-height }}$ are non-essential because if the 0 -output level line were higher, there would be no Height sign-change input. For instance:

ii. The Height sign-change input right of $x_{\infty \text {-height }}$ is essential because, no matter where the 0 -output level line might be, the inbetween curve has to cross it.
2. There other non-essential features:

- A smooth function can have a bump in which the slope does not change sign but the concavity changes sign twice.
bump
wiggle
max-min_fluctuation min-max_fluctuation

EXAMPLE 3.52. The function whose graph is

has a bump.

- A smooth function can also have a wiggle, that is a pair of bumps in opposite directions with the slope keeping the same sign throughout but with three inputs where the concavity changes sign.
EXAMPLE 3.53. The function whose graph is

has a wiggle.
- A smooth function can also have a max-min fluctuation or a minmax fluctuation that is a sort of "extreme wiggle" which consists of a pair of extremum-heights inputs in opposite directions. In other words, a fluctuation involves:
- two inputs where the slope changes sign
- two inputs where the concavity changes sign

EXAMPLE 3.54. The function whose graph is

has a max-min fluctuation.
essential onscreen graph join smoothly essential graph
join smoothly essential on-screen graph

However, as we will see in Section 1 - Global Input-Output Rules (Page 207), in Mathematics, functions are not usually given by a curve but are given "mathematically" and the investigation of how a function given "mathematically" behaves cannot be based on the function's global graph which, in any case, is usually not necessarily simple to get as we will discuss in Section 4 - Local Input-Output Rule (Page 214).

But, while finding the global graph of a function given "mathematically" is not stricly necessary to understand how the given function behaves, the global graph of a function given "mathematically" can be a very great help to see the way the given function behaves.

So, in order to explain how we will get the global graph of a function given "mathematically" we will have to proceed by stages using functions given by a curve.

We begin by outlining the Procedure which we will follow in Section 1 - Global Input-Output Rules (Page 207).
i. The first step in getting the global graph of a function given "mathematically" will be to get the local graphs near the control points, that is near ∞ and near the poles, if any.
ii. The second step in getting the global graph of a function given "mathematically" will be to get the offscreen graph.
iii. The third step in getting the global graph of a function given "mathematically" will be to get the essential onscreen graph by joining smoothly the offscreen graph across the screen.
6. The essential onscreen graph. Thus, the first step in getting the global graph of a function given by an I-O rule will be to get the essential graph, that is the onscreen graph forced by the offscreen graph, in other words, the onscreen graph as we would see it from very far away.

Procedure 3.3 To get the essential graph of a function given by a global input-output rule
i. Get the offscreen graph, that is,
a. Get the local graph near ∞,
b. Get the local graph near the pole(s), if any,
ii. Join smoothly the offscreen graph across the screen

Get the offscreen graph from the local graphs near the control inputs namely near ∞ and near the pole(s) if any,

Then get the essential on-screen graph by

8. ESSENTIAL FEATURE-SIGN CHANGES INPUTS

The essential on-screen graph will already provide information about the existence of essential behavior change inputs on-screen-but not about their location.

However, there might be behavioral changes too small to see from far away, so get the proximate on-screen graph by:
a. locating the non-essential behavioral change inputs, if any,
b. getting the local graphs near these non-essential behavioral change inputs
c. Joining smoothly all local graphs, and then progressively zero in:
I. We then have JIM's offscreen graph:

II. Then, the essential on-screen graph of $J I M$ would look some-

\uparrow Outputs

And just because something is far away doesn't mean it's of no interest: "Many ancreiniterequilizations collected pstwomontieadnisfoneratgorapih a systematic manner through observation." (https:// en. wikipedia.org/wiki/ History_of_science.)

Actually makes sense doesn't $i t$?

Under the assumption that the function is continuous, the essential on-screen graph of JIM already shows, the existence of an essential minimum and of an essential maximum:

However, there might be behavioral changes that we are too far to see.
III. Supposing, for instance, that we were to locate from the I-O rule a maximum at +7.8 coupled with a minimum at +2.1 , or a nonessential inflection at +7.5 then the proximate graph would be:

If we were to locate no non-essential behavioral change input, then of course the proximate graph would just be the essential on-screen graph

9 Dilation of Functions

1. Dilating functions given by table.

2. Dilating functions given by curve.
base function add-on number add-on function sum function

10 Addition of Functions

Given a function, to which we will refer as base function, one often needs to add a number to each output that the base function returns. Whether or not this add-on number remains the same regardless of the input or differs depending on the input, we can look upon the add-on number as being itself the output returned for the same input by some other function to which we will refer as add-on function. (If the add-on number is the same regardless of the input this just means that the add-on function is a constant function.)

There is then going to be a third function, to be referred as sum function, which, for each input, will return the output returned by the base function plus the add-on number returned by the add-on function for that input.
In other words, given the two functions

$$
x \xrightarrow{B A S E} B A S E(x)
$$

and

$$
x \xrightarrow{A D D-O N} A D D-O N(x)
$$

there will be a third function given by

$$
x \xrightarrow{S U M} S U M(x)=B A S E(x)+A D D-O N(x)
$$

1. Adding functions given by table. In sciences such as Biology, Psychology and Economics the three functions are often in tabular form.
EXAMPLE 3.55. When we shop online for, say a textbook, we first see a price list -the base function. However, a shipping charge, which might or might not depend on the textbook, is usually added-on to the list price and is given by the Shipping charge list -the add-on function. The price we end-up having to pay is thus given by the actual price list-the sum function.

$\xrightarrow{\text { LIST }}$	$\mathcal{L I S T}(\mathrm{x})$	$x \xrightarrow{\text { SHIP }} \mathcal{S H I P}(x)$		$x \xrightarrow{\mathcal{P A \mathcal { Y }}} \mathcal{P A \mathcal { A }}(x)$	
English	140	English	13.15	English	$140+13.15=153.15$
History	80	History	3.45	History	$80+3.45=83.45$
Biology	130	Biology	7.25	Biology	$130+7.35=137.25$
Math	10	Math	3.75	Math	$10+3.75=13.75$
Poetry	70	Poetry	5.32	Poetry	$70+5.32=75.32$

which says, for instance, that while the list price of the English textbook is
$\$ 140$, a shipping charge of $\$ 13.15$ brings the price to be paid to $\$ 140+$ $\$ 13.15=\$ 153.15$.
2. Adding functions given by bar graphs. Instead of giving the functions by tables, one might want to given them by graphs. Rather than to use plots, though, one often uses bar graphs.
EXAMPLE 3.56. The situation in the above example would be represented by the following bar graphs.

11 Linear Combinations of functions

Part II

Functions Given By Rules

While functions given by data, be it tables, I-O plots or curves, are often used by experimental scientists, functions given by data do not lend themselves to the calculations necessary to, for instance, assess the precision of the data and, more generally, to a real understanding of what the function does.

So, both in engineering and sciences, functions are mostly given "mathematically", that is by giving a generic expression to calculate the output number $f(x)$ to be returned by f for the input number x.

Giving a number (Subsection 4.7, Page 17) makes it likely that there are several ways to give a generic expression for $f(x)$ and this Part II deals with the first and simplest way which is of course just to give the generic expression in terms of x for $f(x)$ itself.
After introducing global Input-Output rules in Chapter 5-Straight Functions (Page 227), we will discuss:

1. Local I-O Rule

2. Local Graph

3. Local Features
4. Control Point(s)
5. Global Graph

Of course, most of Part II will belabor the obvious but, this way, the reader will see how matters remain essentially the same even as the functions get more complicated.

Chapter 4

Input-Output Rules

Global Input-Output Rules, 207 • Output at a given number., 208 • Global Graph: Why Not Just Plot \& Interpolate?, 211 • Local Input-Output Rule, 214 • Towards Global Graphs., 224 .

1 Global Input-Output Rules

To give a function, the simplest way after giving the outputs themselves by way of data is to give instructions for computing the outputs:

DEFINITION 4.1 A global I-O rule provides a generic expression in terms of x for computing the output $f(x)$ in terms of the input x :

$$
\underbrace{x \frac{f}{\underbrace{}_{\text {Output }}} \underbrace{f(x)}_{\text {Global input-output rule }}=\underbrace{}_{\text {generic expression in terms of } x}}_{\text {Input }}
$$

In order to work with input-output pairs at a given number x_{0} when the function is given by an Input-Output rule, we will use

DEFINITION 4.2 Depending on whether x_{0} is a regular input or a pole we will use the following formats:

- For graphing, the pair format,

This is the "direct" way to give instructions. In Part III - (Laurent) Polynomial Functions (Page 337) we will see the "reverse" way, that is giving the instructions as 'solution of a (function) 'equation'

$$
\left(x_{0}, y_{0}\right) \text { or }\left(x_{0}, \infty\right)
$$

- For computing, the plain function format,

$$
f\left(x_{0}\right)=y_{0} \quad \text { or } \quad f\left(x_{0}\right)=\infty
$$

- For seeing, the arrow function format,

$$
x_{0} \xrightarrow{f} y_{0} \text { or } x_{0} \xrightarrow{f} \infty
$$

- For anything, the full function format,

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=y_{0} \quad \text { or } \quad x_{0} \xrightarrow{f} f\left(x_{0}\right)=\infty
$$

2 Output at a given number.

Even though, as we argued in Section 11 - Neighborhoods (Page 40), evaluating a generic expression at a given number is to ignore the real world, we will occasionally, if only for plotting purposes, want to get the outputs at given numbers.

1. Getting input-output pairs

Procedure 4.1 To get the output returned at a given number x_{0} by a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ generic expression in terms of x,

In standard CALCulus texts the two steps, declaration and replacement, are often conflated into a single step but we will not do it.
i. Declare that the output is to be at the given x_{0} by writing to the right of the global input-output rule: the declaration

$$
x \longrightarrow f(x)=\text { generic expression in terms of }\left.x\right|_{x \leftarrow x_{0}}
$$

ii. Replace every occurence of x in the global input-output rule by the given input x_{0} to get the individual expression for x_{0} :

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\text { Individual expression in terms of } x_{0}
$$

iii. Execute the individual expression in terms of x_{0}, that is do the
operations in the individual expression to get:

$$
\text { Individual expression in terms of } x_{0}=y_{0}
$$

iv. Format the input-output pair according to Definition 4.2 - Pointwise formats (Page 207)

Demo 4.1a To get the output returned for the input -5 by the function $\mathcal{J I} \mathcal{L L}$ given by the global input-output rule $x \xrightarrow{\mathcal{J I L L}}$

$$
\mathcal{J I L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}
$$

i. We declare that the output is to be at -5 by writing $\left.\right|_{x \leftarrow-5}$ to the right ot the global input-output rule:

$$
x \xrightarrow{\mathcal{J I L L L}(} \mathcal{J} \mathcal{I} \mathcal{L} \mathcal{L}(x)=\left.\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}\right|_{x \leftarrow-5}
$$

ii. We replace every occurence of x in the global input-output rule by the given input -5 to get the individual expression for the output at -5:

$$
-5 \xrightarrow{J I L L} \mathcal{J I L L L}(-5)=\frac{(-4 \odot-5) \oplus+7}{+2 \odot(-5 \oplus+7)}
$$

iii. We execute the individual expression in terms of -5 , that is we do the operations in the individual expression:

$$
\begin{aligned}
& =\frac{(+20) \oplus+7}{+2 \odot(+2)} \\
& =\frac{+20 \oplus+7}{+2 \odot+2} \\
& =\frac{+27}{+4} \\
& =+6.75
\end{aligned}
$$

So, -5 is a regular input of the function $\mathcal{J I} \mathcal{L} \mathcal{L}$
iv. We format the input-output pair, that is we write,

- For graphing, $(-5,+6.75)$
- For computing purposes, we write $\mathcal{J I} \mathcal{L L}(-5)=+6.75$

OK, don't worry too much about the algebra: the idea for this DEMO and for the EXAMPLES that will follow is only to impress you with the power and the scope of PRO CEDURE 1.8. So, for the time being, the most important for you is to develop an appreciation of jusr the way PROCEDURE 1.8 works.

- For discussing, $-5 \xrightarrow{\text { JILLL }}+6.75$
- For anything, $-5 \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(-5)=+6.75$

DEMO 4.1b To get the output returned for the input -7 by the function $\mathcal{J I} \mathcal{L} \mathcal{L}$ given by the global input-output rule $x \xrightarrow{\mathcal{J I L L}}$ $\mathcal{J I L} \mathcal{L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
i. We declare that the output is to be at -7 by writing $\left.\right|_{x \leftarrow-7}$ to the right ot the global input-output rule:

$$
x \xrightarrow{\mathcal{J I L L}(} \mathcal{J I \mathcal { L } \mathcal { L } (x)}=\left.\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}\right|_{x \leftarrow-5}
$$

ii. We replace every occurence of x in the global input-output rule by the given input -7 to get the individual expression for the output at -7 :

$$
-7 \xrightarrow{J I L L} \mathcal{J I \mathcal { L L }}(-7)=\frac{(-4 \odot-7) \oplus+7}{+2 \odot(-7 \oplus+7)}
$$

iii. We execute the individual expression in terms of -7 , that is we do the operations in the individual expression:

$$
\begin{aligned}
& =\frac{(+28) \oplus+7}{+2 \odot(0)} \\
& =\frac{+28 \oplus+7}{+2 \odot 0} \\
& =\frac{+35}{0} \\
& =\infty
\end{aligned}
$$

So, -7 is a pole of the function $\mathcal{J I L \mathcal { L }}$
iv. We format the input-output pair, that is we write,

- For graphing, $(-5, \infty)$
- For computing purposes, we write $\mathcal{J I L L}(-5)=\infty$
- For discussing, $-5 \xrightarrow{\mathcal{J I L L}} \infty$
- For thinking, $-5 \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(-5)=\infty$

3* Global Graph: Why Not Just Plot \& Interpolate?

One of the main goals when a function f is given by a global I-O rule ise to get the global graph of f and the way readers were most probably taught was to:
a. Declare a few (regular) input numbers: x_{0}, x_{1}, x_{2}, etc
b. Compute the outputs $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)$, etc using Procedure 4.1 - Get the output at x_{0} from the I-O rule giving f (Page 208),
c. Plot the input-output pairs $\left(x_{0}, f\left(x_{0}\right)\right),\left(\left(x_{1}, f\left(x_{1}\right)\right),\left(\left(x_{2}\right.\right.\right.$, etc using Picture a few pairs (Procedure 1.1, Page 73)
d. Interpolate these plot dots with a curve.

Unfortunately, if this is indeed fairly easy, this worls only for Straight Functions (Chapter 5, Page 227) because of a number of issues:

1. How do we get the off-screen graph? Since the only numbers we can tickmark are mid-size numbers, there is no way we can plot inputoutput pairs near ∞ and/or near the pole(s) if any.

2. How do we know which numbers to declare?

EXAMPLE 4.1. Let $\mathcal{K E N}$ be given by the l-O rule $x \xrightarrow{\mathcal{K E N}} \mathcal{K E N}(x)=$ $-3 x+2$
i. If we use the input numbers -2 and +2 , using Procedure 4.1-Get the output at x_{0} from the I-O rule giving f (Page 208) we get the I-O pairs $(-2,-12)$ and $(+2,-12)$ whose plot points we could join smoothly with a horizontal straight line.
ii. If, however, we use, say, the input numbers -2 and +4 , using Procedure 4.1 - Get the output at x_{0} from the I-O rule giving f (Page 208) we get the I-O pairs $(-2,-12)$ and $(+4,-48)$ whose plot points we certainly cannot join smoothly with a horizontal straight line.

Nice and easy, eh? In fact, utterly misleading garbage that has to be disposed of properly kefore any CalcuLf $f\left(5 x^{n} n\right)$ be done ... Accord-
ING TO THE REAL World.

Of course. we never asked that from our teacher.

3. How do we know how many numbers to declare?

EXAMPLE 4.2. Let $\mathcal{K E \mathcal { N }}$ be given by the l-O rule $x \xrightarrow{\mathcal{K E N}} \mathcal{K} \mathcal{E N}(x)=$ $-3 x^{+2}$
i. If we use two input numbers, say -4 and +3 , using Procedure 4.1-Get the output at x_{0} from the I-O rule giving f (Page 208) we get the I-O pairs $(-4,-48)$ and $(+3,+27)$ whose plot points we can join smoothly with a straight line.
ii. If, however, we use three input numbers, say -4 and +3 with some thired input number, the chances are very high that we will not be able to join the plot points smoothly with a straight line.

And in fact, too many plot points can make it impossible to join them smoothly.

EXAMPLE 4.3. The function $\mathcal{S I N E}$ belongs to Volume II, but the point here is Strang's Famous Computer Plot of $\mathcal{S I N E}{ }^{1}$:

How are we to "join smoothly"?

We would sometimes ask but they always said it would be obvious.
4. How do we know with which curve to interpolate?

EXAMPLE 4.4. Suppose the function $\mathcal{R} \mathcal{I} \mathcal{N O}$ was given by some I-O rule and that we got the following input-output table and therefore the following plot:

[^11]| Inputs | -4 | -3 | -2 | +1 | +2 | +4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs | -1 | +3 | 0 | -1 | -2 | +3 |

Now, how would you join these plot dots? For instance:

Answer: Other than making sure not to break the ?? (?? ??, ??) and other than very exceptionally, there is no rule for joining plot dots smoothly.

If we asked, they would say "just get more plot points".
5. How do we know the curve we got is the graph?

EXAMPLE 4.5. Let $C A T$ be the function given by the I-O rule

$$
x \xrightarrow{C A T} C A T(x)=\frac{x^{3}-1}{x-2}
$$

Which of the following computer-generated "graphs" is the right one?

In case you wonder, they all are. "Just" different scales!

Answer: On the basis of only so many plot dots, we can never be sure what even the on-screen graph is going to look like.

4 Local Input-Output Rule

OKsoFAR OKsoFAR

We already discussed in Numbers In General (Section 3, Page 7) why, in the real world, we cannot use isolated numbers and in Computing with Extended Numbers (Section 10*, Page 39) that we need neighborhoods.

In Local graph near a point (Section 8, Page 119), we saw how to get global graphs from local graphs near control points/

Here, we will see that to get the local graphs we need from Local inputOutput rules to get outputs near a given point.
from which we will get local graphs which we will interpolate to get global graphs.
make a diagram here.
alluded to the heart of the matter in Computing with Extended Numbers (Section 10*, Page 39)

As hinted at in Local graph near a point (Section 8, Page 119), the way we will operate is by interpolation of local graph graphs.

The iwuestion then is how to get the local graph near a given point for the global I-O rule, that is how to comput outputs near given numbers.
with computing outputs at given numbers is that:

OKsoFAR OKsoFAR

A major part of our work with functions given by input-output rules will be getting local graphs in order to:

- See Local Features Functions May Have (Chapter 2, Page 133)
- Construct the global graph of the function to see Global Ways Functions May Behave (Chapter 3, Page 165)
The first step towards getting local graphs for functions given by inputoutput rules will be to compute the output near a given point.

The fact that global input-output rules involve a generic expression in terms of a number will not prevent us from investigating a function near a given point, be it $\infty, 0$, or x_{0} because,

- near ∞, we will use large-size numbers and therefore the large variable L
- near 0 we will use small-size numbers and therefore the small variable h
- near x_{0} we will use nearby mid-size numbers and therefore the near midsize number variable $x_{0} \oplus h$

DEFINITION 4.3 Using the symbol V to stand for the appropriate one of the nearby variables for the given point: large variable L, small variable h, circa variable $x_{0} \oplus h$, we have:

- For graphing, use the local input-output pair $(V$, executed expression in terms of $V)$
- For computing, use the local input-output rule

Local input-output rule near given point

- For seeing, use the local arrow pair
$V \xrightarrow{f}$ executed expression in terms of V
- For thinking, use

1. Near ∞

Procedure 4.2 To get the outputs returned near ∞ by a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ generic expression in terms of x,
i. Declare that the input is a large-size indeterminate number by using the large variable L and writing the declaration $\left.\right|_{x \leftarrow L}$ to the right of the global input-output rule:

$$
x \xrightarrow{f} f(x)=\text { generic expression in terms of }\left.x\right|_{x \leftarrow L}
$$

ii. Replace every occurence of x in the global input-output rule by the large variable L to get the local input-output rule near ∞ :
$L \xrightarrow{f} f(L)=$ generic expression in terms of L
iii. Execute the generic expression in terms of the relevant variable according to the rules in Section 9 - Computing with Qualitative Sizes (Page 33), that is do the operations in the generic expression to get the executed expression
iv. Format according to Definition 4.3 - Local formats (Page 216)

Demo 4.2 To get the outputs returned for inputs near ∞ by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$ $\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}$
i. We declare that the input is a large-size indeterminate number by writing the declaration $\left.\right|_{x \leftarrow L}$ to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow L}
$$

ii. We replace every occurence of x in the generic expression by L to get the individual expression for L :

$$
L \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(L)=\frac{L^{+2} \ominus+1}{L \oplus+3}
$$

iii. We execute the individual expression for L :

$$
\begin{aligned}
& =\frac{L^{+2} \ominus+1}{L \oplus+3} \\
& =\frac{L^{+2} \oplus[\ldots]}{L \oplus[\ldots]} \\
& =L \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format according to Definition 4.3-Local formats (Page 216)

- local Input-output pair $(L, L \oplus[\ldots])$
- local input-output rule $\mathcal{Z E N A}(L)=L \oplus[\ldots]$
- local arrow pair $L \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(L)$
local executed expression local input-output rule local input-output pair local input-output arrow pair
executed expression local input-output rule local input-output pair
- local input-output rule $L \xrightarrow{\mathcal{Z E N A} \mathcal{Z}} \mathcal{Z E N A}(L)=L \oplus[\ldots]$

2. Near 0

Procedure 4.3 To get the outputs returned near 0 by
a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ generic expression in terms of x,
i. Declare that the input is a small-size indeterminate number by using the small variable h and writing the declaration $\left.\right|_{x \leftarrow h}$ to the right of the global input-output rule:

$$
x \xrightarrow{f} f(x)=\text { generic expression in terms of }\left.x\right|_{x \leftarrow h}
$$

ii. Replace every occurence of x in the global input-output rule by the small variable h to get the local input-output rule near 0 :

$$
h \xrightarrow{f} f(h)=\text { generic expression in terms of } h
$$

iii. Execute the generic expression in terms of the relevant variable according to the rules in Section 9 - Computing with Qualitative Sizes (Page 33), that is do the operations in the generic expression to get the executed expression
iv. Format according to Definition 4.3 - Local formats (Page 216)

- For graphing, use the input-output pair
(h, executed expression in terms of h)
- For computing, use the equality

- For seeing, use the arrow pair
$h \xrightarrow{f}$ executed expression in terms of h
- For thinking, use the local input-output rule

executed expression
local input-output rule
local input-output pair
i. We declare that the input is a small-size indeterminate number by using the small variable h and writing the declaration $\left.\right|_{x \leftarrow h}$ to the right of the global input-output rule:
ii. We replace every occurence of x in the generic expression by h to get the individual expression for h :

$$
h \xrightarrow[\mathcal{Z E N A A}]{\mathcal{Z E N A}(h)}=\frac{h^{+2} \ominus+1}{h \oplus+3}
$$

iii. We execute the individual expression for h :

$$
\begin{aligned}
& =\frac{-1 \oplus h^{2}}{+3 \oplus+h} \\
& =-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format according to Definition 4.3 - Local formats (Page 216)
$\left(h,-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}\right)$

$$
\mathcal{Z E N A}(h)=-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}
$$

$h \xrightarrow{\mathcal{Z E N A}}=-\frac{1}{3} \oplus+\frac{1}{3+2} h \oplus+\frac{8}{3+3} h^{+2}$
$h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(h)=-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3+3} h^{+2}$
3. Near x_{0}.

Procedure 4.4 To get the outputs returned near x_{0} by
a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ generic expression in terms of x,
i. Declare that the input is a nearby indeterminate number by using the local variable $x_{0} \oplus h$ and writing the declaration $\left.\right|_{x \leftarrow x_{0} \oplus h}$ to the right of the global input-output rule:

$$
x \xrightarrow{f} f(x)=\text { generic expression in terms of }\left.x\right|_{x \leftarrow x_{0} \oplus h}
$$

ii. Replace every occurence of x in the global input-output rule by the local variable $x_{0} \oplus h$ to get the local input-output rule near x_{0} :

iii. Execute the generic expression in terms of the relevant variable according to the rules in Section 9 - Computing with Qualitative Sizes (Page 33), that is do the operations in the generic expression to get the executed expression
iv. Format according to Definition 4.3 - Local formats (Page 216)

- For graphing, use the input-output pair

$$
\left(x_{0} \oplus h, \text { executed expression in terms of } h\right)
$$

- For computing, use the equality

$$
\underbrace{f\left(x_{0} \oplus h\right)=\text { executed expression in terms of } h}_{\text {Local input-output rule near } 0}
$$

- For seeing, use the arrow pair

$$
x_{0} \oplus h \xrightarrow{f} \text { executed expression in terms of } h
$$

- For thinking, use the local input-output rule

$$
x_{0} \oplus h \xrightarrow{f} \underbrace{f(h)=\text { executed expression in terms of } h}_{\text {Local input-output rule near } 0}
$$

Note that the executed expression in the output for inputs near x_{0}, that is in the output for $x_{0} \oplus h$, is not the same as the executed expression
in the output for inputs near 0 , that is in the output for h, because the executed expression in the output for $x_{0} \oplus h$ "contains" x_{0}

Demo 4.4a To get the outputs returned for inputs near +5 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$ $\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}$
i. We declare that the input is an indeterminate number near +5 by writing the declaration $\left.\right|_{x \leftarrow+5 \oplus h}$ to the right of the global inputoutput rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \operatorname{ZENA}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow+5 \oplus h}
$$

ii. We replace every occurence of x in the generic expression by $+5 \oplus h$ to get the individual expression for $+5 \oplus h$:
$+5 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+5 \oplus h)=\frac{+5 \oplus h^{+2} \ominus+1}{+5 \oplus h \oplus+3}$
iii. We execute the individual expression for $+5 \oplus h$:

$$
\begin{aligned}
& =\frac{+25 \oplus+10 h \oplus+h^{2} \ominus+1}{+5 \oplus+h \oplus+3} \\
& =\frac{+24 \oplus+10 h \oplus+h^{2}}{+8 \oplus+h} \\
& =+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair:

- $\left(+5 \oplus h,+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]\right)$
- $\mathcal{Z E N A}(+5 \oplus h)=+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$
- $+5 \oplus h \xrightarrow{\mathcal{Z E N A}}+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$
- $+5 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+5 \oplus h)=+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$

Ok, so, why stop the duision here? You will see in Section 6 - Graphing Power Functions (Page 287)

Demo 4.4b To get the outputs returned for inputs near -3 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}
$$

i. We declare that the input is an undeterminate number near -3 by writing the declaration $\left.\right|_{x \leftarrow-3 \oplus h}$ to the right of the global inputoutput rule

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow-3 \oplus h}
$$

ii. We replace every occurence of x in the input-ouput rule by $-3 \oplus h$ to get the generic expression in terms of numbers near -3

$$
-3 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(-3 \oplus h)=\frac{-3 \oplus h^{+2} \ominus+1}{-3 \oplus h \oplus+3}
$$

iii. We execute the generic expression in terms of $-3 \oplus h$, that is we do the operations in the individual expression:

$$
\begin{aligned}
& =\frac{+9 \oplus-6 h \oplus h^{2} \ominus+1}{-3 \oplus+3 \oplus h} \\
& =\frac{+8 \oplus-6 h \oplus h^{2}}{h} \\
& =+8 h^{-1} \oplus-6 \oplus h \\
& =+8 h^{-1} \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair, that is we write:

- $\left(-3 \oplus h,+8 h^{-1} \oplus-6 \oplus h\right)$
- $\mathcal{Z E N A}(-3 \oplus h)=+8 h^{-1} \oplus-6 \oplus h$
- $-3 \oplus h \xrightarrow{\mathcal{Z E N A}}+8 h^{-1} \oplus-6 \oplus h$
- $-3 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(-3 \oplus h)=+8 h^{-1} \oplus-6 \oplus h$

Demo 4.4c To get the outputs returned for inputs near +1 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus-3}
$$

i. We declare that the outputs are to be for numbers near +3 by writing the declaration $\left.\right|_{x \leftarrow+1 \oplus h}$ to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+9}{x \oplus-3}\right|_{x \leftarrow+1 \oplus h}
$$

ii. We replace every occurence of x in the input-ouput rule by $+1 \oplus h$ to get the generic expression in terms of numbers near +1

$$
+1 \oplus h \xrightarrow{\mathcal{Z \mathcal { N A }}} \mathcal{Z E N A}(+1 \oplus h)=\frac{+1 \oplus h^{+2} \ominus+1}{+1 \oplus h \oplus-3}
$$

iii. We execute the generic expression in terms of $+1 \oplus h$, that is we do the operations in the generic expression:

$$
\begin{aligned}
& =\frac{+1 \oplus+2 h \oplus h^{2} \ominus+1}{+3 \oplus-3 \oplus h} \\
& =\frac{+2 h \oplus h^{2}}{h} \\
& =+2 \oplus h
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair, that is we write:

- $(+1 \oplus h,+2 \oplus h)$
- $\mathcal{Z E N A}(+1 \oplus h)=+2 \oplus h$
- $+1 \oplus h \xrightarrow{\mathcal{Z E N A}}+2 \oplus h$
- $+1 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+1 \oplus h)=+2 \oplus h$

OKsoFAR OKsoFAR

5 Towards Global Graphs.

There is no general way to deal with functions given by I-O rules and how we will deal with functions given by I-O rules will depend entirely on the kind of expression in terms of x that appears in the I-O rule. In particular, there is no general procedure for getting the global graph of functions given by I-O rules. So here we will only be able to say some general things.

1. Direct problems

2. Reverse problems. When a function f is given by an inputoutput rule

$$
x \xrightarrow{f} f(x)=\text { generic expression in terms of } x
$$

the reverse problem for a given y_{0}

$$
f(x)=y_{0}
$$

means to solve the equation
generic expression in terms of $x=y_{0}$
However, since the necessary Agebra depends entirely on the kind of generic expression in terms of x that the input-output rule involves, and therefore on what type of function f is, we will only be able to deal with reverse problems as we go along and study each type of functions.
3. Global graph. Altogether, ∞ and poles will be the inputs that we will call the control points for that function.

Chapter 2 - Local Features Functions May Have (Page 133) showed how we need local graphs to see local function behaviors, but with functions given by an input-output rule we will have to use Procedure 4.2-Get output near ∞ from f given by an I-O rule (Page 216) and then graph the local input-output rule.

and so, a function being given by an I-O rule, we will proceed in the following three steps:
a. Locate the points near which we will need a local graph, namely:

- The control points, that is
- There will also the poles, if any, that is the input numbers for which the output is ∞

As we saw, there will always be ∞ because it is one of the control points, ∞ and at the very least the poles if any, of the given function.
b. We will have to find the local frames in which the local graphs will be.
c. We will have to find the shape of the local graph.

The reason that there is no simple Procedure for getting local graphs is that:

Step a is a reverse problem which will require solving equations that will depend on the generic expression in the I-O rule that gives the function under investigation.

Step b of course has already been dealt with with ?? however Cautionary Note 1.4 will complicate matters.

Step c will depend on being able to approximate the given function.

4. Need for Power Functions. ,

So we will need local graphs for two purposes:
i. Get the global graph
ii. Get the local behaviors

So our approach will be:
i. Get the local graphs we will need to get the essential global graph
ii. Get the local graphs we need to get the needed behaviors
because no number of input-output pairs can almost never get us even an idea of the graph.

OKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFar $=============$ OK SO FAR $==============$

Chapter 5

Straight Functions

The Function $\mathcal{Z E R O}, 227$ • The Functions $\mathcal{U N I T}{ }^{+}$and $\mathcal{U N I \mathcal { N } ^ { - }}$, 229 - Constant functions, 233 • Piecewise constant functionss, 234 - The Diagonal Functions $\mathcal{I D E N} \mathcal{I} \mathcal{T} \mathcal{Y}$ and $\mathcal{O P P O S I T E}, 235$ - Linear Functions, 241 - Piecewise Linear Functions, 243 - Affine Functions,
243 - Piecewise Affine Functions, 254.

We will call straight functions those functions whose global graph is a straight line. Straight functions are therefore exceptional in that they lack local concavity but straight functions are not exceptional in that they are used extremely often, if only as benchmarks for functions that are not straight.

LANGUAGE NOTE 5.1 The name straight function is absolutely not standard but. while there is no standard word, in this text, everything has to have a name.

But if we all know how to draw a straight line is (https://duckduckgo. com/? $q=$ straight + edgeध $t=f f a b \notin i a r=i m a g e s \mho$ $i a x=i$ mages§ $i a=i$ mages $)$, defining a straight line is quite another story, better left to GEOMETRY. (https: //en. wikipedia.org/ wiki/Line_(geometry)).

1 The Function $\mathcal{Z E R O}$

This is the absolute simplest possible function:
Definition 5.1 The function $\mathcal{Z E R O}$ is given by the I-O rule

General expression in terms of x

While not a very intersting function by itself, the function $\mathcal{Z E R O}$ will actually play a central role among functions very much like the role played by 0 among numbers:

1. Local I-O rule.

2. Local graph.

3. Local features. Since the global graph of $\mathcal{Z E R O}$ is the 0 -output level line, that is a straight line,
i. $\mathcal{Z E R O}$ has 0-height everywhere,
ii. $\mathcal{Z E R O}$ has 0 -slope everywhere,
iii. $\mathcal{Z E R O}$ has 0 -concavity everywhere.

4. Control point(s).

5. Global graph. The graph points are at the intersection of the input level lines and the output level lines, but since no matter what the input, the output of $\mathcal{Z E R O}$ is always 0 , the output level line is always the 0 -output level line. So, of course:

Procedure 5.1 To get the global graphs of the $\mathcal{Z E R O I}$ function, that is of the function given by the I-O rule

$$
x \xrightarrow{\mathcal{Z E R O}} \mathcal{Z E R O}(x)=0
$$

i. Tickmark the constant coefficient 0 on the output ruler
ii. Draw the output level line through the tickmark

Demo 5.1

To get the global graph of the function $\mathcal{Z E R O}$, that is the function given by the I-O rule

$$
x \xrightarrow{\mathcal{Z E R O}} \mathcal{Z E R O}(x)=0
$$

i. Tickmark 0 on the output ruler
ii. Draw the output level line through the tickmark

constant coefficient $\mathcal{U N} \mathcal{I T}^{-}$
$\mathcal{U N I T}^{+}$

2 The Functions $\mathcal{U N I T}^{+}$and $\mathcal{U N I} \mathcal{T}^{-}$

These are the next simplest possible functions. While still not very interesting functions by themselves, $\mathcal{U N I T}^{+}$and $\mathcal{U N I T}^{-}$also play an important role among functions much like the role played by +1 and -1 among numbers.

DEFINITION 5.2

- The function $\boldsymbol{\mathcal { U N }} \boldsymbol{I T}^{+}$is given by the I-O rule

$$
x \xrightarrow{\mathrm{UNIT}^{+}} \mathcal{U N I T}^{+}(x)=\underbrace{+1}_{\text {General expression in terms of } x}
$$

- The function $\boldsymbol{\mathcal { U N }} \boldsymbol{I T}^{-}$is given by the I-O rule

$$
x \xrightarrow{\mathcal{U N I T}^{-}} \mathcal{U N I T}^{-}(x)=\underbrace{-1}_{\text {General expression in terms of } x}
$$

CAUTIONARY NOTE 5.1 The symbols + and - to the upper right of $\mathcal{U N} \mathcal{I} \mathcal{T}$ are not exponents and serve only to distinguish the two $\mathcal{U N} \mathcal{I T}$ functions.

1. Local I-O rules.

2. Local graphs.

Procedure 5.2 To get the local graph near a point, $\infty, 0$, or x_{0} of a $\mathcal{U N} \mathcal{N} \mathcal{T}$ function, that is of a function given by the I-O rule .

$$
x \xrightarrow{\text { UNIT }} \mathcal{U N I T}(x)= \pm 1
$$

Use ?? ?? - ?? (??) to get the local graphs from the global graph given by Theorem 6.5-Odd regular power functions are diagonally symmetrical (Page 286).

Demo 5.2b

From ?? ?? - ?? (??)

3. Local features.

4. Control point(s).

5. Global graph. The graph points are at the intersection of the input level lines and the output level lines, but since no matter what the input, the output of $\mathcal{U N I} \mathcal{T}^{+}$is always +1 , the output level line is always the +1 -output level line. So, the global graph of $\mathcal{U N \mathcal { N T }}^{+}$is

Since, no matter what the input is, the output of a unit function is either always +1 or always -1 ,

Procedure 5.3 To get the global graphs of a $\mathcal{U N} \mathcal{I T}$ function, that is of a function given by either one of the I-O rules

$$
\begin{aligned}
& x \xrightarrow{\mathcal{U N I T}^{+}} \mathcal{U N I T}^{+}(x)=+1 \\
& x \xrightarrow{\mathcal{U N I T}^{-}} \mathcal{U N I T}^{-}(x)=-1
\end{aligned}
$$

or
i. Mark the constant coefficient +1 or -1 on the output ruler
ii. Draw the output level line through the tickmark

Demo 5.3a

To get the global graph of the function $\mathcal{U N I T}{ }^{+}$, that is the function
given by the I-O rule

$$
x \xrightarrow{\mathrm{UNIT}^{+}} \mathcal{U N I T}^{+}(x)=-1
$$

i. Mark +1 on the output ruler
ii. Draw the output level line through the tickmark

Mercator view:

Magellan view:

Demo 5.3b

To get the global graph of the function $\mathcal{U N I T}{ }^{-}$, that is the function given by the I-O rule

$$
x \xrightarrow{\mathcal{U N I \mathcal { I } ^ { - }}} \mathcal{U N I T}^{-}(x)=-1
$$

i. Mark -1 on the output ruler
ii. Draw the output level line through the tickmark

Mercator view:

Magellan view:

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR tant function OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR al height

3 Constant functions

Constant functions are given by dilating a $\mathcal{U N} \mathcal{I} \mathcal{T}$ function.
LANGUAGE NOTE 5.2 The name constant functions is an abuse of language because it is not the function which is constant but its output in the sense that the output remains constantly equal to the constant coefficient no matter what the input is.

What makes constant functions exceptional is that they lack both local slope and local concavity and have only local height.

But then, since for a constant function the local height is the same everywhere, we can talk of the global height of a constant function.

EXAMPLE 5.1. Let f be the function specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =(-31.72) x^{0} \\
& =-31.72
\end{aligned}
$$

the global height of f is -31.72 :

Given a base function as a monomial function, when we add-on a monomial function with the same exponent, the sum is a monomial function with the same exponent.

EXAMPLE 5.2. G iven the base function MINT specified by the global input-output rule

$$
x \xrightarrow{M I N T} M I N T(x)=-12.82 x^{+4}
$$

and given the add-on function TEA specified by the global input-output rule

$$
x \xrightarrow{T E A} T E A(x)=+49.28 x^{+4}
$$

then the sum function will be specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{\text { SUM }} \operatorname{SUM}(x) & =M I N T(x)+T E A(x) \\
& =-12.82 x^{+4} \oplus+49.28 x^{+4} \\
& =[-12.82 \oplus+49.28] x^{+4} \\
& =+36.46 x^{+4}
\end{aligned}
$$

EXAMPLE 5.3.

4 Piecewise constant functionss

EXAMPLE 5.4. The function $\mathcal{S I G N}$, aka $\mathcal{H E A V I S I D E}$ function, is given by the global graph:

But then, while $\operatorname{SIGN}(0)=0$
diagonal function linear coefficient

5 The Diagonal Functions $\mathcal{I D E N T I T Y}$ and $\mathcal{O P P O S I T E}$

These functions are the next simplest possible functions given by I-O rule.

1. Global I-O rules.

DEFINITION 5.3

- The diagonal function $\mathcal{I D E N} \mathcal{T} \mathcal{T} \mathcal{Y}$ is the function given by the I-O rule

- The diagonal function $\mathcal{O P P O S I T E}$ is the function given by the I-O rule

General expression in terms of x

LANGUAGE NOTE 5.3 The name diagonal function is not standard but there is no standard word that covers both the $\mathcal{I D E N T I T Y}$
function and the $\mathcal{O P P O S I T E}$ function in spite of the fact that they really belong together.
The name diagonal function alludes to the look of the global graphs relative to the quincunx.
2. Global graphs. The global graph of diagonal functions is the next simplest of the global graphs of the only three kinds of functions whose global graph is a straight line and which, therefore, we can get directly.

The global graph of diagonal functions involve plot dots for input-output pairs whose input and output have the same size.

EXAMPLE 5.5. The following l-O pairs give plot dots:

- $(0,0)$, for both the Identity function and the Opposite function,
- $(+1,+1)$, for the Identity function,
- $(-73.092,+73.092)$, for the Opposite function.

Procedure 5.4 To get the global graph of a function given by the I-O rule

$$
x \xrightarrow{\text { DIAGGONAL}} \mathcal{D I} \mathcal{A G O N} \mathcal{O L}(x)= \pm 1 \odot x
$$

i. Plot any two input-output pairs (input, output) with:

For the $\mathcal{I D E N} \mathcal{T} \mathcal{I} \mathcal{Y}$ function, output the same as input
For the $\mathcal{O P P O S I T E}$ function, output the opposite of input
ii. Draw a straight line through the two plot dots.

Demo 5.4a

To get the global graph of the function given by the l-O rule
$x \xrightarrow{\text { IDENTITY }} \mathcal{I D E N T I T Y}(x)=+1 \odot x$
i. Plot, say, the pair $(0,0)$ and the pair $(-21.62,-21.62)$
ii. Draw the straight line through the two plot dots.

Demo 5.4b

To get the global graph of the function given by the l-O rule

$$
x \xrightarrow{\mathcal{O P P O S I T E}} \mathcal{O P P O S I T E}(x)=-1 \odot x
$$

i. Plot, say, the pair $(-1,+1)$ and the pair $(+14.37,-14.37)$
ii. Draw the straight line through the two plot dots.

In terms of the quincunx,

THEOREM 5.1 Global graphs of the $\mathcal{D I} \mathcal{A G} \mathcal{O} \mathcal{N} \mathcal{A}$ functions.
The global graphs of the $\mathcal{D} \mathcal{A} \mathcal{G} \mathcal{O} \mathcal{A} \mathcal{L}$ functions are the straight lines that extend the diagonals of the quincunx:

Proof. We cannot prove Theorem 5.1 because we have no definition for straight line.

3. Control point(s).

4. Local graphs.

Procedure 5.5 To get the local graph near ∞ or the local graph near 0 of a $\mathcal{D} \mathcal{I} \mathcal{A G O} \mathcal{N} \mathcal{A} \mathcal{L}$ functions given by the I-O rule .

$$
x \xrightarrow{\mathcal{D I A G O N A L}} \mathcal{D I} \mathcal{A G O N} \mathcal{A L}(x)= \pm 1 \odot x
$$

Use ?? ?? - ?? (??) to get the local graphs from the global graph given by TheOrem 5.1 - Global graphs of the $\mathcal{D I A G O N} \mathcal{A} \mathcal{L}$ functions (Page 237).

Demo 5.5a

From Demo 1.9a - Output level band for -7.83 (Page 122)

global slope

DEMO 5.5b

From ?? ?? - ?? (??)

$==========$ OK SO FAR $===========$
5. Local features. What makes diagonal functions different from most other functions is that they lack local concavity and have only local height and local slope.

But then, since for a diagonal function the local slope is the same everywhere, the graph of a diagonal function has a global slope,
run rise
that is the fraction $\frac{\text { Rise }}{\text { Run }}$ where, given two input-output pairs, the run is the difference from one input to the other and the rise is the corresponding difference from one output to the other.

In fact, the reason we like to use the inputs 0 and 1 is that they make it easy to see that the global slope of the global graph of a linear function is the linear coefficient of the global input-output rule.

EXAMPLE 5.6. L et f be the function specified by the global input-output rule

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =(+0.5) x^{+1} \\
& =+0.5 x
\end{aligned}
$$

the global slope of f is $\frac{\text { Rise }}{\text { Run }}=\frac{+0.5}{+1}=+0.5$

6. Local I-O rules.

Procedure 5.6 To get the output near a given point for a $\mathcal{D I A G O N A L}$ function given by the I-O rule $x \xrightarrow{\text { DIAGONAL}}$ $\mathcal{D I} \mathcal{A G O N} \mathcal{A L}(x)= \pm 1 \odot x$
i. Declare that x is to be replaced by L
$\left.x\right|_{x \leftarrow L} \xrightarrow{\text { DIAGONAL }}$ DIAGONAL $\left.(x)\right|_{x \leftarrow L}= \pm 1 \odot x$
that is:

$$
L \xrightarrow{\mathcal{D I A G O N A L}} \mathcal{D I A G O N A L}(L)= \pm 1 \odot L
$$

ii. Execute the output-specifying code into a jet near ∞

which gives the local input-output rule near ∞ :

$$
L \xrightarrow{\text { DIAGONAL }} \operatorname{LINEAR}(x)=\underbrace{[a] x}_{\text {jet near } \infty}
$$

7. Local features. Output near a point.

6 Linear Functions

Linear functions are given by dilating a $\mathcal{D I} \mathcal{A G O} \mathcal{N} \mathcal{A}$ function.
LANGUAGE NOTE 5.4 Another name for linear function is dilation function because it is easy to prove that the distance between any two outputs is obtained by just "dilating" the distance between the two inputs by the coefficient. (See https://en.wikipedia.org/ wiki/Dilation_(metric_space).)

CAUTIONARY NOTE 5.2 dgfdgfddgf

(https://en.wikipedia.org/wiki/Linear_function)

DEMO 5.6a To get the output near ∞ of the function specified by the global input-output rule

$$
x \xrightarrow{B I N K} B I N K(x)=\underbrace{(-26.18) x^{+1}}_{\text {output-specifying code }}
$$

i. We declare that x is to be replaced by $\pm L$

$$
\left.\left.x\right|_{x \leftarrow \pm L} \xrightarrow{B I N K} \operatorname{BINK}(x)\right|_{x \leftarrow \pm L}=\left.(-26.18) x^{+1}\right|_{x \leftarrow \pm L}
$$

which gives:

$$
\pm L \xrightarrow{\text { BINK }} B I N K(-3)=\underbrace{(-26.18) \cdot(\pm L)^{+1}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code

$$
=-26.18 \cdot \pm L
$$

Since 26.18 is medium-size, ?? on ?? gives $26.18 \cdot$ large $=$ large and, using ?? on ??, we get:

$$
=\mp \text { large }
$$

which gives the input-output pair
(\pm large,\mp large $)$

Demo 5.6b To get the output near 0 of the function specified by the global input-output rule

$$
x \xrightarrow{J I N K} J I N K(x)=\underbrace{(+45.57) x}_{\text {output-specifying code }}
$$

i. We declare that x is to be replaced by \pm small

$$
\left.\left.x\right|_{x \leftarrow \pm \text { small }} \xrightarrow{J I N K} J I N K(x)\right|_{x \leftarrow \pm \text { small }}=\left.(+45.57) x^{+1}\right|_{x \leftarrow \pm \text { small }}
$$

which gives:

$$
\pm \text { small } \xrightarrow{J I N K} \text { JINK }(\pm \text { small })=\underbrace{(+45.57) \cdot(\pm \text { small })}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code

$$
=+45.57 \cdot \pm \text { small }
$$

Since 45.57 is medium-size, ?? on ?? gives $45.57 \cdot$ small $=$ small and, using ?? on ??, we get:

$$
= \pm \text { small }
$$

which gives the input-output pair

$$
(\pm \text { small }, \pm \text { small })
$$

7 Piecewise Linear Functions

EXAMPLE 5.7. The function $\mathcal{S I Z E}$, aka $\mathcal{A B S O} \mathcal{L U T E} \mathcal{V} \mathcal{A L U E}$ function, is given by the global graph:

But then, while $\operatorname{SIZE}(0)=0$

8 Affine Functions

addong

DEFINITION 5.4 An affine functions is the sum of a linear function and a constant functon, that is, in other words, a linear combination of $\mathcal{U N} \mathcal{I} \mathcal{T}^{+}$and $\mathcal{I D E N T \mathcal { I T Y } \text { : }}$
linear part
constant part
affine function
linear term
linear coefficient
constant term
constant coefficient

$$
\begin{aligned}
x \xrightarrow{\mathcal{A} \mathcal{F F I N E}} \mathcal{A F F I N E}(x) & =a \odot \mathcal{I D E N T I T Y}(x) \oplus b \odot \mathcal{U N I T}^{+}(x) \\
& =a \odot \mathcal{I D E N T I T Y}(x) \oplus b \odot \mathcal{U N I T}^{+}(x) \\
& =a \odot x \oplus b \odot+1 \\
& =\underbrace{a+x \oplus p \text { expession in terms of } x}_{\text {Generic }}
\end{aligned}
$$

in which
$a \odot x$ is the linear term and a is the linear coefficient and
b is both the constant term and the constant coefficient
Moreover,

- The linear part of $A F F I N E$ is the linear function given by:

$$
x \xrightarrow{\mathcal{L I N}-\mathcal{A F F I N E}} \mathcal{L I N}-\mathcal{A F F I N E}(x)=a \odot x
$$

and,

- The constant part of AFFINE is the constant function given by:

$$
x \xrightarrow{\mathcal{C O N S T}-\mathcal{A F F I N E}} \mathcal{C O N S T}-\mathcal{A F F I N E}(x)=b
$$

EXAMPLE 5.8. The affine function $\mathcal{N} \mathcal{I N} \mathcal{A}$ given by the linear coefficient -31.39 and the constant coefficient +5.34 is the function given by the I-O rule

Moreover,

- The linear part of $N I N A$ is the linear function

and
- The constant part of NINA is the constant function

$$
x \xrightarrow{\mathcal{C O N S T}-\mathcal{N I N A}} \mathcal{C O N S R}-\mathcal{N I N} \mathcal{A}(x)=+5.34
$$

CAUTIONARY NOTE 5.3 Very unfortunately, there is a lot of confusion in the literature between linear functions and affine functions (Including in https://en.wikipedia.org/wiki/Linear_ function_(calculus) but see https://en.wikipedia.org/wiki/ Linear_function.) This is because, as we will see, like linear functions, affine functions also have a straight line as global graph.
The reason this confusion is most regrettable is that linear functions have a very important property, 'linearity', that no other func-tions-including affine functions-have: A dilation of a sum of two functions is the sum of the dilations of the two functions. (https: //en.wikipedia.org/wiki/Linearity) We will discuss 'linearity' in xxx:
See ?? ?? - ?? (??)

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR
OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR

BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKzone

1. Output at a given number We use Procedure 4.1-Get the output at x_{0} from the I-O rule giving f (Page 208)

EXAMPLE 5.9.

EXAMPLE 5.10.

Procedure 5.7

i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{\text { AFFINE }} A F F I N E(x)\right|_{x \leftarrow x_{0}}=a x+\left.b\right|_{x \leftarrow x_{0}}
$$

which gives:

$$
x_{0} \xrightarrow{A F F I N E} A F F I N E\left(x_{0}\right)=\underbrace{a x_{0}+b}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}+b
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}+b\right)
$$

Demo 5.7

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{A L D A} A L D A(x)\right|_{x \leftarrow-3}=-32.67 x+\left.71.07\right|_{x \leftarrow-3}
$$

which gives

$$
-3 \xrightarrow{A L D A} A L D A(-3)=\underbrace{-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =+98.01+71.07 \\
& =+169.08
\end{aligned}
$$

which gives the input-output pair

$$
(-3,+169.08)
$$

However, as already discussed in ?? ?? and as has already been the case with monomial functions, instead of getting the output of an affine function at a given input, be it ∞ or x_{0}, we will usually get the output of the affine function near that given input.
2. Output near ∞ In order to get the output near ∞, we could proceed as we did in ?? ?? with monomial functions, that is we could declare " x is \pm large" and replace x everywhere in the output-specifying code by \pm large. However, the generic expression for affine functions and all functions thereafter will involve more than just one term and using \pm large would become more and more time consuming.

So, in conformity with universal practice, we will declare " x near ∞ " but write just x after that. This, though, is extremely dangerous as it is easy to forget that what we write may be TRUE only because x has been declared to be near ∞.
3. We will execute the output-specifying code, here $a x+b$, into a jet , that is with the terms in descending order of sizes, which, because x is large, means that the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞
x near $\infty \xrightarrow[\text { AFFINE }]{A F F I N E}(x)=\underbrace{\text { Powers of } x \text { in descending order of exponents }}_{\text {output jet near } \infty}$
EXAMPLE 5.11. Given the function given by

$$
x \xrightarrow{B I B A} B I B A(x)=-61.03-82.47 x
$$

To get the jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded \cdot large $=$ large, $-82.47 \cdot x$ is large
Then, in the jet near $\infty,-82.47 x$ must come first and -61.03 comes second So, we get the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{B I B A} B I B A(x)=\underbrace{-82.47 x-61.03}_{\text {output jet near } \infty}
$$

4. Altogether, then:

Procedure 5.8

i. Declare that x is near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)\right|_{x \text { near } \infty}=a x+\left.b\right|_{x \text { near } \infty}
$$

which gives:

$$
x \text { near } \infty \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{a x+b}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near ∞

$$
=\underbrace{[a] x \oplus[b]}_{\text {output jet near } \infty}
$$

where

- a is the linear coefficient in the jet near ∞
- b is the constant coefficient in the jet near ∞.
which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{A F F I N E} A F F I N E(x)=\underbrace{[a] x \oplus[b]}_{\text {output jet near } \infty}
$$

(Here the jet near ∞ looks the same as the given global input-output rule but that is only because the output-specifying code happened to be written in descending order of exponents.)

Demo 5.8

i. We declare that x is near ∞
$\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { NINA }}$ NIN $\left.A(x)\right|_{x \text { near } \infty}=-61.03-\left.82.47 x\right|_{x \text { near } \infty}$
which gives:

$$
x \text { near } \infty \xrightarrow{N I N A} N I N A(x)=\underbrace{-61.03-82.47 x}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code into a jet near ∞ :

$$
=[-82.47] x \oplus[-61.03]
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{N I N A} N I N A(x)=\underbrace{[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

where:

- -82.47 is the linear coefficient in the jet near ∞
- -61.03 is the constant coefficient in the jet near ∞.
(Here the jet near ∞ does not look the same as the global inputoutput rule because the output-specifying code happened not to be in descending order of exponents.)

The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

THEOREM 5.2 Approximate output near ∞. For affine functions, the term in the jet that contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=[a] x+[\ldots]
$$

EXAMPLE 5.12. Given the function given by

$$
x \xrightarrow{N I N A} N I N A(x)=-61.03-82.47 x
$$

$$
x \text { near } \infty \xrightarrow{\text { NINA }} \text { NINA }(x)=[-82.47] x+[-61.03]
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{\text { NINA }} N I N A(x)=[-82.47] x+[\ldots]
$$

5. Output near x_{0} https://en.wikipedia.org/wiki/Jet_(mathematics)

While with monomial functions 0 played just as iALERT a role as ∞ (Section 7 Reciprocity), this will not at all be the case with affine functions and all functions thereafter as we will very often be interested in the neighborhood of some given bounded input(s) other than 0 . As a matter of fact, the input 0 will usually not be of much more interest than other bounded inputs. (But we will often be concerned with the output 0 .)
6. In order to "thicken the plot" near a given bounded input, we could proceed basically just as we did in ?? ?? with monomial functions, that is declare " $x \leftarrow x_{0}+$ small" or " $x \leftarrow x_{0}-$ small"and replace x everywhere in the output-specifying code by " $x_{0} \oplus+$ small"

EXAMPLE 5.13. The input +2.5 is near the given input +2 :

Neighborhood of +2
or by " $x \leftarrow x_{0}-$ small".

EXAMPLE 5.14. The input +17.4 is near the given input +18 :

However, as already pointed out in subsection 8.2 Output near ∞, unlike monomial functions the generic expression for affine functions and all functions thereafter will involves more than just one term. So, using " $x_{0} \oplus+$ small" or " $x_{0} \oplus$-small" would become more and more time consuming and instead we will use " $x_{0}+h$ " where the letter h is universally accepted as standing for + small or - small. In other words, h already includes the sign.

Of course, in order to input a neighborhood of 0 , we will declare that $x \leftarrow h$, aka $x \leftarrow 0+h$, in other words that x is to be replaced by h.
7. We can then execute the input-output specifying phrase into a jet that is with the terms in descending order of sizes which here, since h is small, means that the powers of h will have to be in ascending order of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { AFFINE }} A F F I N E\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$

EXAMPLE 5.15. Given the function given by the global input-output rule

$$
x \xrightarrow{B I B A} B I B A(x)=-82.47 x-61.03
$$

Near +2 we do not already have the powers of h and we must begin by getting them.

$$
\begin{aligned}
+2+h \xrightarrow{B I B A} B I B A(+2+h) & =-82.47(+2+h)-61.03 \\
& =-82.47(+2)-82.47 h-61.03 \\
& =-164.94-82.47 h-61.03 \\
& =-82.47 h-225.97
\end{aligned}
$$

Now we need to get the powers of h in descending order of sizes: Since -82.47 is bounded and h is small then by ?? on ??, $-82.47 \cdot h$ is small while -225.97 is bounded so that -225.97 comes first and we get the local input-output rule near +2 :

$$
+2+h \xrightarrow{\text { AFFINE }} \text { AFFINE }(+2+h)=\underbrace{-225.97-82.47 h}_{\text {output jet near }+2}
$$

8. We will therefore use:

Procedure 5.9

i. Declare that x is to be replaced by $x_{0}+h$

$$
\left.\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)\right|_{x \leftarrow x_{0}+h}=a x+\left.b\right|_{x \leftarrow x_{0}+h}
$$

which gives:

$$
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)+b}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near x_{0} :

$$
=a x_{0}+a h+b
$$

iii. Reorganize into a jet near x_{0} :

$$
=\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
$$

which gives the local input-output rule near x_{0} :

$$
x_{0}+h \xrightarrow{A F F I N E} \text { AFFINE }\left(x_{0}+h\right)=\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
$$

where:

- $a x_{0}+b$ is the constant coefficient in the jet near x_{0}
- a is the linear coefficient in the jet near x_{0}.

Demo 5.9

i. We declare that x is to be replaced by $-3+h$

$$
\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{A L D A} A L D A(x)\right|_{x \leftarrow-3+h}=-32.67 x+\left.71.07\right|_{x \leftarrow-3+h}
$$

which gives

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{-32.67(-3+h)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into a jet near -3 :

$$
\begin{aligned}
& =-32.67(-3)-32.67 h+71.07 \\
& =+98.01-32.67 h+71.07 \\
& =+98.01+71.07-32.67 h \\
& =\underbrace{[+169.08] \oplus[-32.67] h}_{\text {output jet near }-3}
\end{aligned}
$$

which gives the local input-output rule near -3 :

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{[+169.08] \oplus[-32.67] h}_{\text {output jet near }-3}
$$

9. Near x_{0}, just as we saw was the case near ∞ (see theorem 7.10 on page 330), we will often approximate the jet to the term(s) that is(are) largest in size, which near x_{0} is(are) the power(s) of h with the lowest exponent(s), and we will just replace the remaining terms by [...] to stand for "something too small to matter here".

In fact, for affine functions, we will often use:

THEOREM 5.3 Approximate output near x_{0}. For affine functions, near x_{0} the term in the jet that contributes the most to the output is ordinarily the constant term:

$$
x_{0}+h \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}\left(x_{0}+h\right)=\left[a x_{0}+b\right]+[\ldots]
$$

The exception is of course when the constant term $a x_{0}+b=0$.
10. When all we want is a feature-sign, though, the above procedure is inefficient and we will then use the following procedure based directly on the fact that an affine function is the addition of:

- a cube function, (See definition 6.5 on page 264)
- a square function, (See Definition 6.2 on page 262)
- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=\underbrace{a x^{3}}_{\text {cube }} \oplus \underbrace{b x^{2}}_{\text {square }} \oplus \underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:
$x \xrightarrow[\text { AFFINE }]{\text { AFFINE }(x)=\underbrace{a\left(x_{0}+h\right)^{3}}_{\text {cube }} \oplus \underbrace{b\left(x_{0}+h\right)^{2}}_{\text {square }} \oplus \underbrace{c\left(x_{0}+h\right)}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }} d .}$
The output of the local input-output rule near x_{0} will have to be a jet: $x_{0}+h \xrightarrow{\text { AFFINE }}$ AFFINE $\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[\quad] h^{3}$ and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want.

This requires us to have the addition formula at our finger tips:
a.

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}(\text { See ?? on page 519 })
$$

b.

```
(x0+h)}\mp@subsup{)}{}{3}=\mp@subsup{x}{0}{3}+3\mp@subsup{x}{0}{2}h+3\mp@subsup{x}{0}{}\mp@subsup{h}{}{2}+\mp@subsup{h}{}{3}\mathrm{ (See ?? on ??)
```

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The cube function contributes $a x_{0}^{3}$
- The square function contributes $b x_{0}^{2}$
- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:
$x_{0}+h \xrightarrow{\text { AFFINE }}$ AFFINE $\left(x_{0}+h\right)=\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[\quad] h^{3}$
ii. If we want the coefficient of h^{1} in the output jet:
- The cube monomial function contributes $3 b x_{0}^{2}$
- The square monomial function contributes $2 b x_{0}$
- The linear monomial function contributes c
- The constant monomial function contributes nothing
so we have:
$x_{0}+h \xrightarrow{\text { AFFINE }}$ AFFINE $\left(x_{0}+h\right)=[\quad] \oplus\left[3 b x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[\quad h^{2} \oplus[\quad] h^{3}\right.$
If we want the coefficient of h^{2} in the output jet:
- The cube monomial function contributes $3 b x_{0}$
- The square monomial function contributes c
- The linear monomial function contributes nothing
- The constant monomial function contributes nothing so we have:

$$
\begin{aligned}
& \text { So we have: } \\
& x_{0}+h \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\bar{c}] h^{2} \oplus[\quad] h^{3}
\end{aligned}
$$

11. If we want the coefficient of h^{3} in the output jet:

- The square monomial function contributes nothing
- The linear monomial function contributes nothing
- The constant monomial function contributes nothing so we have:
$x_{0}+h \xrightarrow{\text { AFFINE }}$ AFFINE $\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[a] h^{3}$

9 Piecewise Affine Functions

EXAMPLE 5.16. The function $\mathcal{S I Z E}$, aka $\mathcal{A B S O} \mathcal{L U T E} \mathcal{V} \mathcal{A L U E}$ function, is given by the global graph:

Chapter 6

Regular Power Functions

Functions $\mathcal{S Q U A R I N G}{ }^{+}$and $\mathcal{S Q U A R I N G}{ }^{-}, 262$ - Functions $\mathcal{C U B I N G}{ }^{+}$and
 Functions $\mathcal{S Q U A R E R E C I P}{ }^{+}$and $\mathcal{S Q U A R E R E C I P}{ }^{-}$, 264 - Secondary Regular Power Functions, 264 - Graphing Power Functions, 287 • Reciprocity, 298 • Global Graphing, 305 • Types of Global Graphs, 310 .
$======$ Begin WORK ZONE $=======$
We now come to the functions that will be at the very core of CaLculus According to the Real World inasmuch as, being the simplest possible functions we can give with an I-O rule, they will, as mentioned in Chapter 0, be to (Laurent) polynomial approximations of functions (https://en.wikipedia.org/wiki/Asymptotic_expansion) what powers of Ten,

$$
\ldots 0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0,10000.0 \ldots
$$

are to decimal approximations of real numbers.

1. I-O rule.

DEFINITION 6.1

A power function \mathcal{P} is a function given by an I-O rule of the form

where: the given coefficient is either +1 . or -1 .,

- the given ${ }^{\text {exponent }}$ is a signed counting number ${ }^{ \pm n}$

In other words, the I-O rule of a power function is:

in which

- Size ${ }^{\text {exponent }}$ says how many copies of x are to be made and multiplied if there is more than one copy. (If exponent is ${ }^{0}$, then no copy of x is to be made.)
- Sign exponent. ${ }^{ \pm}$. says what to do to the coefficient with the product of the copies of x :
- If Sign exponent is + then the coefficient, namely ± 1, is to be multiplied by the product of the copies of x
- If Sign exponent is ${ }^{-}$, then the coefficient, namely ± 1, is to be divided by the product of the copies of x,
- If exponent is 0 , then the coefficient, namely ± 1, is to be left alone

EXAMPLE 6.1. Let f be the power function given by the l-O rule

then, Definition 6.1 - Power Functions (Page 257) gives

$$
\begin{aligned}
& =-1 \text { multiplied by } x \odot x \odot x \odot x \odot x \odot x \odot x \\
& =-1 \odot x \odot x \odot x \odot x \odot x \odot x \odot x
\end{aligned}
$$

EXAMPLE 6.2. Let f be the power function given by the l-O rule

$$
x \xrightarrow{f} f(x)=-1 x^{-6}
$$

then, Definition 6.1 - Power Functions (Page 257) gives

$$
\begin{aligned}
& =-1 \text { dovided by } x \odot x \odot x \odot x \odot x \odot x \\
& =\quad \begin{array}{l}
\quad-1 \\
\quad \begin{array}{l}
\text { divided by }
\end{array} \\
x \odot x \odot x \odot x \odot x \odot x
\end{array}
\end{aligned}
$$

EXAMPLE 6.3. Let f be the power function given by the I - O rule

$$
x \xrightarrow{f} f(x)=-1 x^{0}
$$

Then, Definition 6.1 - Power Functions (Page 257) gives

$$
\begin{aligned}
& =-1 \text { left alone } \\
& =-1
\end{aligned}
$$

CAUTIONARY NOTE 6.1

- The + in the coefficient goes very often without saying,
- The ${ }^{+1}$ in the ${ }^{\text {exponent }}$ goes entirely without saying, However, even though the above "shortcuts" are completely standard, since nothing goes without saying in this text, these shortcuts will not be used.

EXAMPLE 6.4. The I-O rule

$$
x \xrightarrow{f} f(x)=-1 x^{+7}
$$

would usually be "shortened" to:

$$
x \xrightarrow{f} f(x)=-x^{7}
$$

EXAMPLE 6.5. The I-O rule

$$
x \xrightarrow{f} f(x)=+1 x^{+1}
$$

would usually be "shortened" to:

$$
x \xrightarrow{f} f(x)=x
$$

EXAMPLE 6.6. The I-O rule

$$
x \xrightarrow{f} f(x)=+1 x^{-4}
$$

would usually be "shortened" to:

$$
x \xrightarrow{f} f(x)=x^{-4}
$$

Aside from being used to approximate functions, the power functions will also be:

- The functions whose local graphs near 0 and near ∞ we will use to get the local graphs of all the functions we will discuss in this Volume I. ?? ?? - ?? (??)

But not in this text!
In other words, the idea is for you to go only by what you see.

But then where would the number the ${ }^{4}$ copies of x are to divide come from?
exceptional power function

- The simplest functions to exhibit the local behaviors we described in Chapter 2
- The functions which we will use to 'gauge' all other functions.

Language note 6.1 Power Functions is the name that is normally used when the coefficient is +1 or -1 but, unfortunately, the name power function is also used when the coefficient is any number, something, however, we will not do in this text.
2. Exceptional power functions. We will call those power functions for which exponent is either ${ }^{0}$ or ${ }^{+1}$ exceptional power functions because:

Theorem 6.1 Exceptional power functions lack at least one feature:

- Exceptional power functions for which exponent is 0 lack slope and concavity,
- Exceptional power functions for which exponent is ${ }^{+1}$ lack concavity,

Proof.
When

$$
\begin{aligned}
\text { exponent is } 0 \text { we have } x \xrightarrow{f} f(x) & =+1 x^{0} \\
& =+1 \\
& =+1 \\
& =\mathcal{U N I T}^{+}(x)
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =-1 x^{0} \\
& =-1 \\
& =-1 \\
& =\mathcal{U N I T}^{-}(x)
\end{aligned}
$$

When exponent is ${ }^{+1}$ we have $x \xrightarrow{f} f(x)=+1 x^{+1}$

$$
\begin{aligned}
& =+1 \odot x \\
& =x \\
& =\mathcal{I D E N T I T Y}(x)
\end{aligned}
$$

regular power function characteristic
parity
even power function
odd power function
type
3. Regular power functions. In contrast with the exceptional power functions, we will call regular power functions those power functions for which exponent is any signed counting number other than 0 and ${ }^{+1}$
a. Along with Sign Coefficient and Sign exponent , the third characteristic of a regular power function, will be parity exponent :

- An even power function is a regular power function whose exponent is an even (whole) number
- An odd power function is a regular power function whose exponent is odd (whole) number
b. From the point of view of these three characteristics, there will therefore be eight types of regular power functions but the order of the characteristics in the type

$$
\text { Sign exponent Parity exponent } \quad \text { Sign Coefficient }
$$

is not quite the order in the output but, as we will see, is the order of importance in getting the global graph.

Type	Sign exponent	Parity exponent	Sign Coefficient	Output
+ even +	+	even	+	+1 $x^{\text {+even }}$
+ even -			-	$-1 x^{+ \text {even }}$
+ odd +		odd	+	+1 $x^{\text {+odd }}$

primary power function

c. Low degree power functions We will now discuss the eight primary power functions, that is the regular power function with lowest size exponent for each type.
d. Secondary power functions
https://en.wikipedia.org/wiki/Exponentiation\#Power_functions

1 Functions $\mathcal{S Q U A R I N G}{ }^{+}$and $\mathcal{S Q U A R I N G} \mathcal{G}^{-}$

DEFINITION 6.2 The squaring functions are the power functions with exponent ${ }^{+2}$ namely:

$$
x \xrightarrow{\mathcal{S Q U A R I N G ^ { + }}} \operatorname{SQUARING}{ }^{+}(x)=+1 x^{+2}
$$

and

$$
x \xrightarrow{\mathcal{S Q U A R I N \mathcal { G } ^ { - }}} \operatorname{SQUARING}{ }^{-}(x)=-1 x^{+2}
$$

1. Control point(s).

2. Global graphs.

3. Local graphs.

4. Local I-O rules.

5. Local features.

2 Functions $\mathcal{C U B I N G}{ }^{+}$and $\mathcal{C U B I N G}{ }^{-}$

Cubing function
reciprocating function

1. Global I-O rules.

DEFINITION 6.3are the power functions with exponent ${ }^{+3}$, namely:

$$
\xrightarrow{\mathcal{C U B I N G}^{+}} \mathcal{C U B I N G}^{+}(x)=+1 x^{+3}
$$

and

$$
x \xrightarrow{\mathrm{CUBING}^{-}} \mathcal{C U B I N G}^{-}(x)=-1 x^{+3}
$$

2. Global graphs.
3. Control point(s).
4. Local graphs.
5. Local I-O rules.
6. Local features.

3 Functions $\mathcal{R E C I P R O C A L}{ }^{+}$and $\mathcal{R E C I P R O C A L} \mathcal{L}^{-}$

1. Global I-O rules.

Definition 6.4 Reciprocating Functions are the power functions with exponent ${ }^{-1}$, namely:

$$
x \xrightarrow{\text { RECIP }^{+}} \operatorname{RECIP}^{+}(x)=+1 x^{-1}
$$

and

$$
x \xrightarrow{\operatorname{RECIP}^{-}} \operatorname{RECIP}^{-}(x)=-1 x^{-1}
$$

square-reciprocating functions
2. Global graphs.
3. Control point(s).
4. Local graphs.
5. Local I-O rules.
6. Local features. SQUARERECIP

4 The Functions $\mathcal{S Q U A R E} \mathcal{R E C I} \mathcal{P}^{+}$and $\mathcal{S Q U A R E} \mathcal{R E C I P}{ }^{-}$

1. Global I-O rules.

Definition 6.5 Square-reciprocating Functionsare the power functions with exponent ${ }^{-2}$, namely:

$$
x \xrightarrow{\mathcal{S Q U A R E}-\mathrm{RECIP}^{+}} \mathcal{S Q U A R E}-\operatorname{RECIP}^{+}(x)=+1 x^{-2}
$$ and

$$
x \xrightarrow{\mathcal{S Q U A R E}-\mathcal{R E C I P}^{-}} \mathcal{S Q U A R E - \mathcal { R E C I P }}{ }^{-}(x)=-1 x^{-2}
$$

2. Control point(s).
3. Global graphs.
4. Local graphs.
5. Local I-O rules.
6. Local features.

5 Secondary Regular Power Functions

1. Global I-O rules.

2. Global graphs.

3. Local graphs.

4. Local I-O rules.

5. Local features.

$==========$ OK SO FAR $===========$
6. Output at x_{0}. With ??, Procedure 5.3 becomes:

Procedure 6.1

To get the output at x_{0} for the power function given by the I-O rule

$$
x \xrightarrow{f} f(x)= \pm 1 x^{ \pm n}
$$

i. Declare x_{0} :

ii. Write the expression particular to x_{0} :

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)= \pm 1 x_{0}{ }^{ \pm n}
$$

iii. Execute the particular expression according to ${ }^{ \pm n}$:

- + says to multiply ± 1 by the ${ }^{n}$ copies of

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\underbrace{ \pm 1 \odot x_{0} \odot \ldots \odot}_{n \text { copies of } x_{0}} x_{0}
$$

- 0 says to leave ± 1 alone:

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)= \pm 1
$$

- ${ }^{-}$says to divide ± 1 by the ${ }^{n}$ copies of x_{0}

$$
\xrightarrow{f} \quad f\left(x_{0}\right) \quad=
$$

n copies of x_{0}

Demo 6.1a

To get the output at -3 of the power function whose $\mathrm{I}-\mathrm{O}$ rule is

$$
x \xrightarrow{D I P} D I P(x)=+1 x^{+6}:
$$

i. Declare -3 :

ii. Write the expression particular to -3 :

$$
-3 \xrightarrow{D I P} D I P(-3)=+1-3^{+6}
$$

iii. Execute the particular expression according to what ${ }^{+6}$ says:

- + says to multiply +1 by the ${ }^{6}$ copies of -3 :

Demo 6.1b

To get the output at -3 of the power function whose I-O rule is
$x \xrightarrow{F I P} F I P(x)=-1 x^{0}:$
i. Declare -3 :

ii. Write the expression particular to -3 :

$$
-3 \xrightarrow{F I P} F I P(-3)=-1-3^{0}
$$

iii. Execute the particular expression according to 0 :

- 0 says to leave -1 alone:

$$
-3 \xrightarrow{F I P} F I P(-3)=-1
$$

Demo 6.1c

To get the output at -3 of the power function whose $\mathrm{I}-\mathrm{O}$ rule is $x \xrightarrow{\text { GIP }} \operatorname{GIP}(x)=+1 x^{-5}:$
i. Declare -3 :

ii. Write the expression particular to -3 :

$$
-3 \xrightarrow{G I P} G I P(-3)=+1 x_{0}^{-5}
$$

iii. Execute the particular expression according to ${ }^{-5}$:

- ${ }^{-}$says to divide +1 by the ${ }^{5}$ copies of -3 :

Only just in case you wanted to see lots of decimals.

Demo 6.1d

To get the output at -0.2 of the power function whose $\mathrm{I}-\mathrm{O}$ rule is

Just in case you forgot the input could be a decimal number.
$x \xrightarrow{\text { GIP }} \operatorname{GIP}(x)=+1 x^{-5}:$
i. Declare - 0.2 :

ii. Write the expression particular to -0.2 :

$$
-0.2 \xrightarrow{G I P} G I P(-0.2)=+1 x_{0}^{-5}
$$

iii. Execute the particular expression according to ${ }^{-5}$:

- ${ }^{-}$says to divide +1 by the ${ }^{5}$ copies of -0.2 :

$=======$ Begin HOLDING $=======$

7. Output near x_{0}.

8. Output near ∞.

i. When we want to thicken only one side of ∞, we proceed as follows:

Procedure 6.2

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by +large or -large
3. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the computations to be performed according to the output-specifying code.
b. Perform the computations given by the code using ?? on ?? and ?? on ?? or ?? on ??

Demo 6.2

i. We normalize $N A D E$:

$$
x \xrightarrow{\text { NADE }} N A D E(x)=(- \text { mediumsize }) x^{-o d d}
$$

ii. We declare that x is to be replaced by +large
$\left.\left.x\right|_{x \leftarrow+\text { large }} \xrightarrow{N A D E} N A D E(x)\right|_{x \leftarrow+\text { large }}=\left.(-$ mediumsize $) x^{- \text {odd }}\right|_{x \leftarrow+\text { large }}$ which, once carried out, gives:

$$
+ \text { large } \xrightarrow{N A D E} N A D E(+ \text { large })=\underbrace{(- \text { mediumsize })(+ \text { large })-\text { odd }}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $N A D E(+$ large) by dividing the coefficient -mediumsize by an odd number of copies of the given input +large:

b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

and since,

- by ?? on ??, any number of copies of + multiply to + ,
- by the DDEFINITION of large, any number of copies of large multiply to large

$$
=\frac{- \text { mediumsize }}{+\cdot \text { large }}
$$

and by ?? on ?? and ?? on ?? we get

$$
=- \text { small }
$$

iv. The input-output pairs are $(+$ large,- small $)$

Demo 6.3 Let $R A D E$ be the function given by the global input-output rule

$$
x \xrightarrow{R A D E} R A D E(x)=(+45.67) x^{-4}
$$

To get the input-output pairs near $-\infty$ for $R A D E$:
i. We normalize $R A D E$:

$$
x \xrightarrow{R A D E} R A D E(x)=(+ \text { mediumsize }) x^{- \text {even }}
$$

ii. We declare that x is to be replaced by -large

which, once carried out, gives:

$$
- \text { large } \xrightarrow{R A D E} R A D E(- \text { large })=\underbrace{(+ \text { mediumsize })(- \text { large })^{- \text {even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $R A D E$ (-large) by dividing the coefficient +mediumsize by an even number of copies of the given input-large:

$$
=\frac{+ \text { mediumsize }}{\underbrace{(- \text { large }) \cdot \cdots \cdot(- \text { large })}_{\text {even number of copies of }- \text {-large }}}
$$

b. We perform the computations given by the code:

Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, any even number of copies of multiply to +
- by the DDEFINITION of large, any number of copies of large multiply to arge

$$
=\frac{+ \text { mediumsize }}{+\cdot \text { large }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=+ \text { small }
$$

iv. The input-output pairs are $(-$ large,+ small $)$
ii. When we want to thicken both sides of ∞, we declare that x is to be replaced by \pm large and keep track of the signs as we perform the computations given by the output-specifying code.

Demo 6.4 Let $D A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{D A D E} D A D E(x)=(-83.91) x^{+5}
$$

To get the input-output pairs near ∞ for $D A D E$:
i. We normalize $D A D E$:

$$
x \xrightarrow{D A D E} D A D E(x)=(- \text { mediumsize }) x^{+o d d}
$$

ii. We declare that x is to be replaced by \pm large
$\left.\left.x\right|_{x \leftarrow \pm \text { large }} \xrightarrow{D A D E} D A D E(x)\right|_{x \leftarrow \pm \text { large }}=\left.(-$ mediumsize $) x^{+ \text {odd }}\right|_{x \leftarrow \pm \text { large }}$
which, once carried out, gives:

$$
\pm \text { large } \xrightarrow{D A D E} D A D E(\pm \text { large })=\underbrace{(- \text { mediumsize })(\pm \text { large })+\text { odd }}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get that the output $D A D E(\pm$ large $)$ is obtained by multiplying the coefficient-mediumsize by an odd number of copies of the given input \pm large:

$$
=(- \text { mediumsize }) \cdot \underbrace{(\pm \text { large }) \cdot \ldots \cdot(\pm \text { large })}_{\text {odd } \text { number of copies of } \pm \text { large }}
$$

b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

$$
=(- \text { mediumsize }) \cdot \underbrace{(\pm) \cdot \ldots \cdot(\pm)}_{\text {odd number of copies of } \pm} \cdot \underbrace{(\text { large }) \cdot \ldots \cdot(i)}_{\text {odd number of copies o }}
$$

and since,

- by the Sign Multiplication Rule, an odd number of copies of + multiply to + and an odd number of copies of - multiply to -
- by the DDEFINITION of large, any number of copies of large multiply to large

$$
=(- \text { mediumsize }) \cdot \pm \cdot \text { large }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=\mp \text { large }
$$

iv. The input-output pairs are $(\pm$ large, 干large $)$

DEMO 6.5 Let $P A D E$ be the function given by the global input-output rule

$$
x \xrightarrow{P A D E} P A D E(x)=(-65.18) x^{+6}
$$

To get the input-output pairs near ∞ for $P A D E$
i. We normalize $P A D E$.

$$
x \xrightarrow{P A D E} P A D E(x)=(- \text { mediumsize }) x^{+ \text {even }}
$$

ii. We declare that x is to be replaced by \pm large

which, once carried out, gives:

$$
\pm \text { large } \xrightarrow{P A D E} P A D E(\pm \text { large }))=\underbrace{(- \text { mediumsize })(\pm \text { large })+\text { even }}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get the output $P A D E(\pm$ large $)$ by multiplying the coefficient -mediumsize by an even number of copies of the given input \pm large:

$$
=(- \text { mediumsize }) \cdot \underbrace{(\pm \text { large }) \cdot \ldots \cdot(\pm \text { large }}_{\text {even } \mid \text { number of copies of } \pm \text { large }}
$$

b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, an even number of copies of + multiply to + and an even number of copies of - multiply to +
- by the DDEFINITION of large, any number of copies of large multiply to large

$$
=(- \text { mediumsize }) \cdot+\cdot \text { large }
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=\text {-large }
$$

iv. The input-output pairs are (\pm large, -large $)$

9. Output near 0.

i. When we want to thicken only one side of 0 , we proceed as follows:

Procedure 6.3

1. Normalize the global input-input rule using ?? on ??
2. Declare that x is to be replaced by + small or - small
3. Execute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the computations to be performed according to the output-specifying code.
b. Perform the computations given by the code using ?? on ?? and ?? on ?? or ?? on ??

Demo 6.6

i. We normalize $M A D E$:

$$
x \xrightarrow{\text { MADE }} M A D E(x)=(+ \text { mediumsize }) x^{+o d d}
$$

ii. We declare that x is to be replaced by + small

which, once carried out, gives:

$$
+ \text { small } \xrightarrow{\text { MADE }} \text { MADE }(+ \text { small })=\underbrace{(- \text { mediumsize })(+ \text { small })+\text { odd }}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get that the output $M A D E(+$ small $)$ is obtained by multiplying the coefficient + mediumsize by an odd number of copies of the given input + small:

$$
\begin{aligned}
& \quad=(+ \text { mediumsize }) \cdot \underbrace{(+ \text { small }) \cdot \ldots \cdot(+s m}_{\text {odd number of copies of }+s m} \\
& \text { e code. Dealing sepa- } \\
& \text { ediumsize }) \cdot \underbrace{(+) \cdot \ldots \cdot(+)}_{\text {odd } \text { number of copies of }+} \cdot \underbrace{(\text { small }}_{\text {odd num }}
\end{aligned}
$$

and since,

- by the Sign Multiplication Rule, any number of copies of + multiply to +
- by the DDEFINITION of small, any number of copies of small multiply to small

$$
=(+ \text { mediumsize }) \cdot+\cdot \text { small }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=+ \text { small }
$$

iv. The input-output pairs are $(+$ small,- small $)$

Demo 6.7 Let $W A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{W A D E} W A D E(x)=(-28.34) x^{-3}
$$

To get the output of $W A D E$ near 0^{+}
i. We normalize $W A D E$:

$$
x \xrightarrow{W A D E} W A D E(x)=(- \text { mediumsize }) x^{-e v e n}
$$

ii. We declare that x is to be replaced by +small

which, once carried out, gives:

$$
+ \text { small } \xrightarrow{W A D E} W A D E(+ \text { small })=\underbrace{(- \text { mediumsize })(+ \text { small })^{- \text {even }}}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $W A D E(+$ small $)$ by dividing the coefficient -mediumsize by an even number of copies of the given input +small:

even number of copies of + small
iv. b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, any number of copies of + multiply to +
- by the DDEFINITION of small, any number of copies of small multiply to small

$$
=\frac{- \text { mediumsize }}{+\cdot \text { small }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=- \text { large }
$$

iv. The input-output pairs are $(+$ small,- large $)$
ii. When we want to thicken both sides, we will declare that x is to be replaced by \pm small and keep track of the signs as we perform the computations given by the output-specifying code.

Demo 6.8 Let $J A D E$ be the function given by the global input-output rule

$$
x \xrightarrow{J A D E} J A D E(x)=(-65.71) x^{-5}
$$

To get the output of $J A D E$ near 0 ,
i. We normalize $J A D E$:

$$
x \xrightarrow{J A D E} J A D E(x)=(- \text { mediumsize }) x^{-o d d}
$$

ii. We declare that x is to be replaced by \pm small

which, once carried out, gives:

$$
\pm \text { small } \xrightarrow{J A D E} J A D E(\pm \text { small })=\underbrace{(- \text { mediumsize })(\pm \text { small })-\text { odd }}_{\text {output-specifying code }}
$$

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is negative, we get the output $J A D E(\pm$ small $)$ by dividing the coefficient -mediumsize by an odd number of copies of the given input \pm small:

$$
=\frac{- \text { mediumsize }}{\underbrace{(\pm \text { small }) \cdot \ldots \cdot(\pm \text { small })}_{\text {odd } \text { number of copies of } \pm \text { small }}}
$$

b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

and since,

- by the Sign Multiplication Rule, an odd number of copies of + multiply to + and an odd number of copies of - multiply to -
- by the DDEFINITION of small, any number of copies of small multiply to small

$$
=\frac{- \text { mediumsize }}{ \pm \cdot \text { small }}
$$

and by the Sign Division Rule and the Size Division Theorem

$$
=\mp \text { large }
$$

iv. The input-output pairs are $(\pm$ small,\mp large $)$

Demo 6.9 Let $F A D E$ be the function given by the global input-output rule

$$
x \xrightarrow{F A D E} F A D E(x)=(-65.18) x^{+6}
$$

To get the input-output pairs near 0 for $F A D E$:
i. We normalize $F A D E$.

$$
x \xrightarrow{F A D E} F A D E(x)=(- \text { mediumsize }) x^{+e v e n}
$$

ii. We declare that x is to be replaced by \pm small

which, once carried out, gives:

iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive, we get the output $F A D E(-$ small $)$ by multiplying the coefficient - mediumsize by an even number of copies of the given input \pm small:

$$
=(- \text { mediumsize }) \cdot \underbrace{(\pm \text { small }) \cdot \ldots \cdot(\pm \text { small })}_{\text {even number of copies of } \pm \text { small }}
$$

b. We perform the computations given by the code. Dealing separately with the signs and the sizes, we have

$$
=(- \text { mediumsize }) \cdot \underbrace{(\pm) \cdot \ldots \cdot(\pm)}_{\text {even number of copies of } \pm} .
$$

Input Sign
Input Size
Output Sign
Output Size
and since,

- by the Sign Multiplication Rule, an even number of copies of + multiply to + and an even number of copies of - multiply to +
- by the DDEFINITION of small, any number of copies of small multiply to small

$$
=(- \text { mediumsize }) \cdot+\cdot \text { small }
$$

and by the Sign Multiplication Rule and the Size Multiplication Theorem

$$
=- \text { small }
$$

iv. The input-output pairs are (\pm small,- small $)$
$=======$ End HOLDING $=======$
10. Output Sign and Output Size The following will make our Really! In spite of appear- life a bit easier: ances!

But it's not going to be alway that easy to get!

AGREEMENT 6.1

- Instead of saying "the sign of an input", we will use the entity Input Sign
- Instead of saying "the size of an input", we will use the entity Input Size
and of course, similarly,
- Instead of saying "the sign of an output", we will use the entity Output Sign
- Instead of saying "the size of an output", we willuse the entity Output Size
However, in all other cases, we will continue to say "the sign of ..." or just "Sign ..." and "the size of ..." or just "Size ..." and "the parity of ..." or just "Parity ...".
i. Output Sign Output Sign will play a central role in discussing the behavior of functions and, in the case of regular power functions,t we have:

THEOREM 6.2 Output Sign for regular power functions

- If Input Sign is + , then Output Sign will be the same as Sign Coefficient
- If Input Sign is - , then Output Sign will depend on Parity exponent:
- If exponent is even, then Output Sign will be the same as Sign Coefficient,
- If exponent is odd, then Output Sign will be the opposite of Sign Coefficient.

EXAMPLE 6.7. Let $\mathcal{K} \mathcal{I P}$ be the regular power function given by the $\mathrm{I}-\mathrm{O}$ rule
$x \xrightarrow{\text { KIP }} \mathcal{K I P}(x)=+1 x^{+3}$
Then Theorem 6.2-Output Sign for regular power functions (Page 278)), gives that, since ${ }^{+3}$ is odd,

- If Input Sign is + , Output Sign is + (The same as Sign +1),
- If Input Sign is - , Output Sign is - (The opposite of Sign +1).

And indeed, we get directly from Definition 6.1 - Power Functions (Page 257)) that:

$$
\begin{aligned}
+\xrightarrow{\mathcal{K I P}} \mathcal{K I P P}(+) & =+\odot+\odot+\odot+ \\
& =+\odot+ \\
& =+
\end{aligned}
$$

and

$$
\begin{aligned}
-\xrightarrow{\mathcal{K I P}} \mathcal{K I P}(-) & =+\odot-\odot-\odot- \\
& =+\odot- \\
& =--
\end{aligned}
$$

EXAMPLE 6.8. Let $\mathcal{K} \mathcal{I} \mathcal{T}$ be the regular power function given by the I O rule $x \xrightarrow{\mathcal{K I T}} \mathcal{K I T}(x)=+1 x^{-4}$
Then Theorem 6.2-Output Sign for regular power functions (Page 278), gives, since ${ }^{-4}$ is even, that:

- If Input Sign is + , Output Sign is + (The same as Sign +1),
- If Input Sign is - , Output Sign is + (The same as Sign +1).

And indeed, we get directly from Definition 6.1 - Power Functions (Page 257)
that:

$$
\begin{aligned}
+\xrightarrow{\mathcal{K I T}} \mathcal{K I \mathcal { I }}(+) & =\frac{+}{+\odot+\odot+\odot+} \\
& =\frac{+}{+} \\
& =+
\end{aligned}
$$

and

$$
\begin{aligned}
-\xrightarrow{\mathcal{K I T}} \mathcal{K I T}(-) & =\frac{+}{-\odot-\odot-\odot-} \\
& =\frac{+}{+} \\
& =+
\end{aligned}
$$

ii. Output Size For the purposes of Calculus According to the Real World, we will mostly need qualitative sizes, particularly near ∞ and near But it's not going to be alway 0 . In the case of regular power functions we have: that easy to get!

Theorem 6.3 Output Size for regular power functions
Output Size depends always on Sign exponent :

- If $\operatorname{Sign}{ }^{\text {exponent }}$ is + , then:

Output Size will be the same as Input Size.

- If Sign exponent is ${ }^{-}$, then: Output Size will be the reciprocal of Input Size.

Proof. The proof goes along the lines of the following two Examples, is left to the reader.

EXAMPLE 6.9. Let $\mathcal{K} \mathcal{I N}$ be the regular power function given by the l-O rule $x \xrightarrow{\mathcal{K I N}} \mathcal{K I N}(x)=-1 x^{+5}$
Then Theorem 6.3 - Output Size for regular power functions (Page 280) gives, since Sign ${ }^{+5}$ is ${ }^{+}$, that Output Size will be the same as Input Size. So:

- When Input Size will be large, Output Size will be large
- When Input Size will be small, Output Size will be small .

And indeed, directly from Definition 6.1 - Power Functions (Page 257) we get:

$$
\begin{aligned}
\text { large } \xrightarrow{\mathcal{K I N}} \mathcal{K} \mathcal{K} \mathcal{N}(\text { large }) & =1 \text { large }^{+5} \\
& =1 \odot \text { large } \\
& =1 \odot \text { large } \\
& =\text { large }
\end{aligned}
$$

and

$$
\begin{aligned}
\text { small } \xrightarrow{\text { KIN }} \mathcal{K} \mathcal{K} \mathcal{N}(\text { small }) & =1 \text { small }^{+5} \\
& =1 \odot \quad \text { small } \odot \text { small } \\
& =1 \odot \text { small } \\
& =\text { small }
\end{aligned}
$$

EXAMPLE 6.10. Let $\mathcal{K I M}$ be the regular power function given by the I-O
rule $x \xrightarrow{\mathcal{K I M}} \mathcal{K I M}(x)=+1 x^{-4}$
Then Theorem 6.3 - Output Size for regular power functions (Page 280) gives, since Sign ${ }^{-4}$ is - , that Output Size will be the reciprocal of Input Size. So:

- When Input Size will be large, Output Size will be small
- When Input Size will be small, Output Size will be large .

Definition 6.1 - Power Functions (Page 257) we get:

$$
\begin{aligned}
\text { large } \xrightarrow{\mathcal{K I M}} \mathcal{K} \mathcal{I M}(\text { large }) & =1 \text { large }^{-4} \\
& =\frac{1}{\text { large } \odot \text { large } \odot \text { large } \odot \text { large }} \\
& =\frac{1}{\text { large }}
\end{aligned}
$$

$$
\begin{aligned}
&=\text { small } \\
& \text { and } \\
& \text { small } \xrightarrow{\mathcal{K I M}} \mathcal{K I M}(\text { small })=1 \text { small }^{-4} \\
&=\frac{1}{\text { small } \odot \text { small } \odot \text { small } \odot \text { small }} \\
&=\frac{1}{\text { small }} \\
&=\text { large }
\end{aligned}
$$

iii. Quincunx In particular, using the fact that large implies larger than 1 and small implies smaller than 1 , we have, relative to the quincunx:

THEOREM 6.3 (Restated) Output Size for regular power functions

- If Input Size is larger than 1, then:
- If Sign exponent is ${ }^{+}$, then Output Size will be larger than 1
- If Sign exponent is ${ }^{-}$, then Output Size will be smaller than 1
- If Input Size is 1 , then: Output Size will be also 1
- If Input Size is smaller than 1, then:
- If Sign exponent is ${ }^{+}$, then Output Size will be smaller than 1
- If Sign exponent is ${ }^{-}$, then Output Size will be larger than 1

Proof. The proof is of course just a tiny little bit more complicated but still goes along the lines of the following two Examples and ... is left to the reader.

EXAMPLE 6.11. Let $\mathcal{K} \mathcal{I} \mathcal{S}$ be the regular power function given by the $\mathrm{I}-\mathrm{O}$ rule $x \xrightarrow{\text { KIS }} \mathcal{K I S}(x)=-1 x^{+3}$
Then, directly from Definition 6.1 - Power Functions (Page 257) we get:

$$
\begin{aligned}
1<\text { large } \xrightarrow{\text { KIS }} \mathcal{K I S}(\text { large }) & =-1 \text { large }^{+3} \\
& =1 \odot \text { large } \odot \text { large } \odot \text { large }
\end{aligned}
$$

$$
\begin{aligned}
& =1 \odot \text { large } \\
& =\text { large }>1
\end{aligned}
$$

and

$$
\begin{aligned}
1>\text { small } \xrightarrow{\text { KIS }} \mathcal{K I S}(\text { small }) & =-1 \text { small }^{+3} \\
& =1 \odot \text { small } \odot \text { small } \odot \text { small } \\
& =1 \odot \odot \text { small } \\
& =\text { small }<1
\end{aligned}
$$

EXAMPLE 6.12. Let $\mathcal{K} \mathcal{I} \mathcal{T}$ be the regular power function given by the $\mathrm{I}-\mathrm{O}$ rule $x \xrightarrow{\mathcal{K I T}} \mathcal{K I T}(x)=+1 x^{-4}$

Definition 6.1 - Power Functions (Page 257) we get:

$$
\begin{aligned}
1<\text { large } \xrightarrow{\mathcal{K} \mathcal{T} \mathcal{K}} \mathcal{K \mathcal { I } (\text { large })} & =1 \text { large }^{-4} \\
& =\frac{1}{\text { large } \odot \text { large } \odot \text { large } \odot \text { large }} \\
& =\frac{1}{\text { large }}
\end{aligned}
$$

$$
=\text { small }<1 \quad \text { Again, "Jill is older than }
$$

and

$$
1>\text { small } \xrightarrow{\text { KIM }} \mathcal{K I M}(\text { small })=1 \text { small }^{-4}
$$

Just in case: "Jill is older than Jack" and "Jack is younger than Jill" say exactly the same thing.

$$
=\frac{1}{\text { small } \odot \text { small } \odot \text { small } \odot \text { small }}
$$

$$
=\frac{1}{\text { small }}
$$

$$
=\text { large }>1
$$

11. Symmetries.

In order to halve the work in graphing regular power functions more efficiently, we need to invest a little bit on a couple of graphic maneuvers: i. Horizontal Flip

If we do a horizontal flip on a first plot dot we get a second plot dot and

- The input of the second plot dot will be the opposite of the input of the first plot dot
- The output of the second plot dot will be the same as the output of the first plot dot
EXAMPLE 6.13. If we do a horizontal flip on a the plot dot $(+2,-48)$ we will get a second plot dot and:

- the input of the second plot dot will be -2
- the output of the second plot dot will be -48

EXAMPLE 6.14. Given the function specified by the global input-ouput rule

$$
x \xrightarrow{K A T} K A T(x)=(-3) \cdot x^{+4}
$$

$$
\begin{aligned}
+2 \xrightarrow{K A T} K A T(+2) & =-3 \bullet+2 \bullet+2 \bullet+2 \bullet+2 \\
& =-48
\end{aligned}
$$

and

$$
\begin{aligned}
-2 \xrightarrow{K A T} K A T(-2) & =-3 \bullet-2 \bullet-2 \bullet-2 \bullet-2-4 \\
& =-48
\end{aligned}
$$

ii. We see that we can get the plot dot for input -2 by a horizontal flip of the plot dot for input +2 :

THEOREM 6.4 Even regular power functions are horizontally symmetrical

Proof.
ii. Vertical Flip
iii. Diagonal Flip If we follow the horizontal flip on the first plot dot by a vertical flip on the second plot dot, we will get a third plot dot and:

- the input of the third plot dot will be the same as the input of the second plot dot, that is the opposite of the input of the first plot dot
- the output of the third plot dot will be the opposite of the output of the second plot dot, that is the opposite of the output of the first plot dot
In other words, we can get the third plot dot by a diagonal flip on the first plot dot.

EXAMPLE 6.15. If we do a horizontal flip on the plot dot $(+2,-48)$ we get a second plot dot and if we follow by a vertical flip on the second plot dot, we get a third plot dot and:

- the input of the second plot dot will be -2
- the output of the second plot dot will be -40 and then
- the input of the third plot dot will be -2
- the output of the third plot dot will be +40

In other words, both the input and the output of the third plot dot are opposite of the input and output of the first plot dot and so to get the third plot dot directly from the first plot dot we can just use a diagonal flip instead of a horizontal flip followed by a vertical flip.

EXAMPLE 6.16. Given the function specified by the global input-ouput rule

$$
x \xrightarrow{K A T} K A T(x)=(+5) \cdot x^{+3}
$$

$$
\begin{aligned}
& \text { a. For instance } \\
& \begin{aligned}
&+2 \xrightarrow{K A T} K A T(+2)=+5 \bullet+2 \bullet+2 \bullet+2 \\
&=+40 \\
& \text { and } \\
&-2 \xrightarrow{K A T} K A T(-2)=+5 \bullet-2 \bullet-2 \bullet-2 \\
&=-40
\end{aligned}
\end{aligned}
$$

b. We see that we can get the plot dot for input -2 by a diagonal flip of the plot dot for input +2 :

THEOREM 6.5 Odd regular power functions are diagonally symmetrical

Proof.
So a consequence of ?? on ?? is that once we have the plot dot for an input, we can get the plot dot for the opposite input, that is for the input with the same size and opposite sign with just one flip:

THEOREM 6.6 Symmetry (For Regular Monomial Functions.) Given the plot dot for an input, we get the plot dot for the opposite input with:

- A horizontal-flip if Exponent Parity = even,
- A diagonal-flip if Exponent Parity = odd.

While, as we saw in Section 1 - Height-Continuity (Page 165), getting the output for a given number is not very useful, it does allow to prove the very useful

THEOREM 6.7 The global graphs of all power functions go through two of the corner plot dots of the quincunx.

Proof. There are four cases:

- For the power functions of type

$$
x \xrightarrow{f} f(x)=+1+1{ }^{+5}
$$

we have

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =+1+1+5 \\
& =+1 \odot+1 \odot+1 \odot+1 \odot+1 \odot+1
\end{aligned}
$$

- The other three cases are left to the reader
$========$ End WORK ZONE=======

6 Graphing Power Functions

$============$ OK SO FAR $=============$

BEGIN WORK $========$ BEGIN WORK $========$ BEGIN WORK
While, as we saw in Section 1 - Height-Continuity (Page 165), getting the output for a given number is not very useful, it does allow to prove the very useful

THEOREM 6.8 The global graphs of all power functions go through two of the following four plot dots: $(+1,-1,(+1,+1$, $(-1,-1,(-1,+1$,

Proof. There are four cases:

- For the power functions of type

$$
x \xrightarrow{f} f(x)=+1+1+5
$$

we have

$$
\begin{aligned}
x \xrightarrow{f} f(x) & =+1+1^{+5} \\
& =+1 \odot+1 \odot+1 \odot+1 \odot+1 \odot+1
\end{aligned}
$$

- The other three cases are left to the reader

1. Plot dot. Let f be the regular power function given by the global input-output rule

$$
\underbrace{x}_{\text {input }} \stackrel{f}{\longrightarrow} f(x)=\underbrace{a x^{ \pm n}}_{\text {output-specifying code }}
$$

where n is the number of copies used by f, and let x_{0} be the given input. To plot the input-output pair for the given input x_{0}, we use ?? on ?? which, in the case of regular power functions, becomes

Procedure 6.4

1. To get the output at the given input using ?? on ?? to get the input-output pair,
2. Locate the plot dot with ?? on ??.

Demo 6.10 Let FLIP be the function given by the global inputoutput rule

$$
x \xrightarrow{F L I P} F L I P(x)=(+527.31) x^{+11}
$$

To plot the input-output pair for the input -3 :

1. We get the output of the function $F L I P$ at -3 . We found in EXAMPLE 5.1 above that $F L I P(-3)=-93411384.57$
2. Thus, the input-output pair for the plot dot of FLIP at -3 is $(-3,-93411384.57)$ and the plot dot is:

Demo 6.11 Let $F L O P$ be the function given by the global inputoutput rule

$$
x \xrightarrow{F L O P} F L O P(x)=(+3522.38) x^{-6}
$$

To plot the input-output pair for the input -3 :

2. Thickening the plot dot. As mentioned in ?? on ??, instead of using single inputs to get single plot dots, we will "thicken the plot" that is we will use neighborhoods of given inputs to get graph places. But to use neighborhoods with global input-output rules, we will first have to introduce code to be able to declare by what to replace x. And, since this at the very core of what we will be doing in the rest of this text, we want to proceed with the utmost caution.

1. Since we are dealing here with regular power functions we will only be interested in inputs near ∞ and/or inputs near 0 and so here all we will need is the sign-size.
In order to declare by what we want to replace x, we will use the following code:

Near	Side				Code
Infinity	Left Righ	$\begin{gathered} 0 \cdots \cdots \backsim \backsim \cdots \cdots \\ \infty \cdots \cdots \cdots \end{gathered}$	positive negative	$\begin{aligned} & +\infty \\ & -\infty \end{aligned}$	+ large -large
Zero	Left Righ	$\begin{aligned} & \infty \cdots \cdots — 0 \\ & 0 \leftrightharpoons — \cdots{ }_{\infty} \end{aligned}$	negative positive	$\begin{aligned} & 0^{-} \\ & 0^{+} \end{aligned}$	-small

2. For the input-output pairs on one side, we will basically use ?? on ?? but declare that x is to be replaced using the above code for the given input.
3. For the input-output pairs of both sides, we will use the
as follows:

3. Graph box near ∞ and near 0 .

Once we have the input-output pairs near ∞ and near 0 , we get the graph places as in ?? ?? on ??. Here again,
i. In the first four demos, demo 6.12 on page 290, demo 6.13 on page 291, DEmo 6.14 on page 291, DEMO 6.15 on page 292, we will deal with only one side or the other.
ii. In the next four demos, Demo 6.16 on page 292, DEmo 6.17 on page 293, DEMO 6.18 on page 294, DEMO 6.19 on page 294, we will deal with both sides at the same time.

Procedure 6.5

1. Get the input-output pairs using ?? ?? on ?? or ?? ?? on ??.
2. Locate the graph place using ?? ?? on ??.

Demo 6.12

1. We get that the input-output pairs for NADE near $+\infty$ are (+ large,- small) (See DEmo 6.2 on page 268)
2. The graph place of $N A D E$ near $+\infty$ then is:

Demo 6.13 Let $M A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{M A D E} M A D E(x)=(+27.61) x^{+5}
$$

To locate the graph place of $M A D E$ near 0^{+}:

1. We get that the input-output pairs for $M A D E$ near 0^{+}are $[+$ small,+ small $]$ (See demo 6.6 on page 273)
2. The graph place of $M A D E$ near 0^{+}
then is:

Demo 6.14 Let $R A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{R A D E} R A D E(x)=(+45.67) x^{-4}
$$

To locate the graph place of RADE near $-\infty$:

1. We get that the input-output pairs for $R A D E$ near $-\infty$ are [-large,+ small](See DEmo 6.3 on page 269)
2. The graph place near $-\infty$ then is:

Demo 6.15 Let $W A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{W A D E} W A D E(x)=(-28.34) x^{-3}
$$

To locate the graph place of WADE near 0^{+}:

1. We get that the input-output pairs for $W A D E$ near 0^{+}are [+ small, -large](See DEMO 6.15 on page 292)
2. The graph place near 0^{+}then is:

Demo 6.16 Let $P A D E$ be the function given by the global input-
output rule

$$
x \xrightarrow{P A D E} P A D E(x)=(-65.18) x^{+6}
$$

To locate the graph place of $P A D E$ near ∞.

1. We get that the input-output pairs for $P A D E$ near ∞ are [\pm large,- large $]($ See DEmo 6.5 on page 272)
2. The graph place of $P A D E$ near ∞
then is:

Demo 6.17 Let $J A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{J A D E} J A D E(x)=(-65.71) x^{-5}
$$

To locate the graph place of $J A D E$ near 0 :

1. We get that the input-output pairs for $J A D E$ near 0 are [\pm small , 干large] (See DEmo 6.8 on page 276)
2. The graph place of $J A D E$ near 0 then is:

Demo 6.18 Let $D A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{D A D E} D A D E(x)=(-83.91) x^{+5}
$$

To locate the graph place of $D A D E$ near ∞ :

1. We get that the input-output pairs for $D A D E$ near ∞ are [\pm large,\mp large] (See DEmo 6.4 on page 271)
2. The graph place of $D A D E$ near ∞

Demo 6.19 Let $F A D E$ be the function given by the global inputoutput rule

$$
x \xrightarrow{F A D E} F A D E(x)=(-65.18) x^{+6}
$$

To locate the graph place of $F A D E$ near 0^{-}.

shape
forced
4. Local Graph Near ∞ and Near 0. Regular power functions are very nice in that the shapes of the local graphs near ∞ and near 0 are forced by the graph place. In other words, once we know the graph place, there is only one way we can draw the local graph because:
i. The smaller or the larger the input is, the smaller or the larger the output will be,
ii. The local graph cannot escape from the place.

Demo 6.20 Given a power function for which the place of a local graph is [+large, +small], we get the shape of the local graph as follows
i. The slope is forced by the fact that the larger the input is,
the smaller the output will be.
ii. The concavity is forced by the fact that the local graph cannot cross the 0 -output level line.

Demo 6.21 Given a power function for which the place of a local graph is [-small, -large], we get the shape of the local graph as follows
i. The slope is forced by the fact that the smaller the input is, the larger the output will be.
ii. The concavity is forced by the fact that the local graph cannot cross the 0 -input level line.

5. Local Features Near ∞ and Near 0.

1. Given a regular power function being given by a global input-output rule, to get the Height sign near ∞ or near 0 , we need only compute the sign of the outputs for nearby inputs with the global input-output rule.

Demo 6.22 Let $J O E$ be the function given by the global input-output rule

$$
x \xrightarrow{J O E} J O E(x)=(-65.18) x^{+6}
$$

To get the Height sign of $J O E$ near 0^{+}

We ignore the size and just look at the sign:

$$
\begin{aligned}
+\xrightarrow{J O E} J O E(+) & =(-)(+)^{+6} \\
& =(-) \cdot(+) \\
& =-
\end{aligned}
$$

and

$$
\begin{aligned}
-\xrightarrow{J O E} J O E(-) & =(-)(-)^{+6} \\
& =(-) \cdot(+) \\
& =-
\end{aligned}
$$

So, Height sign $J O E$ near 0 is $\langle-,-\rangle$
2. Given a regular power function being given by a global input-output
rule, to get the Slope sign or the Concavity sign near ∞ or near 0 , we need the local graph near ∞ or near 0 .

Demo 6.23 Let $J I L L$ be the function given by the global input-output rule

$$
x \xrightarrow{J I L L} J I L L(\pm)=(+32.06)(\pm)^{+6}
$$

To get the Slope sign of $J I L L$ near 0

We need the local graph of $J I L L$ near 0 .
i. We get the output for $J I L L$
near 0

$$
\begin{aligned}
& \pm \text { small } \xrightarrow{\text { JILL }} \text { JILL }(\pm \text { small }) \\
&=(+ \text { mediumsize })(\pm \text { small })^{+ \text {even }} \\
&=(+ \text { mediumsize })(\pm)^{\text {even }}(\text { small })^{+} \\
&=(+ \text {mediumsize })(+) \cdot(\text { small }) \\
&=+ \text { small }
\end{aligned}
$$

iii. Slope sign $J I L L$ near $0=$

〈, /〉
ii. The local graph of $J I L L$ near 0 is

Demo 6.24 Let $J I M$ be the function given by the global input-output rule

$$
x \xrightarrow{J I M} J I M(x)=(-72.49) x^{-5}
$$

To get the Concavity sign of JIM near ∞

We need the local graph of JIM near ∞.
i. We get the output for $J I M$ near
∞

$$
\begin{aligned}
& \pm \text { large } \xrightarrow{\text { JIM } J I M(\pm \text { large })} \\
&=(- \text { mediumsize })(\pm \text { large })^{- \text {odd }} \\
&=\underbrace{\frac{- \text { mediumsize }}{(\pm \text { large }) \ldots(\pm \text { large })}}_{\text {odd number of copies }} \\
&=\frac{- \text { mediumsize }}{ \pm \text { large }} \\
&=- \text { mediumsize } \cdot \pm \text { small } \\
&=\mp \text { small }
\end{aligned}
$$

iii. Concavity sign $J I M$ near $\infty=$ $\langle\cap, \cup\rangle$
ii. The local graph of $J I M$ near 0 is

The Global Analysis of regular monomial functions is very systematic because the global input-output rule is very simple.

7 Reciprocity

1. Another way to look at ?? on ?? is to realize that, for a monomial function,

- If Output Size $=$ Input Size, this can only be because Exponent Sign = +,
- If Output Size $=$ Reciprocal Input Size, this can only be because Exponent $\operatorname{Sign}=-$.

Which gives us the following which we will use to graph regular monomial functions efficiently:

Theorem 6.9 Reciprocity (For Regular Monomial Functions.)

- If large \rightarrow large, then small \rightarrow small (And vice versa.)
- If large \rightarrow small, then small \rightarrow large (And vice versa.)

EXAMPLE 6.17.

After we have found, for instance, We get from theorem 6.9

EXAMPLE 6.18.

After we have found, for instance, We get from theorem 6.9

2. The relationship between ∞ and 0 is not only important but also fascinating.
a. Even though, as an input, 0 is usually not particularly important, there is an intriguing "symmetry" between ∞ and 0 namely:

More precisley, small numbers are some sort of inverted image of large numbers since the reciprocal of a large number is a small number and vice versa.

EXAMPLE 6.19. \mathbf{T} he opposite of the reciprocal of -0.001 is +1000 . In a Magellan view, we have

b. Here is yet another way to look at reciprocity. We start with the graph of a monomial function and we "turn" it so as to see it while facing ∞ and we then compare it with the graph near 0 of the reciprocal function.

EXAMPLE 6.20. L et the monomial function specified by the global inputoutput rule

$$
x \xrightarrow{\text { RAIN }} \operatorname{RAIN}(x)=(+1) x^{+4}
$$

the local graph near 0 of $R A I N$ is: $¥$

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

We then glue shut the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

the cut and unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we got for $R A I N$ is:

$¥ \quad \begin{aligned} & \text { It is the same as the local graph near } \\ & 0 \text { of the reciprocal function specified }\end{aligned}$ by the global input-output rule $x \xrightarrow{\text { TENA }} T E N A(x)=(+1) x^{-4}$

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞. So the graphs on the positive sides are the same and the local graphs on the negative sides are also the same.)

EXAMPLE 6.21. G iven the monomial function specified by the global inputoutput rule

$$
x \xrightarrow{\text { MIKE }} \operatorname{MIKE}(x)=(+1) x^{-3}
$$

the local graph near 0 of $M I K E$ is: $\quad ¥$

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more closing down the gap until the edges touch:

We then glue shut the edges of the screen at ∞ to get a cylinder.

Then we rotate the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut open the cylinder along the input level line for 0

Finally we widen the cut and unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we just got for MIKE is:
$¥ \quad$ It is the same as the local graph near by the global input-output rule

$$
x \xrightarrow{J A N E} J A N E(x)=(+1) x^{+3}
$$

(Keep in mind that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞. So the graphs on the positive sides are the same and the local graphs on the negative sides also are the same.)

8 Global Graphing

We can of course get the global graph the way we will get the global graph of all the other functions in this text, that is as described in ??, but, in the case of regular monomial functions, we will be taking advantage of the following TTHEOREMs which we must become completely familiar with—but which we certainly must not memorize:

- The first part of ?? on ?? namely:

THEOREM 6.10 Output Sign for positive inputs. (For Regular Monomial Functions.)

Output Sign for positive inputs $=$ Coefficient Sign.

- ?? on ??
- Theorem 6.9 on page 299
- Theorem 6.6 on page 286

Then, after a little bit of practice, we will be able to get the global graph very rapidly:

Procedure 6.6 To graph a regular monomial function:

a. Locate the graph place for inputs near $+\infty$ as follows:
i. Determine if the graph place for inputs near $+\infty$ is above or
below the 0-output level line.
(Use THEOREM 6.10 on ??)
ii. Determine if the graph place for inputs near $+\infty$ is near the 0 -output level line or near the ∞-output level line,
(Use ?? on ??)
b. Locate the graph place for inputs near 0^{+}.
(Use тнеоrem 6.9 on page 299).
c. Locate the graph places for inputs near $-\infty$ and inputs near 0^{-}.
(Use THEOREM 6.6 on page 286)
d. Draw the global graph through the graph places.

Demo 6.25

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=+$,

$$
+\xrightarrow{K I R}+
$$

(Using theorem 6.10 on page 305.)
ii. Since Exponent Sign $=-$,

$$
\text { large } \xrightarrow{K I R} \text { small }
$$

(Using ?? on ??.)
2. We locate the graph place for inputs near 0^{+}.

(Using THEOREM 6.9 on page 299.)
3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using THEOREM 6.6 on page 286.)

4. We draw the global graph through the graph places.
And, to the right is a Magellan view of the global graph.

Demo 6.26

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=-$,

$$
+\xrightarrow{K I M}+
$$

(Using theorem 6.10 on page 305.)
ii. Since Exponent Sign $=+$,

$$
\text { large } \xrightarrow{K I M} \text { large }
$$

(Using ?? on ??.)
2. We locate the graph place for inputs near 0^{+}.

(Using THEOREM 6.9 on page 299.)
3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using THEOREM 6.6 on page 286.)

4. We draw the global graph through the graph places.
And, to the right is a Magellan view of the global graph.

Demo 6.27

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=-$,

$$
+\xrightarrow{K I N}-
$$

(Using theorem 6.10 on page 305.)
ii. Since Exponent Sign $=+$,

$$
\text { large } \xrightarrow{K I N} \text { large }
$$

(Using ?? on ??.)
2. We locate the graph place for inputs near 0^{+}.

(Using THEOREM 6.9 on page 299.)
3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using THEOREM 6.6 on page 286.)

4. We draw the global graph through the graph places.
And, to the right is a Magellan view of the global graph.

Demo 6.28

1. We locate the graph place for inputs near $+\infty$:
i. Since Coefficient Sign $=+$,

$$
+\xrightarrow{K I B}+
$$

(Using theorem 6.10 on page 305.)
ii. Since Exponent Sign $=-$,

$$
\text { large } \xrightarrow{K I B} \text { small }
$$

(Using ?? on ??.)
2. We locate the graph place for inputs near 0^{+}.

(Using THEOREM 6.9 on page 299.)
3. We locate the graph places for inputs near $-\infty$ and near 0^{-}.
(Using THEOREM 6.6 on page 286.)

4. We draw the global graph through the graph places.
And, to the right is a Magellan view of the global graph.

9 Types of Global Graphs

Each type of global input-output rule corresponds to a type of global graph. The global graphs are shown both from "close-up" to see the bounded graph and from "faraway" to see how the graphs flatten out.

| Input-output rule | From "close-up" | From "faraway" |
| :---: | :---: | :---: | :---: | :---: |

Chapter 7

No More Affine Functions

Binomial Functions, 313 - Graphs of Binomial Functions, 315 - Local graphs, 317 • Local Feature-signs, 319 • Affine Functions: Global Analysis, 323 • Smoothness, 323 - The Essential Question, 324 • Slope-sign, 326 • Extremum, 327 • Height-sign, 327 • Bounded Graph, 328 • 0-Slope Location, 330 • Locating Inputs Whose Output $=y_{0}, 330$ • Locating Inputs Whose Output $>y_{0}$ Or $<y_{0}, 330$ • Initial Value Problem, 331 - Boundary Value Problem, 333 • Piecewise affine functions, 334 .

OKsoFAR - OKsoFAR OKsoFAR - OKsoFAR

1 Binomial Functions

1.
2.

EXAMPLE 7.1. L et $B A S E$ be given by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{+2}
$$

and let $A D D-O N$ be given by the global input-ouput rule

$$
x \xrightarrow{A D D-O N} A D D-O N(x)=(+5) x^{0}
$$

$$
=+5
$$

then the $S U M$ function is given by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{+2} \oplus(+5) x^{0} \\
& =(-3) x^{+2}+5
\end{aligned}
$$

To see that $S U M$ cannot be replaced by a single monomial function, we first evaluate all three functions at some input, for instance +2 :

$$
\begin{aligned}
+2 \xrightarrow{\text { BASE }} \text { BASE }(+2) & =(-3)(+2)^{+2} \\
& =-12
\end{aligned}
$$

and

$$
\begin{aligned}
+2 \xrightarrow{A D D-O N} A D D-O N(+2 & =(+5)(+2)^{0} \\
& =+5
\end{aligned}
$$

then

$$
\begin{aligned}
x \xrightarrow{S U M} \operatorname{SUM}(x) & =(-3)(+2)^{+2} \oplus(+5)(+2)^{0} \\
& =-12 \oplus+5 \\
& =-7
\end{aligned}
$$

The question then is what monomial function could return the output -7 for the input +2 .
Of course, we can easily find a monomial function that would return the output -7 for the input +2 . For instance, the dilation function $x \xrightarrow{f} f(x)=-\frac{7}{2} x$ does return the output -7 for the input +2 . But f is not going to return the same output as $S U M$ for other inputs, say, $+3,+4$, etc which it should. So, the binomial function

$$
x \xrightarrow{S U M} S U M(x)=(-3) x^{+2}+5
$$

cannot be replaced by the single monomial function

$$
x \xrightarrow{f} f(x)=-\frac{7}{2} x
$$

CAUTIONARY NOTE 7.1 e noted at the beginning of Chapter 5 that monomial functions were only rarely called monomial functions and that this was unfortunate: indeed, it would be nicer to say that a binomial function cannot be replaced by a single monomial function. (We cannot have two for the price of one.)

2 Graphs of Binomial Functions

1. When the exponent of the $a d d$-on function is the same as the exponent of the base function, the bar graphs show exactly why the sum function will have again the same exponent.
a. Given a constant base function, adding-on a constant function:
b. Given a dilation base function, adding-on a dilation function:

2. When the exponent of the add-on function is not the same as the exponent of the base function, the bar graphs show clearly why the sum function cannot be a monomial function.
a. Given a constant base function,

- Adding-on a dilation function:

EXAMPLE 7.3.

- Adding-on an even positive exponent monomial function:

EXAMPLE 7.4.

- Adding-on an odd positive exponent monomial function:

EXAMPLE 7.5.

b. Given a dilation base function,

- Adding-on an even monomial function:

EXAMPLE 7.6.

- Adding-on an odd monomial function:

EXAMPLE 7.7.

$=======$ End LOOK UP $======$

3 Local graphs

Just as we get a plot point at a bounded input from the output at that input, we get the local graph near any input, be it bounded or infinity, from the jet near that input.

Procedure 7.1

1. Get the jet near ∞ using procedure 5.8 To evaluate near ∞ the function given by $x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b$ on page 247

$$
x \text { near } \infty \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=[a] x+[b]
$$

2. Get the local graph near ∞ of each term:
a. Get the graph of the linear term near ∞ by graphing near ∞ the monomial function $x \rightarrow a x$ using ?? ?? on ??.
b. Get the graph of the constant term near ∞ by graphing near ∞ the monomial function $x \rightarrow b$ using ?? ?? on ??.
3. Get the local graph near ∞ of $A F F I N E$ by adding-on the constant term to the linear term using ??.

Demo 7.1

1. We get the jet near ∞ : (See Demo 5.8 on page 248)

$$
x \text { near } \infty \xrightarrow{\text { NINA }} \text { NIN } A(x)=[-82.47] x+[-61.03]
$$

2. Get the local graph near ∞ of each term:
a. We get the graph of the linear term by graphing near ∞ the monomial function
$x \rightarrow[-82.47] x$ (See ?? on ??)

b. We get the graph of the constant term near ∞ by graphing near ∞ the monomial function $x \rightarrow[-61.03]$ (See ?? on ??)

3. We get the local graph near ∞ of NINA by adding-on to the graph of the linear term the graph of the constant term. (See ?? on ??)

Procedure 7.2

i. Get the jet near x_{0} of AFFINE using procedure 5.9 To evaluate near x_{0} the function given by $x \xrightarrow{\text { AFFINE } A F F I N E(x)=a x+b}$ on page 251
ii. Get the graph of the constant term in the jet near x_{0} namely of $\left[a x_{0}+b\right]$
iii. Add-on the graph of the linear term in the jet near x_{0} namely of [■]

Demo 7.2

i. We get the jet near -3 of $A L D A$ by evaluating $A L D A$ near -3 :
(See DEmo 5.9 on page 252)

$$
-3+h \xrightarrow{A L D A} A L D A(-3+h)=\underbrace{[+169.08] \oplus[-32.67]}_{\text {output jet near }-3} h
$$

ii. We get the graph of the constant term near -3: (See ?? on ??)

iii. We get the graph of the linear term near -3 is: (See ?? on ??)

iv. We add-on the graph of the linear term near -3 to the graph of the linear term near -3 . (See ?? on ??)

4 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so all we need to do is:
i. Get the output jet from the global input-output rule. (See Proce-

DURE 5.8 on page 247 when the given input is ∞ or PROCEDURE 5.9 on page 251 when the given input is x_{0}.)
ii. Get the local graph from the output jet. (See Procedure 7.1 on page 317 when the given input is ∞ or Procedure 7.1 on page 317 when the given input is x_{0}.)
iii. Get the feature-sign from the local graph(See ??

However, with a little bit of reflection, it is faster and much more useful to read the feature-signs directly from the jet in the local input-output rule. But since, in order for the terms in the jet to be in descending order of sizes,

- In the case of infinity, the exponents of x have to be in descending order.
- In the case of a bounded input, the exponents of h have to be in ascending order.
we will deal with ∞ and with x_{0} separately.

1. Nearinfinity things are quite straightforward:

Procedure 7.3

i. Get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x) & =a x+b \\
& =\underbrace{[a] x \oplus[b]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. Then, in the jet near ∞ :

- Get both the Height-sign and the Slope-sign from the linear term $[a] x$ because the next term $[b]$ is too small to matter.
- Since both the linear term and the constant term have no concavity, AFFINE has no Concavity-sign near ∞.

Demo 7.3 Get the Height-sign near ∞ of the function given by

$$
x \xrightarrow{\text { JULIE }} J U L I E(x)=-2 x+6
$$

i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { JULIE }} \operatorname{JULIE}(x) & =-2 x+6 \\
& =\underbrace{[-2] x \oplus[+6]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Height-sign from the linear term $[-2] x$ because the constant term $[+6]$ is too small to matter.
Since the linear coefficient -2 is negative, we get that Height-sign
$J U L I E$ near $\infty=\langle-,+\rangle .($ Seen from ∞.
Demo 7.4 Get the Slope-signs near ∞ of the function given by

$$
x \xrightarrow{\text { PETER }} \operatorname{PETER}(x)=+3 x-8
$$

i. We get the local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{\text { PETER }} \operatorname{PETER}(x) & =+3 x-8 \\
& =\underbrace{[+3] x \oplus[-8]}_{\text {output jet near } \infty}
\end{aligned}
$$

ii. We get Slope-sign from the linear term $[+3] x$ because the constant term $[-8]$ is too small to matter (Not to mention that a constant term has no slope.)
Since the linear coefficient +3 is positive, we get that Slope-sign $P E T E R$ near $\infty=\langle/, /\rangle$. (Seen from ∞.)
2. In the case of a bounded input, things are a bit more complicated because the bounded input may turn out to be ordinary or critical for the height. But it will always be ordinary for the slope.

Procedure 7.4

i. Get the local input-output rule near x_{0} :

$$
\begin{aligned}
x_{0}+h \xrightarrow{\text { AFFINE }} \text { AFFINE }\left(x_{0}+h\right) & =a\left(x_{0}+h\right)+b \\
& =a x_{0}+a h+b \\
& =a x_{0}+b+a h \\
& =\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {output jet near } x_{0}}
\end{aligned}
$$

ii. Then, in the jet near x_{0} :

- If x_{0} is ordinary, that is if $\left[a x_{0}+b\right] \neq 0$, get the Height-sign from the sign of the constant term $\left[a x_{0}+b\right]$ because the next term $[a] h$ is too small to matter. In other words, Height-sign AFFINE near $x_{0}=$ Height-sign of the monomial function $h \rightarrow a x_{0}+b$ near 0 . But if x_{0} is critical, that is if $\left[a x_{0}+b\right]=0$, the next term, namely the linear term $[a] h$, now does matter even though it is small. In other words, now Height-sign AFFINE near $x_{0}=$ Height-sign of the monomial function $h \rightarrow a h$ near 0 .
- Since the constant term has no slope, get the Slope-sign from the next smaller term in the jet, namely the linear term. In other words, Slope-sign AFFINE near $x_{0}=$ Slope-sign of the monomial function $h \rightarrow a h$ near 0 .
- Since both the constant term and the linear term have no concavity, AFFINE has no Concavity-sign near x_{0}.

Demo 7.5 Get the feature-signs near +2 of the function given by

$$
x \xrightarrow{\text { JULIE }} J U L I E(x)=-2 x-6
$$

i. We get the local input-output rule near +2 :

$$
\begin{aligned}
+2+h \xrightarrow{\text { JULIE }} J U L I E(+2+h) & =-2(+2+h)-6 \\
& =-2(+2)-2 h-6 \\
& =-4-2 h-6 \\
& =-4-6-2 h \\
& =\underbrace{[-10] \oplus[-2]}_{\text {output jet near }+2} \text {. } h
\end{aligned}
$$

ii. Then, from the jet:

- We get the Height-sign of $J U L I E$ from the constant term $[-10]$ and since the Height-sign of the monomial function $h \rightarrow-10$ near 0 is $\langle-,-\rangle$, we get that Height-sign JULIE near $+2=\langle-,-\rangle$.
- Since the constant term $[-10]$ has no slope we get Slope-sign from the next term, namely the linear term $[-2] h$, and since the Slopesign of the monomial function $h \rightarrow-2 h$ near 0 is $\langle\backslash, \backslash\rangle$, we get that Slope-sign JULIE near $+2=\langle \rangle\rangle$,$\rangle .$
- Since the constant term $[-10]$ and the linear term $[-2 h]$ both have no concavity, JULIE has no Concavity-sign near +2 .

Demo 7.6 Get the feature-signs near -2 of the function given by

$$
x \xrightarrow{\text { PETER }} \operatorname{PETER}(x)=+3 x+6
$$

i. We get the local input-output rule near -2 :

$$
\begin{aligned}
-2+h \xrightarrow{P E T E R} P E T E R(-2+h) & =+3(-2+h)+6 \\
& =+3(-2)+3 h+6 \\
& =-6+3 h+6
\end{aligned}
$$

$$
\begin{aligned}
& =-6+6+3 h \\
& =\underbrace{[0] \oplus[+3]}_{\text {output jet near }-2} h
\end{aligned}
$$

ii. Then, from the jet:

- Since the constant term is 0 , we get Height-sign of PETER from the next term, namely the linear term $[+3] h$ even though it is small. Since the Height-sign of the monomial function $h \rightarrow+3 h$ near 0 is $\langle-,+\rangle$ we get that Height-sign PETER near $-2=\langle-,+\rangle$.
- Since the constant term $[0]$ has no slope we get Slope-sign from the next term, namely the linear term $[+3] h$, and since the Slope-sign of the monomial function $h \rightarrow+3 h$ near 0 is \langle/\rangle,$\rangle we get that$ Slope-sign PETER near $-2=\langle/, /\rangle$
- Since the constant term [0] and the linear term $[+3 h]$ both have no concavity, PETER has no Concavity-sign near -2 .

Everything below was commented out

=====================================12

5 Affine Functions: Global Analysis

In contrast with local analysis which involves only inputs that are near a given input, be it ∞ or x_{0}, global analysis involves, one way or the other, all inputs. We will see that, while the local analysis of all algebraic functions will turn out to remain essentially the same, the global analysis of each kind of algebraic functions will turn out to be vastly different.

In fact, with most functions, we will be able to solve only some global problems and mostly only approximately so. Affine functions, though, are truly exceptional in that we will be able to solve all global problems exactly.

Anyway, the first step in investigating the global behavior of a kind of algebraic function will always be to do the general local analysis of that kind of algebraic function, that is the local analysis of the generic algebraic function of that kind near ∞ and near a generic input x_{0}.

6 Smoothness

Given the function given by the generic global input-output rule

$$
x \xrightarrow{A F F I N E} A F F I N E(x)=a x+b
$$

generic local input-output rule first derivative
the generic local input-output rule is:

$$
x_{0}+h \xrightarrow{A F F I N E} A F F I N E\left(x_{0}+h\right)=\underbrace{\left[a x_{0}+b\right] \oplus[a] h}_{\text {jet near } x_{0}}
$$

1. The constant term in the jet near x_{0}, namely $\left[a x_{0}+b\right]$, is just the output at x_{0}. (See PROCEDURE 5.7 on page 245). In other words:

THEOREM 7.1 The function which outputs at the given input the constant coefficient in the jet of a given affine function near a given bounded input is the given affine function itself.

EXAMPLE 7.8. Observe that in the local input-output rule in DEMO 5.9 on page 252 the constant coefficient in the jet near -3 , namely +169.08 , is just the output at-3. (See DEMO 8.1 on page 342)
2. Since the linear term in the jet of an affine function near x_{0}, namely $[a] h$, is small, we have:

THEOREM 7.2 Approximate output near x_{0}. For affine functions, inputs near x_{0} have outputs that are near the output at x_{0}.
which, with the language we introduced in ??, we can rephrase as:
THEOREM 7.3 thm:10-2 Continuity All affine functions are continuous at all inputs.
(In fact, we will see that this will also be the case for all the functions which we will be investigating in this text.)
3. The function which outputs the linear coefficient in the jet of a given affine function near a given input is called the first derivative of the given function.

7 The Essential Question

As always when we set out to investigate any kind of functions, the first thing we must do is to find out if the offscreen graph of an affine function consists of just the local graph near ∞ or if it also includes the local graph near one or more ∞-height inputs.
In other words, we need to ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs that are ∞-height inputs, that is are there inputs whose nearby inputs have unbounded outputs?

Now, given a bounded input x, we have that:

- since a is bounded, $a x$ is also bounded
- b is bounded
and so, altogether, we have that $a x+b$ is bounded and that the answer to the Essential Question is:

THEOREM 7.4 Approximate output near ∞. Under an affine function, all bounded inputs return bounded outputs.
and therefore
Theorem 7.5 Offscreen Graph. The offscreen graph of an affine function consists of just the local graph near ∞.

Existence Theorems

The notable inputs are those

- whose existence is forced by the offscreen graph which, by the Bounded Height Theorem for affine functions, consists of only the local graph near ∞.
- whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only way a feature can change sign is near an input where the feature is 0 . Thus, with affine functions, the feature-change inputs will also be 0 -feature inputs.

None of the theorems, though, will indicate where the notable inputs are. The Location Theorems will be dealt with in the last part of the chapter.
EXAMPLE 7.9. When somebody has been shot dead, we can say that there is a murderer somewhere but locating the murderer is another story.

8 Slope-sign

Given the affine function $\operatorname{AFFINE} E_{a, b}$, that is the function given by the global input-output rule

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b
$$

recall that when x is near ∞ the Slope-sign Near ∞ Theorem says that:

- When a is + , Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, /)$
- When a is - , Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, \backslash)$

1. Since the slope does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the slope need not change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded Slope-sign change input:
EXAMPLE 7.10. Given an affine function whose offscreen graph is

we don't need a bounded slope-sign change input to join smoothly the local graphs near ∞ :

2. In fact, not only does there not have to be a bounded slope-sign change input, there cannot be a bounded slope-sign change input since the local linear coefficient is equal to the global linear coefficient a and the slope must therefore be the same everywhere:

Theorem 7.6 Slope-Sign Change Non-Existence. An affine function has no bounded Slope-Sign Change input.
3. Another consequence of the fact that the local slope does not depend global slope on x_{0}, and is thus the same everywhere, is that it is a feature of the function $A F F I N E_{a, b}$ itself and so that the function $A F F I N E_{a, b}$ has a global slope given by the global linear coefficient a.
4. Moreover, the slope cannot be equal to 0 somewhere because the slope is equal to a everywhere. So, we also have:

Theorem 7.7 0-Slope Input Non-Existence. An affine function has no bounded 0 -slope input.

9 Extremum

From the optimization viewpoint, an affine function has no extremum input, that is no bounded input whose output would be larger (or smaller) than the output of nearby inputs.

THEOREM 7.8 Extremum Non-existence. An affine function has no bounded local extremum input.

10 Height-sign

Given the affine function $\operatorname{AFFINE} E_{a, b}$, that is the function given by the global input-output rule

$$
x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b
$$

recall that when x is near ∞ the Height-sign Near ∞ Theorem says that:

- When a is + , Height-Sign $\left.\right|_{x \text { near } \infty}=(+,-)$
- When a is - , Height-Sign $\left.\right|_{x \text { near } \infty}=(-,+)$

1. Since the height changes sign as x goes from the left side to the right side of ∞ across ∞, the height must also change sign as x goes from the left side to the right side of ∞ across the screen so there has to be at least one bounded Height-sign change input:
EXAMPLE 7.11. Given the affine function whose offscreen graph is

there has to be a bounded height-sign change input:

2. On the other hand, an affine function can have at most one 0 -height input because, if it had more, it would have to have 0 -slope inputs in-between the 0 -height inputs which an affine function cannot have. So, we have:

THEOREM 7.9 0-Height Existence. An affine function has exactly one bounded 0-height input and it is a 0-height input: $x_{\text {Height-sign change }}=x_{0 \text {-height }}$

11 Bounded Graph

There are two ways to look at the shape of the bounded graph.

1. As a consequence of the Bounded Height Theorem for affine functions, the offscreen graph consists only of the local graph near ∞ and we can obtain the forced bounded graph by extrapolating smoothly the local graph near ∞.
There remains however a question namely whether the extrapolated bounded graph is straight that is has no concavity. However, affine functions have no concavity and that settles the mater: the local graph near $-\infty$ and the local graph near $+\infty$ must be lined up and can therefore be joined smoothly with a straight line.
2. In the case of affine functions, it happens that we can also obtain the bounded graph by interpolating local graphs near bounded inputs:
We start from the local graphs near a number of bounded points as follows:

We construct local graphs near, say, three different bounded inputs, x_{1}, x_{2}, x_{3}. They would look something like this:

However, this is not possible because that would mean that inputs such as x_{4} would have two outputs:

As a result, the local graphs near bounded inputs must all line up and so the bounded graph must be a straight line:

Of course, the bounded graph must line up with the local graph near ∞ as, otherwise, there would have to be a jump in the transition zone.

LOCATION THEOREMS

Previously, we only established the existence of certain notable features of affine functions and this investigation was based on graphic considerations. Here we will investigate the location of the inputs where these notable features occur and this investigation will be based on input-output rule considerations.

12 0-Slope Location

We saw earlier that affine functions cannot have a 0 -slope input. On the other hand, since the slope is the same everywhere, it is a global feature of the function itself and we have:

Theorem 7.10 Global Slope-sign. Given the affine function AFFINE $E_{a, b}$,

- When a is positive, Slope-sign AFFINE $=/$.
- When a is negative, Slope-sign AFFINE = \}

13 Locating Inputs Whose Output $=y_{0}$

The simplest global problem is, given a number y_{0}, to ask for the input numbers for which the function returns the output y_{0}.

Procedure 7.5 Solve the equation $a x+b=y_{0}$ (See ?? on ??.)

14 Locating Inputs Whose Output $>y_{0} \mathrm{Or}<y_{0}$

Given the affine function $\operatorname{AFFINE} E_{a, b}$, we are now ready to deal with the global problem of finding all inputs whose output is smaller (or larger) than some given number y_{0}.

EXAMPLE 7.12. G iven the inequation problem in which

- the data set consists of all numbers
- the inequation is

$$
x \geqq-13.72
$$

we locate separately.
i. The boundary point of the solution subset of the inequation problem is the solution of the associated equation:

$$
x=-13.72
$$

which, of course, is -13.72 and which we graph as follows since the boundary point is a solution of the inequation.

ii. The interior of the solution subset, that is the solution subset of the associated strict inequation

$$
x>-13.72
$$

i. The boundary point -13.72 separates the data set in two intervals, Section A and Section B:

ii. We then test each interval:

- We pick -1000 as test number for Section A because, almost without a glance we know -1000 is going to be in Section A and because it is easy to check in the inequation: we find that -1000 is a non-solution so that, by Pasch Theorem, all numbers in Section A are non-solutions.

- We pick +1000 as test number for Section B because, almost without a glance we know +1000 is going to be in Section B and because it is easy to check in the inequation: we find that +1000 is a solution so that, by Pasch Theorem, all numbers in Section A are solutions.

15 Initial Value Problem

An Initial Value Problem asks the question:
What is the input-output rule of a function F given that:

- The function F is affine
- The slope of the function F is to be a given number a
- The output returned by the function F for a given input x_{0} is to be a given number y_{0}.

EXAMPLE 7.13. Find the global input-output rule of the function $K A T E$ given that it is affine, that its slope is -3 and that the output for the input +2 is +5 .
We use all three given pieces of information:
i. Since we are given that KATE is an affine function, we give temporary names for the dilation coefficient, say a, and for the constant term, say b, and we write the global input-output rule of $K A T E$ in terms of these names:

$$
x \xrightarrow{K A T E_{a, b}} K A T E_{a, b}(x)=a x+b
$$

ii. By the Local Slope Theorem, the slope is equal to the dilation coefficient:

$$
-3=a
$$

which give the equation $a=-3$
iii. Since the output for the input +2 is +5 , we write

$$
\begin{aligned}
\left.K A T E_{a, b}(x)\right|_{x:=+2} & =+5 \\
a x+\left.b\right|_{x:=+2} & =+5 \\
a(+2)+b & =+5
\end{aligned}
$$

which give the equation $2 a+b=+5$
iv. So we must solve the system of two equations for two unknowns a and b :
===========

$$
\text { AND }\left\{\begin{array}{l}
a=-3 \\
2 a+b=+5
\end{array}\right.
$$

This kind of system is very simple to solve since we need only replace a by -3 in the second equation to get the equation:

$$
2(-3)+b=+5
$$

which we solve using the Reduction Method:

$$
\begin{aligned}
-6+b & =+5 \\
-6+b+6 & =+5+6 \\
b & =+11
\end{aligned}
$$

v. So, the global input-output rule for $K A T E$ is

$$
x \xrightarrow{\text { KATE }_{-3,+11}} \operatorname{KATE}_{-3,+11}(x)=-3 x+11
$$

16 Boundary Value Problem

A Boundary Value Problem asks the question:
What is the input-output rule of a function F, given that:

- The function F is affine
- The output returned by the function F for a given input x_{1} is to be a given number y_{1}.
- The output returned by the function F for a given input x_{2} is to be a given number y_{2}.
In other words, we want to find an affine function F such that:

$$
\text { вOтн }\left\{\begin{array}{l}
x_{1} \xrightarrow{F} F\left(x_{1}\right)=y_{1} \\
x_{2} \xrightarrow{F} F\left(x_{2}\right)=y_{2}
\end{array}\right.
$$

EXAMPLE 7.14. Find the global input-output rule of the function $D A V E$ given that it is affine, that the output for the input +2 is -1 and that the output for the input -4 is -19 .
We use all three pieces of information that we are given:
i. Since we are given that $D A V E$ is an affine function, we give temporary names for the dilation coefficient, say a, and for the constant term, say b, and we write the global input-output rule of $D A V E$ in terms of these names:

$$
x \xrightarrow{D A V E_{a, b}} D A V E a, b(x)=a x+b
$$

ii. Since the output for the input +2 is -1 we write:

$$
\begin{aligned}
\left.D A V E_{a, b}(x)\right|_{x:=+2} & =-1 \\
a x+\left.b\right|_{x:=+2} & =-1 \\
a(+2)+b & =-1
\end{aligned}
$$

which give the equation $+2 a+b=-1$
iii. Since the output for the input -4 is -19 we write:

$$
\begin{aligned}
\left.D A V E_{a, b}(x)\right|_{x:=-4} & =-19 \\
a x+\left.b\right|_{x:=+2} & =-19 \\
a(-4)+b & =-19
\end{aligned}
$$

which give the equation $-4 a+b=-19$
iv. So we must solve the system of two equations for two unknowns a and b :

$$
\left\{\begin{aligned}
+2 a+b & =-1 \\
-4 a+b & =-19
\end{aligned}\right.
$$

This kind of system is a bit more complicated to solve but since b appears in both equations, we replace one of the two equations, say the second one, by
"the first one minus the second one":

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
{[+2 a+b]-[-4 a+b]=[-1]-[-19]}
\end{array}\right.
$$

This gives us:

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
+2 a+b+4 a-b=-1+19
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
+6 a=+18
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
\frac{+6 a}{+6}=\frac{+18}{+6}
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2 a+b=-1 \\
a=+3
\end{array}\right.
$$

and now we replace in the first equation a by +3 :

$$
\left\{\begin{array}{l}
+2 a+b=-\left.1\right|_{a:=+3} \\
a=+3
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+2(+3)+b=-1 \\
a=+3
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{l}
+6+b=-1 \\
a=+3
\end{array}\right.
$$

and we reduce the first equation

$$
\left\{\begin{array}{l}
+6+b-6=-1-6 \\
a=+3
\end{array}\right.
$$

which gives us, finally

$$
\left\{\begin{array}{l}
b=-7 \\
a=+3
\end{array}\right.
$$

v. So the global input-output rule of $D A V E$ is

$$
x \xrightarrow{D A V E_{+3,-7}} D A V E_{+3,-7}(x)=+3 x-7
$$

17 Piecewise affine functions

Part III

(Laurent) Polynomial Functions

$\operatorname{xxxxxxxxx}]$

Chapter 8

Quadratic Functions

Trinomial Functions, 339 • Output at $x_{0}, 341$ - Output near ∞, 343 - Output near $x_{0}, 345$ • Local graphs, 348 • Local Feature-signs, 352 - Quadratic Functions: Global Analysis, 355 - The Essential Question, 357 • Concavity-sign, 358 • Slope-sign, 359 • Extremum, 360 • Height-sign, 361 • Bounded Graph, 363 • 0-Concavity Location, 365 • 0-Slope Location, 366 • Extremum Location, 367 • 0-Height Location, 368 .

$=======$ Begin LOOK UP $======$

1 Trinomial Functions

There is of course no reason why the base function could not itself be a binomial function. In fact, this can very well be the case and the sum function will then be called a trinomial function.

EXAMPLE 8.1. \mathbf{L} et $B A S E$ be specified by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{0} \oplus(+7) x^{+1}
$$

and let $A D D-O N$ be specified by the global input-ouput rule

$$
x \xrightarrow{A D D-O N} A D D-O N(x)=(+5) x^{+3}
$$

then the $S U M$ function is specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{0} \oplus(+7) x^{+1} \oplus(+5) x^{+3} \\
& =-3+7 x+5 x^{+3}
\end{aligned}
$$

Quadratic \downarrow function quadratic_coefficient linear $_$coefficient constant coefficient

EXAMPLE 8.2. L et $B A S E$ be specified by the global input-ouput rule

$$
x \xrightarrow{B A S E} B A S E(x)=(-3) x^{+1} \oplus(+7) x^{0}
$$

and let $A D D-O N$ be specified by the global input-ouput rule

$$
x \xrightarrow{A D D-O N} A D D-O N(x)=(+5) x^{-2}
$$

then the $S U M$ function is specified by the global input-ouput rule

$$
\begin{aligned}
x \xrightarrow{S U M} S U M(x) & =(-3) x^{+1} \oplus(+7) x^{0} \oplus(+5) x^{-2} \\
& =-3 x+7+5 x^{-2}
\end{aligned}
$$

$=======$ End LOOK UP $======$
Quadratic functions are specified by global input-output rules like the generic global input-output rule:

$$
x \xrightarrow[Q U A D R A T I C]{Q U A D R A T I C}(x)=\underbrace{a x^{+2} \oplus b x^{+1} \oplus c x^{0}}_{\text {output-specifying code }}
$$

which we usually write

$$
=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

where a, called the quadratic coefficient, b, called the linear coefficient, and c, called the constant coefficient, are the bounded numbers that specify the function $Q U A D R A T I C$.
EXAMPLE 8.3. The quadratic function RINA specified by the quadratic coefficient -23.04 , the linear coefficient -17.39 and the constant coefficient +5.84 is the function specified by the global input-output rule

$$
x \xrightarrow{R I N A} R I N A(x)=\underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-17.39}_{\text {linear coeff. }} x \underbrace{+5.84}_{\text {constant coeff. }}
$$

It is worth noting again that
CAUTIONARY NOTE 8.1 The terms in the global input output rule need not be written in order of descending exponent. This is just a habit we have.

EXAMPLE 8.4. The function specified by the global input-output rule $x \xrightarrow{\text { BIBI }} B I B I(x)=+21.03 x^{2}-31.39 x+5.34$
could equally well be specified by the global input-output rule

$$
x \xrightarrow{B I B I} B I B I(x)=+5.34+21.03 x^{2}-31.39 x
$$

or by the global input-output rule

$$
x \xrightarrow[B I B I]{B I B I}(x)=-31.39 x+5.34+21.03 x^{2}
$$

We now introduce some standard terminology to help us describe very precisely what we will be doing. The output-specifying code of the affine function specified by

$$
x \xrightarrow{\text { AFFINE }} Q U A D R A T I C(x)=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

term
quadratic term
linear term
constant term
affine $_$part
consists of three terms:

- $a x^{2}$ which is called the quadratic term.
- $b x$ which is called the linear term.
- c which is called the constant term,
and there is of course also
- $b x+c$ which is called the affine part

EXAMPLE 8.5. The output-specifying code of the function specified by the global input-output rule

$$
x \longrightarrow \text { RINA } R I N A(x)=\underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-31.39}_{\text {linear coeff. }} x \underbrace{+5.84}_{\text {constant coeff. }}
$$

consists of three terms:

$$
=\underbrace{-23.04 x^{2}}_{\text {quadratic term }} \underbrace{-31.39 x}_{\text {linear term }} \underbrace{+5.34}_{\text {constant term }}
$$

LANGUAGE NOTE 8.1 Whether we look upon c as the constant coefficient, that is as the coefficient of x^{0} in the constant term $c x^{0}$ or as the constant term $c x^{0}$ itself with the power x^{0} "going without saying" will be clear from the context.

2 Output at x_{0}

1. Remember from subsection 8.1 that x_{0} is a generic given input, that is that x_{0} is a bounded input that has been given but whose identity remains undisclosed for the time being.
2. We will use

Procedure 8.1

i. Declare that x is to be replaced by x_{0}
$\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)\right|_{x \leftarrow x_{0}}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0}}$
which gives:

$$
x_{0} \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C\left(x_{0}\right)=\underbrace{a x_{0}^{2}+b x_{0}+c}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}^{2}+b x_{0}+c
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}^{2}+b x_{0}+c\right)
$$

DEMO 8.1

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{A V I A} A V I A(x)\right|_{x \leftarrow-3}=+21.03 x^{2}-32.67 x+\left.71.07\right|_{x \leftarrow-3}
$$

which gives

$$
-3 \xrightarrow{\text { AVIA }} A V I A(-3)=\underbrace{+21.03(-3)^{2}-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =\underbrace{+189.26 \oplus+98.01 \oplus+71.07}_{\text {output number at }-3} \\
& =\underbrace{+358.34}_{\text {output number at }-3}
\end{aligned}
$$

which gives the input-output pair

$$
(-3, \underbrace{+358.34)}_{\text {output number at }-3}
$$

3. However, as already discussed in ?? ?? and as has already been the case with monomial functions and affine functions, instead of getting the output number returned by a quadratic function at a given input, we will usually want all the outputs returned by the quadratic function for inputs near that given input. So, instead of getting the single input-output pair at the given input, we will get the local input-output rule with which to get all the input-output pairs near the given input.

3 Output near ∞

As already discussed in subsection 8.2 Output near ∞, in order to input a neighborhood of ∞, we will declare that " x is near ∞ " but write only x after that. This, again, is extremely dangerous as it is easy to forget that what we write may be TRUE only because x has been declared to be near ∞.

1. output jet (https://en.wikipedia.org/wiki/Jet_(mathematics) We will execute the output-specifying code, namely $a x^{2}+b x+c$, into an OUTPUT JET, that is with the terms in descending order of sizes, which, since here x is large, means that here the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞ :
x near $\infty \xrightarrow[\text { QUADRATIC }]{\text { QUADRATIC }(x)}=\underbrace{\text { Powers of } x \text { in descending order of exponents }}_{\text {output jet near } \infty}$
EXAMPLE 8.6. Given the function specified by the global input-output rule

$$
x \xrightarrow{R I B A} R I B A(x)=-61.03-82.47 x+45.03 x^{2}
$$

To get the output jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded \cdot large $=$ large, $-82.47 \cdot x$ is large
iii. +45.03 is bounded and x is large. So, since bounded \cdot large $=$ large, $+45.03 \cdot x$ is large too. But large - large is larger in size than large so $+45.03 \cdot x^{2}$ is even larger than $-82.47 \cdot x$
So, in the output jet near $\infty,+45.03 x^{2}$ must come first, $-82.47 x$ comes second and -61.03 comes third
Then, we can write the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{R I B A} R I B A(x)=\underbrace{+45.03 x^{2}-82.47 x-61.03}_{\text {output jet near } \infty}
$$

2. So, we will use:

Procedure 8.2

i. Declare that x is near ∞ :

$$
\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { QUADRATIC }} \text { QU ADRATIC }\left.(x)\right|_{x \text { near } \infty}=a x^{2}+b x+\left.c\right|_{x \text { near } \infty}
$$

which gives:

$$
x \text { near } \infty \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=\underbrace{a x^{2}+b x+c}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output jet:

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}
$$

(The output jet in the local input-output rule near ∞ looks the same as the output-specifying code in the given global input-output rule but that is only because here the output-specifying code happened to be written in descending order of exponents.)

DEMO 8.2

i. We declare that x is near ∞ :

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{K I N A} K I N A(x)\right|_{x \text { near } \infty}=-61.03+51.32 x^{2}-\left.82.47 x\right|_{x \text { near } \infty}
$$

which gives:

$$
x \text { near } \infty \xrightarrow{N I N A} K I N A(x)=\underbrace{-61.03+51.32 x^{2}-82.47 x}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code into an output jet:

$$
=[+51.32] x^{2} \oplus[-82.47] x \oplus
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{K I N A} K I N A(x)=\underbrace{[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

(The output jet in the local input-output rule near ∞ does not look the same as the output-specifying code in the global input-output rule because here the output-specifying code happened not to be in descending order of exponents.)
3. The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

THEOREM 8.1 Approximate output near ∞. For quadratic functions, what contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)=[a] x^{2}+[\ldots]
$$

EXAMPLE 8.7. Given the function specified by the global input-output rule

$$
x \xrightarrow{\text { KINA }} K I N A(x)=-61.03+51.32 x^{2}-82.47 x
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{K I N A} K I N A(x)=[+51.32] x^{2} \oplus[\ldots]
$$

4 Output near x_{0}

We now deal with the output of the neighborhood of some given bounded input x_{0}.

1. In order to input a neighborhood of a given input x_{0} we will declare that $x \leftarrow x_{0} \oplus h$ that is that x is to be replaced by $x_{0} \oplus h$. As a result, we will have to compute $\left(x_{0} \oplus h\right)^{2}$ for which we will have to use an addition formula from Algebra, namely ?? in appendix 1 on page page 519 .
2. We can then execute the input-output specifying phrase into an output jet that is with the terms in descending order of sizes which here, since h is small, means that the powers of h will have to be in ascending order of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$
We will therefore use:

Procedure 8.3

i. Declare that x is near x_{0} : (So x is to be replaced by $x_{0}+h$.)
$\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $\left.(x)\right|_{x \leftarrow x_{0}+h}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0}+h}$
which gives:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} \text { QU ADRATIC }\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)^{2}+b\left(x_{0}+h\right)+c}_{\text {output-specifying code }}
$$

output jet near x_{0}
ii. Execute the output-specifying code into an output jet:

$$
\begin{aligned}
& =a\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+b\left(x_{0}+h\right)+c \\
& =a x_{0}^{2} \oplus 2 a x_{0} h \oplus a h^{2} \\
& \oplus b x_{0} \oplus b h \\
& \oplus c \\
& =\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

which gives the local input-output rule near x_{0} :
$x_{0}+h \xrightarrow{Q U A D R A T I C} Q U A D R A T I C\left(x_{0}+h\right)=\underbrace{\left[a x_{0}^{2}+b x_{0}+c \boldsymbol{} \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}\right.}_{\text {output jet near } x_{0}}$

Demo 8.3

i. We declare that x is near -3 : (So x is to be replaced by $-3+h$.)
$\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{A R N A} A R N A(x)\right|_{x \leftarrow-3+h}=-32.67 x+71.07+\left.81.26 x^{2}\right|_{x \leftarrow-3+h}$
which gives

$$
-3+h \xrightarrow{A R N A} A R N A(-3+h)=\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output jet:

$$
\begin{aligned}
= & -32.67(-3+h)+71.07+81.26\left((-3)^{2}+2(-3) h+h^{2}\right) \\
= & -32.67(-3)-32.67 h \\
& +71.07 \\
& +81.26(-3)^{2}+81.26(2)(-3) h+81.26 h^{2} \\
= & +98.01 \oplus-32.67 h \\
& \oplus+71.07 \\
& \oplus+731.34 \oplus-487.56 h \oplus+81.26 h^{2} \\
= & {[+98.01+71.07+731.34] \oplus[-32.67-487.56] h \oplus[+81.26] h^{2} } \\
= & \underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
\end{aligned}
$$

which gives the local input-output rule near -3 :

$$
-3+h \xrightarrow{\text { ARNA }} A R N A(-3+h)=\underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
$$

3. When all we want is a feature-sign, though, the above procedure is very inefficient and we will then use the following procedure based directly on the fact that a quadratic function is the addition of:

- a square function, (See definition 6.2 on page 262)
- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{Q U A D R A T I C} \operatorname{QUADRATIC}(x)=\underbrace{b x^{2}}_{\text {square }} \oplus \underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:

$$
x \xrightarrow{Q U A D R A T I C} \operatorname{QUADRATIC}(x)=\underbrace{b\left(x_{0}+h\right)^{2}}_{\text {square }} \oplus \underbrace{c\left(x_{0}+h\right)}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

The output of the local input-output rule near x_{0} will have to be a jet:

$$
x_{0}+h \xrightarrow{Q U A D R A T I C} Q U A D R A T I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2}
$$

and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want. This requires us to have the addition formula at our finger tips:
a.

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}(\text { See ?? on page } 519)
$$

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The square function contributes $b x_{0}^{2}$
- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}\left(x_{0}+h\right)=\left[b x_{0}^{2}+c x_{0}+d\right] \oplus[\quad] h \oplus[\quad] h^{2}
$$

ii. If we want the coefficient of h^{1} in the output jet:

- The square function contributes $2 b x_{0}$
- The linear function contributes c
- The constant function contributes nothing so we have:
$x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}\left(x_{0}+h\right)=[\quad] \oplus\left[2 b x_{0}+c\right] h \oplus\left[\quad h^{2}\right.$
iii. If we want the coefficient of h^{2} in the output jet:
- The square function contributes c
- The linear function contributes nothing
- The constant function contributes nothing
so we have:

$$
x_{0}+h \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[c] h^{2}
$$

5 Local graphs

Just the way we get the plot point at a given bounded input from the output number at that input, we get the local graph near any given input, be it bounded or infinity, from the output jet near that input.

Procedure 8.4

1. Get the local input-output rule near ∞ using procedure 8.2 on page 343:
x near $\infty \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$
2. Get the local graph near ∞ of each term:
a. For the quadratic term, graph near ∞ the monomial function $x \rightarrow[a] x^{2}$ (See Procedure 6.6 on page 305.)
b. For the linear term, graph near ∞ the monomial function $x \rightarrow$ [b] x (See ?? on ??.)
c. For the constant term, graph near ∞ the monomial function $x \rightarrow$ [c](See ?? on ??.)
3. Get the local graph near ∞ of $Q U A D R A T I C$ by adding to the local graph of the quadratic term the local graph of the linear term and the local graph of the constant term.(See ??)

Demo 8.4

1. We get the local input-output rule near ∞ : (See DEMO 8.2 on
page 344)
x near $\infty \xrightarrow{\text { KINA }} K I N A(x)=\underbrace{[+51.32] x^{2}+[-82.47] x+[-61.03]}_{\text {output jet near } \infty}$
2. We get the local graph near ∞ of each term:
a. For the graph of the quadratic term, we graph the monomial function
$x \rightarrow[+51.32] x^{2}$ near $\infty($ See
?? on ??)

b. For the graph of the linear term, we graph the monomial function $x \rightarrow[-82.47] x$ near ∞ (See ?? on ??)

c. For the graph of the constant term, we graph the monomial function
$x \rightarrow[-61.03]$ near ∞ (See ??
on ??)

3. We get the local graph near ∞ of $K I N A$ by adding to the local graph of the quadratic term the local graph of the linear term and the
local graph of the constant term. (See ?? on ??)

Procedure 8.5

1. Get the local input-output rule near x_{0} using procedure 8.3 on page 345 :
$x_{0}+h \xrightarrow{Q U A D R A T I C} Q U A D R A T I C\left(x_{0}+h\right)=\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}$
2. Get the local graphs near 0 of each term:
a. For the constant term, graph near 0 the monomial function $x \rightarrow\left[a x_{0}^{2}+b x_{0}+c\right]$. (See ?? on ??.)
b. For the linear term, graph near 0 the monomial function $x \rightarrow$ [$\left.2 a x_{0}+b\right] x$. (See ?? on ??.)
c. For the quadratic term, graph near 0 the monomial function $x \rightarrow[a] x^{2}$. (See ?? on ??.)
3. Get the local graph near x_{0} of $Q U A D R A T I C$ by adding to the local graph of the constant term the local graph of the linear term, the local graph of the quadratic term.

Demo 8.5

1. We get the local input-output rule near -3 . (See demo 8.3 on page 346):
$-3+h \xrightarrow{\text { ARNA }} A R N A(-3+h)=\underbrace{[+900.42] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}$
2. We get the local graph near -3 of each term:
a. For the constant term, we graph near 0 the monomial function $x \rightarrow[+900.428]$. (See ?? on ??)

b. For the linear term, we graph near 0 the monomial function $x \rightarrow[-519.63] x$ (See ?? on ??)

c. For the quadratic term, we graph near 0 the monomial function $x \rightarrow[+81.26] x^{2}:$
(See ?? on ??)

3. We get the local graph near -3 of $A R N A$ by adding to the local graph of the constant term the local graph of the linear term and the local graph of the quadratic term. (See ?? on ??)

6 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so we already know how to proceed:
i. Get the local input-output rule near the given input (See ProceDURE 8.2 on page 343 when the given input is ∞ or PROCEDURE 8.3 on page 345 when the given input is x_{0}.)
ii. Get the local graph from the local input-output rule (See ProceDURE 8.4 on page 348.)
iii. Get the feature-sign from the local graph. (See ?? ??.)

However, things are in fact much simpler: Given an input, be it ∞ or a bounded input x_{0}, to get a required feature-sign near that given input, we look for the term in the output jet near that input that
i. Has the required feature.
and
ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a quadratic function, the first term in the output jet near ∞ is both the largest-in-size and a regular monomial so that it has all three features:

Procedure 8.6

i. Get the approximate local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { QUADRATIC }} \operatorname{QUADRATIC}(x)=\underbrace{[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}$

$$
=\underbrace{[a] x^{2} \oplus[\ldots]}_{\text {approximate output jet near } \infty}
$$

ii. Then, in the approximate output jet near ∞ :

- Get the Height-sign, the Slope-sign and the Concavity-sign all from the quadratic term $[a] x^{2}$ because the next terms, $[b] x$ and $[c]$ are too small to matter. (Not to mention the fact that a linear term has no concavity and a constant term has neither concavity nor slope.)

Demo 8.6 et $C E L I A$ be the function specified by

$$
x \xrightarrow{\text { CELIA }} C E L I A(x)=-2 x^{2}+63 x-155
$$

Get Height-sign near ∞.
i. We get the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { CELIA }} C E L I A(x)=-2 x^{2}+63 x-155$

$$
=\underbrace{[-2] x^{2} \oplus[+63] x \oplus[-155]}_{\text {output jet near } \infty}
$$

ii. We get Height-sign from the quadratic term $[-2] x^{2}$ because the linear term $[+63] x$ and the constant term $[-155]$ are too small to matter.
iii. Since the quadratic coefficient [-2] is negative, we get that Height$\operatorname{sign} C E L I A$ near $\infty=\langle-,-\rangle$. (Seen from ∞.)

Demo 8.7 et $P E T E R$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{\text { DIETER }} \operatorname{DIETER}(x)=+3.03 x^{2}-81.67 x+46.92
$$

Get Slope-signs near ∞.
i. We get the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { DIETER }} \operatorname{DIETER}(x)=+3.03 x^{2}-81.67 x+46.92$

$$
=\underbrace{[+3.03] x^{2} \oplus[-81.67] x \oplus[+46.92]}_{\text {output jet near } \infty}
$$

ii. We get Slope-sign from the quadratic term $[+3.03] x^{2}$ because the linear term [-81.67] is too small to matter and the constant term has no slope.
critical for the Height critical for the Slope

Since the linear coefficient +3 is positive, we get that Slope-sign DIETER near $\infty=\langle/, /\rangle$. (Seen from ∞.)
2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it gives the Height-sign. However, the first term usually has neither Slope nor Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too small-in-size to change the Height-sign as given by the first term but it is usually the largest-insize term that can give the Slope-sign. However, the second term has no Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change the Height-sign given by the first term and the Slope-sign given by the second term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term in the output jet - keeping in mind that the exceptional monomial functions do not have all the features.
However, near a bounded input, the given bounded input may turn out to be critical for the local feature:
i. If the constant term in the output jet is 0 , then the term which gives the Height-sign can be either the linear term or even the quadratic term if the linear term is 0 . The bounded input is then said to be critical for the Height.
ii. If the linear term in the output jet is 0 , then the term which gives the Slope-sign is the quadratic term. The bounded input is then said to be critical for the Slope.
So, we usually need to compute only one coefficient in the output jet. But if the given bounded input turns out to be critical for that feature, then we need to compute the next coefficient: So we use

Procedure 8.7

i. Get the local input-output rule near x_{0} :

$$
\begin{aligned}
x_{0}+h \xrightarrow{Q U A D R A T I C} Q U A D R A T I C\left(x_{0}+h\right) & =a\left(x_{0}+h\right)^{2}+b\left(x_{0}+h\right)+c \\
& =a\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+b\left(x_{0}+h\right)+c \\
& =\underbrace{\left[a x_{0}^{2}+b x_{0}+c\right] \oplus\left[2 a x_{0}+b\right] h \oplus[a] h^{2}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

ii. Then, in the output jet near x_{0} :

- Get the Height-sign from the constant term $\left[a x_{0}^{2}+b x_{0}+c\right]$ (The
linear term and the quadratic term are too small to matter.)
If the constant coefficient is 0 , get the Height-sign from the linear term $\left[2 a x_{0}+b\right] h$. (The quadratic term is too small to matter.)
If the linear coefficient is 0 , get the Height-sign from the quadratic term $[a] h^{2}$.
- Since the constant term has no slope, get the Slope-sign from the linear term $\left[2 a x_{0}+b\right] h$.
If the linear coefficient is 0 , get the Slope-sign from the quadratic term $[a] h^{2}$
- Since both the constant term and the linear term have no concavity, we get Concavity-sign from the quadratic term..

Demo 8.8 et $A R N A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{\text { ARNA }} A R N A(x)=-32.67 x+71.07+81.26 x^{2}
$$

Get the feature-signs near -3 .
i. We get the local input-output rule near -3 as in DEMO 8.3 on page 346:
$\begin{aligned}-3+h \xrightarrow{A R N A} A R N A(-2+h) & =\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }} \\ & =\underbrace{[+900.428] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}\end{aligned}$
ii. Then, from the jet:

- Since the constant term $[+900.428]$ is positive, we get that Height-sign ARNA near $-3=\langle+,+\rangle$.
- Since the linear term $[-519.63] h$ is negative. we get that Slope$\operatorname{sign} A R N A$ near $-3=\langle\backslash, \backslash\rangle$
- Since the quadratic term $[+81.26] h^{2}$ is positive, we get that Concavity-sign $A R N A$ near $-3=\langle\cup, \cup\rangle$

7 Quadratic Functions: Global Analysis

$======$ Begin WORK ZONE $=======$
The "style" of this chapter is going to be very different from the "style"
of the other chapters because we want to take the occasion to give the reader an idea of what happens when a research mathematician is facing a "new problem", that is a problem that no one else has solved before so that s/he cannot just look somewhere or ask someone "how to do it". So, in this chapter, instead of showing how to determine the global behavior of a quadratic function $x \xrightarrow{q} q(x)=a x^{2}+b x+c$, we will pretend that this is a "research problem".

The first thing we do is to think about the problem itself: What do we mean by "global behavior"? Exactly what are we after? The idea is to see what a precise statement of the problem might suggest.

One answer might be that "we want to know everything there is to know about a quadratic function". But that is still much too vague to give us any hint as to what to do. Another answer might be "We want to see how the global graph of $x \xrightarrow{q} q(x)=a x^{2}+b x+c$ looks?" This is already much better because it specifies the function we want to know about - even if the coefficients a, b, c remain to be specified later. But we really should say what we mean by "global graph", in particular what we want the global graph to show as opposed to what we don't expect the global graph to show.

On the other hand, we care about the global graph only inasmuch as it makes information "graphic" and it is really the information itself that we are after. So, what might this information be that we want? Exactly as with power functions, we will want to know about 0 -feature inputs, namely:

- 0-height inputs,
- 0-slope inputs,
- 0-concavity inputs
and about feature-sign change inputs, namely
- height-sign change inputs,
- slope-sign change inputs,
- concavity-sign change inputs.

There still remains a question about what we want to know about these inputs. Do we want to know about:

- The existence or non-existence of these inputs,
or
- The location of these inputs-assuming they exist.

Let us say we want to know everything (But now, as opposed to before, we know exactly what "everything" covers.).

So, now that we know exactly what we want, what do we do to get it? First, though, let us review the equipment we have available:
-
-
$=======$ End WORK ZONE=======
In the case of quadratic functions, we will still be able to solve some global problems exactly but since everything begins to be computationally more complicated, we will deal with only a few types of global problems.

8 The Essential Question

As usual, the first thing we do is to find out if the offscreen graph of a quadratic function consists of just the local graph near ∞ or if it also includes the local graph near one or more ∞-height inputs.
In other words, given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a^{2} x+b x+c
$$

we ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs that have ∞-height, that is are there inputs whose nearby inputs have large outputs?

Now, given a bounded input x, we have that:

- since a is bounded, $a x^{2}$ is also bounded
- since b is bounded, $b x$ is also bounded
- c is bounded
and so, altogether, we have that $a x^{2}+b x+c$ is bounded and that the answer to the Essential Question is:

Theorem 8.2 Bounded Height Under a quadratic functions, all bounded inputs have bounded outputs.
and therefore that
THEOREM 8.3 Offscreen Graph The offscreen graph of a quadratic function consists of just the local graph near ∞.

Existence Theorems

The notable inputs are those

- whose existence is forced by the offscreen graph which, by the Bounded Height Theorem for quadratic functions, consists of only the local graph near ∞.
- whose number is limited by the interplay among the three features

Since polynomial functions have no bounded ∞-height input, the only way a feature can change sign is near an input where the feature is 0 . Thus, with quadratic functions, the feature-change inputs will also be 0 -feature inputs.

None of the theorems, though, will indicate where the notable inputs are. The Location Theorems will be dealt with in the last part of the chapter.

9 Concavity-sign

Given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a^{2} x+b x+c
$$

recall that when x is near ∞ the Concavity-sign Near ∞ Theorem for quadratic functions says that:

- When a is + , Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cup, \cup)$
- When a is -, Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cap, \cap)$

1. Since the concavity does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the concavity does not have to change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded Concavity-sign change input:
EXAMPLE 8.8. G iven a quadratic function whose offscreen graph is

there is no need for a bounded concavity-sign change input, $x_{\text {Concavity-sign change }}$ and therefore we can have

2. In fact, not only does there not have to be a bounded concavity-sign change input, there cannot be a bounded concavity-sign change input since the local square coefficient is equal to the global square coefficient a and the concavity must therefore be the same everywhere:

Theorem 8.4 Concavity-sign Change Non-Existence A quadratic function has no bounded Concavity-sign change input.
3. Another consequence of the fact that the local concavity does not depend on x_{0}, and is thus the same everywhere, is that it is a feature of the function $Q U A D R A T I C_{a, b, c}$ itself and so that the function $Q U A D R A T I C_{a, b, c}$ has a global concavity specified by the global square coefficient a.
4. Moreover, the concavity cannot be equal to 0 somewhere because the concavity is equal to a everywhere. So, we also have:

Theorem 8.5 0-Concavity Input Non-Existence A quadratic function has no bounded 0-concavity input.

10 Slope-sign

Given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} \text { QUADRATIC }(x)=a^{2} x+b x+c
$$

recall that when x is near ∞ the Slope-sign Near ∞ Theorem for quadratic functions says that:

- When a is + , Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, \backslash)$
- When a is,- Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, /)$

1. Since the slope changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the slope has also to change sign as x goes from
the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded slope-sign change input.

EXAMPLE 8.9. G iven a quadratic function whose offscreen graph is

Mercator view

Magellan view
there has to be a bounded slope-sign change input to make up.

So we have

Theorem 8.6 Slope-sign Change Existence A quadratic function must have at least one bounded Slope-sign change input.
2. On the other hand, a quadratic function can have at most one 0 -slope input because, if it had more, it would have to have 0 -concavity inputs inbetween the 0 -slope inputs which a quadratic function cannot have. So we have

ThEOREM 8.7 0-Slope Existence A quadratic function has exactly one slope-sign change input and it is a 0 -slope input: $x_{\text {Slope-sign change }}=x_{0 \text {-slope }}$

11 Extremum

From the optimization viewpoint, a quadratic function has an extreme input, that is an bounded input whose output is larger (or smaller) than the output of nearby inputs

EXAMPLE 8.10. G iven a quadratic function whose offscreen graph is

and since quadratic function cannot have an ∞-height input, we cannot have

TheOrem 8.8 Extremum Existence A quadratic function has a single extremum input

12 Height-sign

Given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} \text { QU ADRATIC }(x)=a^{2} x+b x+c
$$

recall that when x is near ∞ the Height-sign Near ∞ Theorem for quadratic functions says that:

- When a is + , Height-Sign $\left.\right|_{x \text { near } \infty}=(+,+)$
- When a is - , Height-Sign $\left.\right|_{x \text { near } \infty}=(-,-)$

1. Since the height does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the height need not change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be at least one bounded Height-sign change input:

EXAMPLE 8.11. G iven a quadratic function whose offscreen graph is

depending on where the maximum-output is in relation to the 0 -output level line.
2. On the other hand, a quadratic function can have two 0 -height inputs because there can be a 0 -slope input in-between the two 0 -height inputs. However, a quadratic function cannot have more than two 0-height inputs because a quadratic function has only one 0 -slope input.

EXAMPLE 8.12. G iven a quadratic function whose offscreen graph is

the reason that we cannot have four 0 -height inputs is that that would require three 0 -slope inputs inbetween (as well as two concavitysign change inputs which quadratic functions do not have.):

We thus have

THEOREM 8.9 0-Height Existence A quadratic function may have zero, one, or two 0-Height Input(s):
If the extremum output

- has the same sign as the sign of the outputs near ∞, then there is no 0-height input
- is 0 , then there is one 0 -height input
- has the sign opposite from the sign of the outputs near ∞, then there are two 0-height input

13 Bounded Graph

Here too, there are two ways to look at the shape of the bounded graph.

1. As a consequence of the Bounded Height Theorem for quadratic functions, the offscreen graph consists only of the local graph near ∞ and we can obtain the forced bounded graph by extrapolating smoothly the local graph near ∞.
EXAMPLE 8.13. G iven the quadratic function $L A O N_{+34.54,-40.38,-94.21}$ whose input-output rule is
$x \xrightarrow{\text { LAON }_{+34.54,-40.38,-94.21}}$ LAON $_{+34.54,--40.38,-94.21}(x)=+34.54 x^{+2}-40.38 x-94.21$
find its forced bounded graph:
i. We normalize the global input-output rule

$$
x \xrightarrow{\text { LAON }} \operatorname{LAON}(x)=+x^{+2}-40.38 x-94.21
$$

ii. We get the approximate local input-output rule near ∞

$$
x \xrightarrow{\text { LAON }} \operatorname{LAON}(x)=+x^{+2}+[\ldots]
$$

iii. We get the local graph near ∞
iv. We extrapolate smoothly

2. In the case of quadratic functions, it happens that we can also obtain the bounded graph by extrapolating the local graph near a bounded input:

EXAMPLE 8.14. G iven the local graph near -4

On the right, though, there are several possibilities up front but only one fits what we already know:

With this extrapolation, we don't have a 0 -slope input :

With this extrapolation we do have a 0 -slope input but it is at ∞
$¥$

But this extrapolation fits all that we already know

Location Theorems

Previously, we only established the existence of certain notable features of quadratic functions and this investigation was based on graphic considerations. Here we will investigate the location of the inputs where these notable features occur and this investigation will be based on input-output rule considerations.

14 0-Concavity Location

We saw earlier that quadratic functions cannot have a 0 -concavity input. On the other hand, since the concavity is the same everywhere, it is a global feature of the function itself and we have:

Theorem 8.10 Global Concavity-sign Given the quadratic function $Q U A D R A T I C_{a, b, c}$,

- When a is positive, Concavity-sign $Q U A D R A T I C=\cup$.
- When a is negative, Concavity-sign QUADRATIC $=\cap$

This is just like affine function having a global slope.

15 0-Slope Location

Given a quadratic function, the global problem of locating an input where the local slope is 0 is still fairly simple.

More precisely, given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{Q U A D R A T I C} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c
$$

since the slope near x_{0} is the local linear coefficient $2 a x_{0}+b$, in order to find the input(s) where the local slope is 0 , we just need to solve the equation

$$
2 a x+b=0
$$

which is an affine equation that we solve by reducing it to a basic equation:

$$
\begin{aligned}
2 a x+b-b & =0-b \\
2 a x & =-b \\
\frac{2 a x}{2 a} & =\frac{-b}{2 a} \\
x & =\frac{-b}{2 a}
\end{aligned}
$$

So, we have:

TheOrem 8.11 0-slope Location For any quadratic function QUADRATIC $C_{a, b, c}$,

$$
x_{0-\text { slope }}=\frac{-b}{2 a}
$$

In fact, we also have:
Theorem 8.12 Global Slope-sign Given a quadratic function QU ADRATIC $C_{a, b, c}$,

- When a is positive,

$$
\text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }<\frac{b}{2 a}}=(\backslash, \backslash)
$$

$$
\begin{array}{ll}
\text { Slope-sign }\left.Q U A D R A T I C\right|_{\frac{-b}{2 a}} & =(\backslash, /) \\
\text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }>\frac{-b}{2 a}} & =(/, /)
\end{array}
$$

- When a is negative,

$$
\begin{aligned}
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }<\frac{-b}{2 a}}=(/, /) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\frac{-b}{2 a}}=(/, \backslash) \\
& \text { Slope-sign }\left.Q U A D R A T I C\right|_{\text {Everywhere }>\frac{-b}{2 a}}=(\backslash, \backslash)
\end{aligned}
$$

The case is easily made by testing the corresponding inequations near ∞.

16 Extremum Location

From the Extremum Existence Theorem, we know that

$$
x_{\text {extremum }}=x_{0 \text {-slope }}
$$

and so we have that

$$
x_{\text {extremum }}=\frac{-b}{2 a}
$$

We now want to compute the extremum output which is the output for $x_{0 \text {-slope }}$:

$$
\begin{aligned}
\operatorname{QUADRATIC}\left(x_{0 \text {-slope }}\right) & =a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c \\
& =a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c \\
& =a\left(\frac{(-b)^{2}}{(2 a)^{2}}\right)+b\left(\frac{-b}{2 a}\right)+c \\
& =a\left(\frac{b^{2}}{4 a^{2}}\right)+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{a b^{2}}{4 a^{2}}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{\not b^{2}}{4 \not 4 a}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{b^{2}}{4 a}+b\left(\frac{-b}{2 a}\right)+c \\
& =\frac{b^{2}}{4 a}+\frac{-2 \cdot b^{2}}{2 \cdot 2 a}+c
\end{aligned}
$$

discriminant

$$
\begin{aligned}
& =\frac{b^{2}}{4 a}+\frac{-2 b^{2}}{4 a}+c \\
& =\frac{-b^{2}}{4 a}+c \\
& =\frac{-b^{2}}{4 a}+\frac{4 a \cdot c}{4 a} \\
& =\frac{-b^{2}+4 a c}{4 a}
\end{aligned}
$$

It is standard to call the quantity $b^{2}-4 a c$, that is the opposite of the above numerator, the discriminant of the function $Q U A D R A T I C_{a, b, c}$ and we will write Discriminant ${ }_{\text {QUADRATIC }}$
So we have that the extremum output
$Q U A D R A T I C\left(x_{\text {extremum }}\right)=Q U A D R A T I C\left(x_{0 \text {-slope }}\right)=\frac{- \text { Discriminant }_{Q U A D R A T I C}}{4 a}$
Altogether then, we have
THEOREM 8.13 G iven a quadratic function $Q U A D R A T I C_{a, b, c}$, the extremum input is

$$
x_{\text {extremum }}=x_{0 \text {-slope }}=\frac{-b}{2 a}
$$

and the extremum output is

$$
Q U A D R A T I C\left(x_{\text {extremum }}\right)=\frac{-b^{2}+4 a c}{4 a}=\frac{- \text { Discriminant }{ }_{Q U A D R A T I C}}{4 a}
$$

17 0-Height Location

Given a quadratic function, the global problem of locating a given local height is the problem of locating the input(s), if any, whose output is equal to the given height.

More precisely, given the quadratic function $Q U A D R A T I C_{a, b, c}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c
$$

and given the local height H_{0}, what we are looking for are the input(s), if any, whose output is equal to H_{0}, that is:

$$
x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=H_{0}
$$

In other words, we must solve the equation

$$
a x^{2}+b x+c=H_{0}
$$

This is called a quadratic equation. Since we are looking for the 0 -height quadratic equation inputs, we let H_{0} be 0 and we will want to solve the equation

$$
a x^{2}+b x+c=0
$$

Solving a quadratic equation is quite a bit more complicated than solving an affine equation because we cannot reduce a quadratic equation to a basic equation the way we reduce an affine equation to a basic equation.

The reason is that affine equations have two terms and the $=$ sign has two sides so that we could separate the terms by having an x-term on the left side of the $=\operatorname{sign}$ and a constant term on the right side of the $=\operatorname{sign}$ which gave us a basic equation.

However, we cannot separate the terms in a quadratic equation because the output $Q U A D R A T I C(x)$ has three terms while the $=$ sign has only two sides.

This, though, may have something to do with the fact that inputs are counted from the 0 on the ruler which can be anywhere in relation to the global graph of the function, rather than from an input which is meaningful for the global graph of that function.

What we will do then is to try to use, instead of the inputs themselves, the location of the inputs relative to an input that is meaningful for the function at hand and the obvious thing is to try is $x_{0 \text {-slope }}$ and so we will try to use:

$$
\begin{aligned}
& u=x-x_{0 \text {-slope }} \\
& x=x_{0 \text {-slope }}+u
\end{aligned}
$$

and therefore, instead of using the global input-output rule

$$
x \xrightarrow{\text { QUADRATIC }} Q U \text { ADRATIC }(x)=a x^{2}+b x+c
$$

we will use the global input-ouput rule

$$
\left.\left.x\right|_{x \leftarrow x_{0 \text {-slope }}+u} \xrightarrow{Q U A D R A T I C} Q U A D R A T I C(x)\right|_{x \leftarrow x_{0-\text { slope }}+u}=a x^{2}+b x+\left.c\right|_{x \leftarrow x_{0 \text {-slope }}+u}
$$

that is

$$
\begin{aligned}
& u \xrightarrow{\text { QUADRATIC } C_{\left(x_{0} \text {-slope }\right)}} \operatorname{QU~ADRATIC}\left(x_{0 \text {-slope }}+u\right) \\
&=[a] u^{2}+\left[2 a x_{0 \text {-slope }}+b\right] u+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
\end{aligned}
$$

By the way, note that we will continue to count the outputs from the 0 on the output ruler. (Some people don't and prefer to count the outputs from $\operatorname{QUADRATIC}\left(x_{0 \text {-slope }}\right)$.) But since $x_{0 \text {-slope }}=\frac{-b}{2 a}$, this reduces to

$$
\begin{aligned}
& u \xrightarrow{\text { QUADRATIC }_{\left(x_{0 \text {-slope })}\right)}} \operatorname{QU~ADRATIC}\left(x_{0 \text {-slope }}+u\right) \\
&=[a] u^{2}+[0] u+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]
\end{aligned}
$$

that is to only two terms

$$
=[a] u^{2}+\left[a x_{0 \text {-slope }}^{2}+b x_{0-\text { slope }}+c\right]
$$

and the equation we want to solve, then, is

$$
[a] u^{2}+\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]=H_{0}
$$

that is

$$
[a] u^{2}=H_{0}-\left[a x_{0 \text {-slope }}^{2}+b x_{0-\text { slope }}+c\right]
$$

that is

$$
u^{2}=\frac{H_{0}-\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]}{a}
$$

in which everything on the right-hand side is known so that we have separated the known from the unknown. Since we are trying to locate the 0-height inputs, we let $H_{0}=0$.

In that case, the equation reduces to

$$
\begin{aligned}
u^{2} & =\frac{-\left[a x_{0 \text {-slope }}^{2}+b x_{0 \text {-slope }}+c\right]}{a} \\
& =\frac{-Q U A D R A T I C\left(x_{\text {extremum }}\right)}{a}
\end{aligned}
$$

and, using the Extremum Location Theorem,

$$
\begin{aligned}
& =\frac{-\frac{- \text { Discriminant }_{Q U A D R A T I C}}{4 a}}{a} \\
& =\frac{\text { Discriminant }_{Q U A D R A T I C}}{4 a^{2}}
\end{aligned}
$$

Altogether then, instead of the original equation

$$
a x^{2}+b x+c=0
$$

we have the rather nice (nicer?) equation

$$
u^{2}=\frac{\text { Discriminant }_{\text {QUADRATIC }}}{4 a^{2}}
$$

Now, of course, whether or not we can solve depends on whether or not the right hand side is positive and since the denominator is a square, and therefore always positive, whether or not we can solve depends only on the sign of Disc QUADRATIC (hence the name "discriminant"):

- If Disc DUADratic $^{\text {is negative, the equation has no solution, }}$
- If Disc Quadratic $^{\text {is }} 0$, the equation has one solution, namely 0 ,
- If Discquadratic is positive, the equation has two solutions, namely
- $u=-\frac{\sqrt{D_{\text {Disc } Q_{Q U A D R A T I C}}}}{2 a}$
- $u=+\frac{\sqrt{D_{\text {Disc } Q U A D R A T I C}^{C}}}{2 a}$

This, of course, is hardly surprising inasmuch as the discriminant is intimately tied with the extremum output and thus this theorem fits very well with the 0-height Existence Theorem. It remains only to de-locate, that is to return to the input x. For that, we need only use the fact that

$$
u=x-x_{0 \text {-slope }}
$$

to get

- $x-x_{0-\text { slope }}=-\frac{\sqrt{\text { Discqu ADRATIC }^{2 a}}}{2 a}$
- $x-x_{0 \text {-slope }}=+\frac{\sqrt{D_{\text {Disc }}^{\text {QUADRATIC }}}}{2 a}$
that is
- $x=x_{0 \text {-slope }}-\frac{\sqrt{\text { DiscqUADRATIC }}}{2 a}$
- $x=x_{0 \text {-slope }}+\frac{\sqrt{D_{\text {Disc }}^{\text {QUADRATIC }}}}{2 a}$
and thus the celebrated "quadratic formula":
- $x=x_{0 \text {-slope }}-\frac{\sqrt{b^{2}-4 a c}}{2 a}$
- $x=x_{0 \text {-slope }}+\frac{\sqrt{b^{2}-4 a c}}{2 a}$
which, by the way, shows that, when they exist, the two 0-height inputs are symmetrical with respect to $x_{0 \text {-slope }}$ Altogether, then, we have

THEOREM 8.14 0-height Location For any quadratic function QU ADRATIC ${ }_{a, b, d}$,

- If Disc $_{Q U A D R A T I C}$ is negative, QUADRATIC has no 0-height input,
- If Disc $_{Q U A D R A T I C}$ is $0, Q U A D R A T I C$ has one 0 -height input, namely $\frac{-b}{2 a}$,
- If Disc quadratic is positive, QUADRATIC has two solutions, namely
- $\frac{-b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}$
- $\frac{-b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}$

Finally, here are a couple of examples.

EXAMPLE 8.15. $\quad \mathbf{T}$ o find the 0 -height inputs of the quadratic function specified by the global input-output rule

$$
x \xrightarrow{\text { Rick }} \operatorname{Rick}(x)=+4 x^{2}-24 x+7
$$

we can proceed as follows:
i. Either we remember that $x_{0-\text { slope }}=\frac{-b}{2 a}$ so that we get $x_{0-\text { slope }}=\frac{+12}{2(+4)}=$ +3 , or, if worse comes to worst, we look for the 0 -slope input by localizing at an undisclosed input x_{0} and then setting the coefficient of u equal to 0 to get $x_{0-\text { slope }}$.
ii. Then, we get the u-equation by setting $x=x_{0-\text { slope }}+u$, that is, here, by setting $x=+3+u$:

$$
\begin{aligned}
+3+\left.u \xrightarrow{\text { Rick }} \operatorname{Rick}(x)\right|_{\text {when } x=+3+u} & =+4 x^{2}-24 x+\left.7\right|_{\text {when } x=+3+u} \\
& =+4[+3+u]^{2}-24[+3+u]+7 \\
& =+4\left[+9+6 u+u^{2}\right]-24[+3+u]+7 \\
& =+36+24 u+4 u^{2}-72-24 u+7 \\
& =-29+4 u^{2}
\end{aligned}
$$

iii. We now solve the u-equation

$$
\begin{aligned}
-29+4 u^{2} & =0 \\
+4 u^{2} & =+29 \\
u^{2} & =\frac{+29}{+4} \\
u^{2} & =+7.25
\end{aligned}
$$

and so we have:

- $u_{0-\text { output }}=+\sqrt{+7.25}=+2.69+[\ldots]$
and
$u_{0-\text { output }}=-\sqrt{+7.25}=-2.69+[\ldots]$
and therefore
- $x_{0-\text { output }}=+3+2.693+[\ldots]=+5.693+[\ldots]$
and
- $x_{0-\text { output }}=+3-2.693+[\ldots]=+0.307+[\ldots]$

Alternatively, if we remember the $\mathbf{0}$-height Theorem, then we can proceed by first computing the discriminant and

EXAMPLE 8.16. W e look at the same equation but assume that we re-
member the $\mathbf{0}$-height Theorem

$$
x \xrightarrow{\text { Rick }} \operatorname{Rick}(x)=+4 x^{2}-24 x+7
$$

that is:

$$
\begin{aligned}
\text { Discriminant Rick } & =(-24)^{2}-4(+4)(+7) \\
& =+576-112 \\
& =+464
\end{aligned}
$$

And since the discriminant is positive, we have

$$
\begin{aligned}
x_{0-\text { output }} & =x_{0-\text { slope }}+\frac{\sqrt{\text { Discriminant }}}{2 a} \\
& =\frac{+24}{2(+4)}+\frac{\sqrt{+464}}{2(+4)} \\
& =\frac{+24}{+8}+\frac{21.541+[\ldots]}{+8} \\
& =\frac{45.541+[\ldots]}{+8} \\
& =+5.693+[\ldots]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
x_{0-\text { output }} & =x_{0-\text { slope }}-\frac{\sqrt{\text { Discriminant }}}{2 a} \\
& =\frac{+24}{2(+4)}-\frac{\sqrt{+464}}{2(+4)} \\
& =\frac{+24}{+8}-\frac{21.541+[\ldots]}{+8} \\
& =\frac{2.460+[\ldots]}{+8} \\
& =+0.307+[\ldots]
\end{aligned}
$$

Either way, the reader should check that, indeed,

$$
+5.693 \xrightarrow{\text { Rick }} 0+[\ldots]
$$

and

$$
+0.307 \xrightarrow{\text { Rick }} 0+[\ldots]
$$

As a consequence of the 0-height Location Theorem, we have:

Theorem 8.15 Global Height-sign For any quadratic function QUADRATIC $C_{a, b, c}$, Height-sign QUADRATIC $=($ Sign a, Sign a $)$
everywhere except, when DiscquADRATIC is positive, between the two $x_{0-h e i g h t ~ i n p u t s ~ w h e r e ~ H e i g h t-s i g n ~}^{\text {QUADRATIC }}=$ (-Sign a , -Sign a)

As a result, when looking for the inputs for which the output has a given sign, we have two approaches:
i. We can solve the associate equation, one way or the other, and then test each one of the sections determined by the 0-height input(s), if any.

EXAMPLE 8.17. \mathbf{T} o solve the inequation $-3 x^{2}+t x-11<0$, we can begin by looking for its boundary inputs by solving the associated equation $-3 x^{2}+t x-11=0$ and then test the resulting intervals.
ii. We can use the Global Height-sign Theorem.
$=========$ OK SO FAR $========$

Chapter 9

Cubic Functions

Output at $x_{0}, 377$ • Output near $\infty, 378$ - Output near $x_{0}, 380$ • Local graphs, 384 • Local Feature-signs, 388 • Cubic Functions: Global Analysis, 392 • Global Graph, 392 • Concavity-sign, 393 • Slope-sign, 395 • Extremum, 396 • Height-sign, 397 • 0-Concavity Location, 399 • 0-Slope Location, 400 • Extremum Location, 401 • 0-Height Location, 403 .

Quadratic functions are specified by global input-output rules like the generic global input-output rule:

$$
x \xrightarrow[C U B I C]{C U B I C(x)=\underbrace{a x^{+3} \oplus b x^{+2} \oplus c x^{+1} \oplus d x^{0}}_{\text {output-specifying code }}, ~}
$$

which we usually write

$$
=\underbrace{a x^{3}+b x^{2}+c x+d}_{\text {output-specifying code }}
$$

where a, called the cubic coefficient, b, called the quadratic coefficient, c, called the linear coefficient, and d, called the constant coefficient, are the bounded numbers that specify the function $C U B I C$.

EXAMPLE 9.1. The cubic function $T I N A$ specified by the cubic coefficient +72.55 , the quadratic coefficient -23.04 , the linear coefficient -17.39 and the constant coefficient +5.84 is the function specified by the global input-output rule

$$
x \xrightarrow[\text { RINA }]{>} \text { TIN } A(x)=\underbrace{-72.55}_{\text {cubic coeff. }} x^{3} \underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-17.39}_{\text {linear coeff. }} x \underbrace{+5.84}_{\text {constant coeff. }}
$$

It is worth noting again that
term
cubic term
quadratic term
linear term constant term quadratic $_$part

CAUTIONARY NOTE 9.1 The terms in the global input output rule need not be written in order of descending exponent. This is just a habit we have.

EXAMPLE 9.2. The function specified by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=-12.06 x^{3}+21.03 x^{2}-31.39 x+5.34
$$

could equally well be specified by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=+5.34+21.03 x^{2}-31.39 x-12.06 x^{3}
$$

or by the global input-output rule

$$
x \xrightarrow{D I D I} D I D I(x)=-31.39 x+5.34-12.06 x^{3}+21.03 x^{2}
$$

We now introduce some standard terminology to help us describe very precisely what we will be doing. The output-specifying code of the affine function specified by

$$
x \xrightarrow{\text { AFFINE }} C U B I C(x)=\underbrace{a x^{3}+b x^{2}+c x+d}_{\text {output-specifying code }}
$$

consists of four terms:

- $a x^{3}$ which is called the cubic term.
- $b x^{2}$ which is called the quadratic term.
- $c x$ which is called the linear term.
- d which is called the constant term,
and there is of course also
- $b x^{2}+c x+d$ which is called the quadratic part

EXAMPLE 9.3. The output-specifying code of the function specified by the global input-output rule

$$
x \xrightarrow{\text { TINA }} \text { TIN } A(x)=\underbrace{-71.41}_{\text {cubic coeff. }} x^{3} \underbrace{-23.04}_{\text {quadratic coeff. }} x^{2} \underbrace{-31.39}_{\text {linear coeff. constant coeff. }} x \underbrace{+5.84}_{\text {cher }}
$$

consists of four terms:

$$
=\underbrace{-71.41 x^{3}}_{\text {cubic term }} \underbrace{-23.04 x^{2}}_{\text {quadratic term }} \underbrace{-31.39 x}_{\text {linear term }} \underbrace{+5.34}_{\text {constant term }}
$$

LANGUAGE NOTE 9.1 Whether we look upon d as the constant coefficient, that is as the coefficient of x^{0} in the constant term $d x^{0}$ or as the constant term $d x^{0}$ itself with the power x^{0} "going without saying" will be clear from the context.

1 Output at x_{0}

Remember from section 1 that x_{0} is a generic given input, that is that x_{0} is a bounded input that has been given but whose identity remains undisclosed for the time being.

Procedure 9.1

i. Declare that x is to be replaced by x_{0}

$$
\left.\left.x\right|_{x \leftarrow x_{0}} \xrightarrow{\text { CUBIC }} C U B I C(x)\right|_{x \leftarrow x_{0}}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \leftarrow x_{0}}
$$

which gives:

$$
x_{0} \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}\right)=\underbrace{a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into an output number:

$$
=a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d
$$

which gives the input-output pair

$$
\left(x_{0}, a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right)
$$

Demo 9.1

i. We declare that x is to be replaced by -3

$$
\left.\left.x\right|_{x \leftarrow-3} \xrightarrow{A R I A} A R I A(x)\right|_{x \leftarrow-3}=+17.52 x^{3}+21.03 x^{2}-32.67 x+\left.71.07\right|_{x \leftarrow-3}
$$

which gives

$$
-3 \xrightarrow{\text { ARIA }} A R I A(-3)=\underbrace{+17.52(-3)^{3}+21.03(-3)^{2}-32.67(-3)+71.07}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into an output number:

$$
\begin{aligned}
& =-473.04 \oplus+189.26 \oplus+98.01 \oplus+71.07 \\
& =-114.7
\end{aligned}
$$

which gives the input-output pair

$$
(-3,-114.7)
$$

However, as already discussed in ?? ?? and as has already been the case with monomial functions, affine functions and quadratic functions, instead of getting the output number returned by a quadratic function at a given input, we will usually want all the outputs returned by the quadratic function for inputs near that given input. So, instead of getting the single input-output
pair at the given input, we will get the local input-output rule with which to get all the input-output pairs near the given input.

2 Output near ∞

As already discussed in subsection 8.2 Output near ∞ and in section 3 Output near ∞, in order to input a neighborhood of ∞, we will declare that " x is near ∞ " but write only x after that. This, again, is extremely dangerous as it is easy to forget that what we write may be true only because x has been declared to be near ∞.

1. We will execute the output-specifying code, namely $a x^{3}+b x^{2}+c x+d$, into an output jet, that is with the terms in descending order of sizes, which, since here x is large, means that here the powers of x must be in descending order of exponents. We will then have the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { CUBIC }} \operatorname{CUBIC}(x)=\underbrace{\text { Powers of } x \text { in descending order of exponents }}_{\text {output jet near } \infty}$
EXAMPLE 9.4. Given the function specified by the global input-output rule

$$
x \xrightarrow{T I B A} T I B A(x)=-61.03+37.81 x^{3}-82.47 x+45.03 x^{2}
$$

To get the output jet near ∞, we first need to get the order of sizes.
i. -61.03 is bounded
ii. -82.47 is bounded and x is large. So, since bounded \cdot large $=$ large, $-82.47 \cdot x$ is large
iii. +45.03 is bounded and x is large. So, since bounded \cdot large $=$ large, $+45.03 \cdot x$ is large too. But large - large is larger in size than large so $+45.03 \cdot x^{2}$ is even larger than $-82.47 \cdot x$
iv. +37.81 is bounded and x is large. So, since bounded \cdot large $=$ large, $+37.81 \cdot x$ is large too. But large - large - large is larger in size than large \cdot large so $+37.81 \cdot x^{3}$ is even larger than $+45.03 \cdot x^{2}$
So, in the output jet near $\infty,+37.81 x^{3}$ must come first, $+45.03 x^{2}$ must come second, $-82.47 x$ comes third and -61.03 comes fourth
Then, we get the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{R I B A} T I B A(x)=\underbrace{+37.81 x^{3}+45.03 x^{2}-82.47 x-61.03}_{\text {output jet near } \infty}
$$

2. Altogether, then:

Procedure 9.2

i. Declare that x is near ∞
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{C U B I C} C U B I C(x)\right|_{x \text { near } \infty}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \text { near } \infty}$ which gives:

$$
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x)=\underbrace{a x^{3}+b x^{2}+c x+d}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near ∞

$$
=\underbrace{[a] x^{3} \oplus[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x)=\underbrace{[a] x^{3} \oplus[a] x^{2} \oplus[b] x \oplus[c]}_{\text {output jet near } \infty}
$$

(Here the jet near ∞ looks the same as the given global input-output rule but that is only because the output-specifying code happened to be written in descending order of exponents.)

DEMO 9.2

i. We declare that x is near ∞
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{D I N A} D I N A(x)\right|_{x \text { near } \infty}=-61.03+37.81 x^{3}+51.32 x^{2}-\left.82.47 x\right|_{x \text { near } \infty}$ which gives:

$$
x \text { near } \infty \xrightarrow{D I N A} D I N A(x)=\underbrace{-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x}_{\text {output-specifying code }}
$$

ii. We execute the output-specifying code into a jet near ∞ :

$$
=[+37.81] x^{3} \oplus[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]
$$

which gives the local input-output rule near ∞ :

$$
x \text { near } \infty \xrightarrow{D I N A} D I N A(x)=\underbrace{[+37.81] x^{3} \oplus[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}
$$

(Here the jet near ∞ does not look the same as the global inputoutput rule because the output-specifying code happened not to be in descending order of exponents.)
3. The reason we use jets here is that the term largest in size is the first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands for "something too small to matter here". In other words,

TheOrem 9.1 Approximate output near ∞. For cubic functions, the term in the jet that contributes most to the output near ∞ is the highest degree term in the output jet near ∞ :

$$
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x)=[a] x^{3}+[\ldots]
$$

EXAMPLE 9.5. Given the function specified by the global input-output rule

$$
x \xrightarrow{\text { DINA }} D I N A(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x
$$

near ∞ we will often just use the approximation

$$
x \text { near } \infty \xrightarrow{\text { KINA }} K I N A(x)=[+37.81] x^{3} \oplus[\ldots]
$$

3 Output near x_{0}

We now deal with the output of the neighborhood of some given bounded input x_{0}.

1. In order to input a neighborhood of a given input x_{0} we will declare that $x \leftarrow x_{0} \oplus h$ that is that x is to be replaced by $x_{0} \oplus h$. As a result, we will have to compute $\left(x_{0} \oplus h\right)^{2}$ for which we will have to use an addition formula from ALGEBRA, namely ?? in ?? on page ??.
2. We can then execute the input-output specifying phrase into a jet that is with the terms in descending order of sizes which here, since h is small, means that the powers of h will have to be in ascending order of exponents. We will then have the local input-output rule near the given input:
$x_{0} \oplus h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0} \oplus h\right)=\underbrace{\text { Powers of } h \text { in ascending order of exponents }}_{\text {output jet near } \infty}$
We will therefore use:

Procedure 9.3

i. Declare that x is to be replaced by $x_{0}+h$
$\left.\left.x\right|_{x \leftarrow x_{0}+h} \xrightarrow{C U B I C} C U B I C(x)\right|_{x \leftarrow x_{0}+h}=a x^{3}+b x^{2}+c x+\left.d\right|_{x \leftarrow x_{0}+h}$
which gives:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=\underbrace{a\left(x_{0}+h\right)^{3}+b\left(x_{0}+h\right)^{2}+c\left(x_{0}+h\right)+d}_{\text {output-specifying code }}
$$

ii. Execute the output-specifying code into a jet near x_{0} :

$$
\begin{aligned}
& =a\left(x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}\right)+b\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+c\left(x_{0}+h\right)+d \\
& =a x_{0}^{3} \oplus 3 a x_{0}^{2} h \oplus 3 a x_{0} h^{2} \oplus a h^{3} \\
& \oplus b x_{0}^{2} \oplus 2 b x_{0} h \oplus b h^{2} \\
& \oplus c x_{0} \oplus c h \\
& \oplus d \\
& =\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
\end{aligned}
$$

which gives the local input-output rule near x_{0} :

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)
$$

$$
=\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c \mathbf{]} \oplus\left[3 a x_{0}+b\right] h^{2} \oplus \mathbf{[} a \mathbf{]} h^{3}\right.}_{\text {output jet near } x_{0}}
$$

Demo 9.3

i. We declare that x is to be replaced by $-3+h$
$\left.\left.x\right|_{x \leftarrow-3+h} \xrightarrow{\text { ARBA }} A R B A(x)\right|_{x \leftarrow-3+h}=-32.67 x-31.18 x^{3}+71.07+\left.81.26 x^{2}\right|_{x \leftarrow-3+h}$
which gives

$$
-3+h \xrightarrow{A R B A} A R B A(-3+h)=\underbrace{-32.67(-3+h)-31.18(-3+h)^{3}+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }}
$$

ii. We execute the output-specifying code into a jet near -3 :

$$
\begin{aligned}
= & -32.67(-3+h)-31.18\left((-3)^{3}+3(-3)^{2} h+3(-3) h^{2}+h^{3}\right)+71.07+81.26\left((-3)^{2}+2(-3) h+h^{2}\right) \\
= & -32.67(-3)-32.67 h \\
& -31.18(-3)^{3}-31.18 \cdot 3(-3)^{2} h-31.18 \cdot 3(-3) h^{2}-31.18 h^{3} \\
& +71.07 \\
& +81.26(-3)^{2}+81.26 \cdot 2(-3) h+81.26 h^{2} \\
= & +98.01 \oplus-32.67 h
\end{aligned}
$$

```
    \oplus+841.86 \oplus-841.86 h\oplus+280.62 h}\mp@subsup{h}{}{2}\oplus-31.18\mp@subsup{h}{}{3
    \oplus+71.07
    \oplus+731.34\oplus-487.56h\oplus+81.26 h}\mp@subsup{h}{}{2
= [+98.01+841.86+71.07+731.34]
    \oplus[-32.67-841.86-487.56] }
    \oplus [+280.62+81.26] ] h}\mp@subsup{h}{}{2
    \oplus [-31.18] 寅
= [+1742.28]\oplus[-1362.09]}h\oplus[+361.88]]\mp@subsup{h}{}{2}\oplus[+81.26][\mp@subsup{h}{}{3}
which gives the local input-output rule near -3:
-3+h\xrightarrow{}{ARNA}}ARBA(-3+h)=\mp@subsup{\underbrace}{\mathrm{ output jet near -3}}{[+1742.28]\oplus[-1362.09]}h\oplus[+361.88]]\mp@subsup{h}{}{2}\oplus[+81
```

3. When all we want is a feature-sign, though, the above procedure is very inefficient and we will then use the following procedure based directly on the fact that a cubic function is the addition of:

- a cube function, (See definition 6.5 on page 264)
- a square function, (See Definition 6.2 on page 262)
- a linear function, (See ?? on ??.)
- a constant function. (See ?? on ??.)
that is:

$$
x \xrightarrow{C U B I C} C U B I C(x)=\underbrace{a x^{3}}_{\text {cube }} \oplus \underbrace{b x^{2}}_{\text {square }} \oplus \underbrace{c x}_{\text {linear }} \oplus \underbrace{d}_{\text {constant }}
$$

We declare that x is near x_{0} that is that x must be replaced by $x_{0}+h$:

$$
x \xrightarrow{\text { CUBIC }} \operatorname{CUBIC(x)=\underbrace {a(x_{0}+h)^{3}}_{\text {cube}}\oplus \underbrace {b(x_{0}+h)^{2}}_{\text {square}}\oplus \underbrace {c(x_{0}+h)}_{\text {linear}}\oplus \underbrace {d}_{\text {constant}}}
$$

The output of the local input-output rule near x_{0} will have to be a jet:

$$
x_{0}+h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[] h^{3}
$$

and we want to be able to get any one of the coefficients of the output jet without having to compute any of the other coefficients. So, what we will do is to get the contribution of each monomial function to the term we want. This requires us to have the addition formulas at our finger tips:
a.

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2}(\text { See ?? on page } 519)
$$

b.

$$
\left(x_{0}+h\right)^{3}=x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}(\text { See ?? on ??) }
$$

More precisely,
i. If we want the coefficient of h^{0} in the output jet:

- The cube function contributes $a x_{0}^{3}$
- The square function contributes $b x_{0}^{2}$
- The linear function contributes $c x_{0}$
- The constant function contributes d
so we have:
$x_{0}+h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}+h\right)=\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[\quad] h^{3}$
ii. If we want the coefficient of h^{1} in the output jet:
- The cube function contributes $3 b x_{0}^{2}$
- The square function contributes $2 b x_{0}$
- The linear function contributes c
- The constant function contributes nothing
so we have:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus\left[3 b x_{0}^{2}+2 b x_{0}+c\right] h \oplus[] h^{2} \oplus[] h^{3}
$$

iii. If we want the coefficient of h^{2} in the output jet:

- The cube function contributes $3 b x_{0}$
- The square function contributes c
- The linear function contributes nothing
- The constant function contributes nothing so we have:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus\left[3 b x_{0}+c\right] h^{2} \oplus[] h^{3}
$$

iv. If we want the coefficient of h^{3} in the output jet:

- The cube function contributes a
- The square function contributes nothing
- The linear function contributes nothing
- The constant function contributes nothing
so we have:

$$
x_{0}+h \xrightarrow{C U B I C} C U B I C\left(x_{0}+h\right)=[\quad] \oplus[\quad] h \oplus[\quad] h^{2} \oplus[a] h^{3}
$$

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input, we get the local graph near any input, be it bounded or infinity, from the jet near that input.

Procedure 9.4

1. Get the output jet near ∞ :
x near $\infty \xrightarrow{\text { CUBIC }} C U B I C(x)=\underbrace{[a] x^{3} \oplus[b] x^{2} \oplus[c] x \oplus[d]}_{\text {output jet near } \infty}$
(See Procedure 9.2 on page 379.)
2. Get the local graphs:
a. Of the cubic term by graphing near ∞ the monomial function $x \rightarrow$ 〔 a] x^{3} using ?? ?? on ??.
b. Of the quadratic term by graphing near ∞ the monomial function $x \rightarrow$ [$a \mathbf{d} x^{2}$ using ?? ?? on ??.
c. Of the linear term by graphing near ∞ the monomial function $x \rightarrow$ [b] x using ?? ?? on ??.
d. Of the constant term by graphing near ∞ the monomial function
$x \rightarrow$ [c] using ?? ?? on ??.
3. Get the local graph near ∞ of $C U B I C$ using ?? by adding-on to the local graph of the cubic term the local graph of the quadratic term, the local graph of the the local graph of, and the local graph of the constant term.

Demo 9.4

1. We get the output jet near ∞ : (See Demo 9.2 on page 379)
x near $\infty \xrightarrow{\text { DINA }} D I N A(x)=\underbrace{[+37.81] x^{3} \oplus[+51.32] x^{2} \oplus[-82.47] x \oplus[-61.03]}_{\text {output jet near } \infty}$
2. Get the local graph near ∞ of each term:
a. We get the graph of the cubic term by graphing the monomial function
$x \rightarrow[+37.81] x^{3}$ near ∞ (See ?? on ??)

c. We get the graph of the linear term by graphing the monomial function
$x \rightarrow[-82.47] x$ near ∞ (See ?? on ??)

b. We get the graph of the quadratic term by graphing the monomial function
 ?? on ??)

d. We get the graph of the constant term by graphing the monomial function

3. We get the local graph near ∞ of $D I N A$ by adding-on to the graph of the quadratic term the graph of the linear term and the graph of the constant term. (See ?? on ??)

Procedure 9.5

1. Get the local input-output rule near x_{0} of $C U B I C$ using ProceDURE 9.3 To evaluate near x_{0} the function specified by $x \xrightarrow{\text { CUBIC }}$ $C U B I C(x)=a x^{3}+b x^{2}+c x+d$ on page 380
$x_{0}+h \xrightarrow{\text { CUBIC }} C U B I C\left(x_{0}+h\right)$

$$
=\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
$$

2. Get the local graphs:
a. Of the constant term by graphing near 0 the monomial function $x \rightarrow\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right]$
b. Of the linear term by graphing near 0 the monomial function $x \rightarrow$ [$\left.3 a x_{0}^{2}+2 b x_{0}+c\right] x$
c. Of the quadratic term by graphing near 0 the monomial function $x \rightarrow\left[3 a x_{0}+b\right] x^{2}$
d. Of the cubic term by graphing near 0 the monomial function $x \rightarrow[a] x^{3}$
3. Get the local graph of $C U B I C$ near x_{0} by adding to the local graph of the constant term, the local graph of the linear term, the local graph of the quadratic term, the local graph of the cubic term.

Demo 9.5

1. We get the local input-output rule near -3 of $A R B A$ (See DEMO 9.3

$$
\text { on page } 381 \text {): }
$$

$-3+h \xrightarrow{\text { ARNA }} A R B A(-3+h)=\underbrace{[+1742.28] \oplus[-1362.09] h \oplus[+361.88] h^{2} \oplus[+81.26] h^{3}}_{\text {output jet near }-3}$
2. We get the local graphs
a. We get the graph of the constant term near -3 by graphing the monomial function $x \rightarrow[+1742.28]$.
: (See ?? on ??)

c. We get the graph of the quadratic term near -3 by graphing the monomial function $x \rightarrow[+361.88] x^{2}:$ (See ?? on

??)

b. We get the graph of the linear term near -3 by graphing the monomial function $x \rightarrow[-1362.09] x$ (See ?? on ??)

d. We get the graph of the cubic term near -3 by graphing the monomial function
 ??)

3. We get the local graph near -3 of $A R B A$ by adding to the local graph of the constant term the local graph of the linear term, the local

5 Local Feature-signs

As we saw in ?? ??, a feature-sign near a given input, be it near ∞ or near x_{0}, can be read from the local graph and so we could proceed as follows:
i. Get the local input-output rule near the given input (See Procedure 9.2 on page 379 when the given input is ∞ or Procedure 9.3 on page 380 when the given input is x_{0}.)
ii. Get the local graph from the local input-output rule (See Procedure 9.4 on page 384.)
iii. Get the feature-sign from the local graph. (See ?? ??.)

However, things are in fact much simpler: Given an input, be it ∞ or a bounded input x_{0}, to get a required feature-sign near that given input, we look for the term in the output jet near that input that
i. Has the required feature.
and
ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a cubic function, the first term in the output jet near ∞ is both the largest-in-size and a regular monomial so that it has all three features:

Procedure 9.6

i. Get the approximate local input-output rule near ∞ :

$$
\begin{aligned}
x \text { near } \infty \xrightarrow{C U B I C} C U B I C(x) & =\underbrace{[a] x^{3} \oplus[b] x^{2} \oplus[c] x \oplus[d]}_{\text {output jet near } \infty} \\
& =\underbrace{[a] x^{3} \oplus[\ldots]}_{\text {approximate output jet near } \infty}
\end{aligned}
$$

ii. Then, in the approximate output jet near ∞ :

- Get the Height-sign, the Slope-sign and the Concavity-sign all from the cubic term $[a] x^{3}$ because the next terms, $[b] x^{2},[c] x$ and $[d]$ are too small to matter. (Not to mention the fact that a linear term has no concavity and a constant term has neither concavity nor slope.)

Demo 9.6 To get the Height-sign near ∞ of the function specified by

$$
x \xrightarrow{\text { DELIA }} D E L I A(x)=+12 x^{3}-2 x^{2}+63 x-155
$$

i. We get the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { DELIA }} \operatorname{DELIA}(x)=+12 x^{3}-2 x^{2}+63 x-155$

$$
=\underbrace{[+12] x^{3} \oplus[-2] x^{2} \oplus[+63] x \oplus[-155]}_{\text {output jet near } \infty}
$$

ii. We get Height-sign from the cubic term $[+12] x^{3}$. (The quadratic term $[-2] x^{2}$, the linear term $[+63] x$ and the constant term $[-155]$ are too small to matter)
iii. Since the cubic coefficient [+12] is positive, we get that Height-sign DELIA near $\infty=\langle+,-\rangle$. (Seen from ∞.)

Demo 9.7 Get the slope-sign near ∞ of the function specified by the global input-output rule

$$
x \xrightarrow{\text { DETER }} \operatorname{DETER}(x)=-0.45 x^{3}+3.03 x^{2}-81.67 x+46.92
$$

i. We get the local input-output rule near ∞ :
x near $\infty \xrightarrow{\text { DETER }} \operatorname{DETER}(x)=-045 x^{3}+3.03 x^{2}-81.67 x+46.92$
critical for the Concavity

$$
=\underbrace{[-0.45] x^{3} \oplus[+3.03] x^{2} \oplus[-81.67] x \oplus[+46.92]}_{\text {output jet near } \infty}
$$

ii. We get Slope-sign from the cubic term $[-0.45] x^{3}$. (The quadratic term $[+3.03] x^{2}$, the linear term $[-81.67] x$ and the constant term
[+ 46.92] are too small to matter.)
Since the cubic coefficient -0.45 is negative, we get that Slope-sign $D E T E R$ near $\infty=\langle\backslash, \backslash\rangle$. (Seen from ∞.)
2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it gives the Height-sign. However, the first term usually has neither Slope nor Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change the Height-sign as given by the first term but it is usually the largest-insize term that can give the Slope-sign. However, the second term has no Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change the Height-sign given by the first term and the Slope-sign given by the second term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term in the output jet - keeping in mind that the exceptional monomial functions do not have all the features.
However, near a bounded input, the given bounded input may turn out to be critical for the local feature:
i. If the constant term in the output jet is 0 , then the term which gives the Height-sign can be either the linear term or the quadratic term if the linear term is 0 or even the cubic term if the quadratic term turns out to be 0 too. The bounded input is then again said to be critical for the Height.
ii. If the linear term in the output jet is 0 , then the term which gives the Slope-sign is the quadratic term or the cubic term is the quadratic term turns out to be 0 too. The bounded input is then said to be critical for the Slope. iii. If the quadratic term in the output jet is 0 , then the term which gives the Concavity-sign is the cubic term. The bounded input is then said to be critical for the Concavity.
So, we usually need to compute only one coefficient in the output jet. But if the given bounded input turns out to be critical for that feature, then we need to compute the next coefficient: So we use

Procedure 9.7

i. Get the local input-output rule near x_{0} :

$$
\begin{array}{rl}
x_{0}+h \xrightarrow{\text { CUBIC }} C & C U B I C\left(x_{0}+h\right)=a\left(x_{0}+h\right)^{3}+b\left(x_{0}+h\right)^{2}+c\left(x_{0}+h\right)+d \\
& =a\left(x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}\right)+b\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)+c\left(x_{0}+h\right)+d \\
& =\underbrace{\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right] \oplus\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h \oplus\left[3 a x_{0}+b\right] h^{2} \oplus[a] h^{3}}_{\text {output jet near } x_{0}}
\end{array}
$$

ii. Then, in the output jet near x_{0} :

- Get the Height-sign from the constant term $\left[a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d\right]$. (The linear term, the quadratic term and the cubic term are too small to matter.)
If the constant coefficient is 0 , get the Height-sign from the linear term $\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h$. (The quadratic term and the cubic term are too small to matter.)
If the linear coefficient is 0 too, get the Height-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The quadratic term and the cubic term are too small to matter.)
If the quadratic coefficient is 0 too, get the Height-sign from the cubic term $[a] h^{3}$. (The quadratic term and the cubic term are too small to matter.)
- Since the constant term has no slope, get the Slope-sign from the linear term $\left[3 a x_{0}^{2}+2 b x_{0}+c\right] h$. (The quadratic term and the cubic term are too small to matter.)
If the linear coefficient is 0 , get the Slope-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The cubic term is too small to matter.)
If the quadratic coefficient is 0 too, get the Slope-sign from the cubic term $[a] h^{3}$.
- Since both the constant term and the linear term have no concavity, get Concavity-sign from the quadratic term $\left[3 a x_{0}+b\right] h^{2}$. (The cubic term is too small to matter.)
If the quadratic coefficient is 0 , get the Slope-sign from the cubic term $[a] h^{3}$.

Demo 9.8 To get the feature signs near -3 of the function specified by the global input-output rule

$$
x \xrightarrow{A R B A} A R B A(x)=-32.67 x+71.07+81.26 x^{2}
$$

i. We get the local input-output rule near -3 (See DEMO 9.3 on page 381):

$$
\begin{aligned}
-3+h \xrightarrow{A R B A} A R B A(-2+h) & =\underbrace{-32.67(-3+h)+71.07+81.26(-3+h)^{2}}_{\text {output specifying code }} \\
& =\underbrace{[+900.428] \oplus[-519.63] h \oplus[+81.26] h^{2}}_{\text {output jet near }-3}
\end{aligned}
$$

ii. Then, from the output jet:

- Since the constant coefficient $[+900.428]$ is positive, we get that Height-sign $A R B A$ near $-3=\langle+,+\rangle$.
- Since the linear coefficient $[-519.63] h$ is negative. we get that Slope-sign $A R B A$ near $-3=\langle\backslash\rangle$,
- Since the quadratic coefficient $[+81.26] h^{2}$ is positive, we get that Concavity-sign $A R B A$ near $-3=\langle\cup, \cup\rangle$

6 Cubic Functions: Global Analysis

In the case of cubic functions, we will be able to solve exactly only a very few global problems because everything begins to be truly computationally complicated.

7 Global Graph

As always, we use

Procedure 9.8

i. Graph the function near ∞, (See PROCEDURE 9.4 on page 384.)
ii. Ask the Essential Question:

- Do all bounded inputs have bounded outputs
or
- Are there bounded inputs whose nearby inputs have unbounded outputs? (∞-height inputs.)
iii. Use the local input-output rule near x_{0} to get further information.

(See Procedure 9.3 on page 380.)

But, given a bounded input x_{0}, we have that:

- a being bounded, $a x_{0}^{3}$ is also bounded
- b being bounded, $b x_{0}^{2}$ is also bounded
- c being bounded, $c x_{0}$ is also bounded
- and d being bounded
altogether, we have that $a x_{0}^{3}+b x_{0} x^{2}+c x_{0}+d$ is bounded and that the answer to the Essential Question is:
EXAMPLE 9.6. Bounded Height Under a cubic functions, all bounded inputs have bounded outputs.
and therefore
EXAMPLE 9.7. Offscreen Graph The offscreen graph of a cubic function consists of just the local graph near ∞.

We now deal in detail with the third step.

Existence Theorems

Since cubic functions have no bounded ∞-height input, the only way a feature can change sign near a bounded input is when the feature is 0 near the bounded input. In particular, essential 0 -feature inputs are bounded inputs

- with a 0 feature,
- whose existence is forced by the offscreen graph - which, in the case of cubic functions consists, by EXAMPLE 9.7, of only the local graph near ∞.
None of the following tEXAMPLEs, though, will indicate where the 0 -feature inputs inputs are located. The Location TEXAMPLEs will be dealt with in the last part of the chapter.

8 Concavity-sign

Given the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Concavity-sign Near ∞ TEXAMPLE for cubic functions says that:

- When a is + , Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cup, \cap)$
- When a is -, Concavity-Sign $\left.\right|_{x \text { near } \infty}=(\cap, \cup)$

1. Since the concavity changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the concavity also has to change sign as x goes from the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded concavity-sign change input.
EXAMPLE 9.8. G iven a cubic function whose offscreen graph is

So, based on the off-screen graph, we have
EXAMPLE 9.9. Concavity sign-change A cubic function must have at least one bounded concavity sign-change input.
2. On the other hand, based on the off-screen graph, a cubic function
could have any odd number of 0 -concavity inputs. Based on the general local input-output rule, we will see that a cubic function can have at most one 0 -concavity input. But, at this point, all we know for sure is

EXAMPLE 9.10. 0-Concavity Existence A cubic functions must have at least one concavity-sign change input:

$$
x_{\text {concavity sign-change }}=x_{0-c o n c a v i t y}
$$

9 Slope-sign

Given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Slope-sign Near ∞ TEXAMPLE for cubic functions says that:

- When a is + , Slope-Sign $\left.\right|_{x \text { near } \infty}=(/, /)$
- When a is - , Slope-Sign $\left.\right|_{x \text { near } \infty}=(\backslash, \backslash)$

1. Since the slope does not changes sign as x goes through ∞ from the left side of ∞ to the right side of ∞, the slope does not have to change sign as x goes across the screen from the left side of ∞ to the right side of ∞ so there does not have to be a bounded slope-sign change input:

EXAMPLE 9.11. G iven a cubic function whose offscreen graph is

there is no need for a bounded slope-sign change input, $x_{\text {Slope-sign change }}$ and therefore we can have

2. On the other hand, based on just graphic considerations, a cubic function could have any number of 0 -slope inputs. Based on input-output rule considerations, we will see that a cubic function can have only zero, one or two 0 -slope inputs. But, at this point, all we know for sure is
EXAMPLE 9.12. Slope-Sign Change Existence A cubic function need not have a Slope-sign change input.

And thus also
EXAMPLE 9.13. 0-Slope Existence A cubic function need not have a 0-Slope input.

10 Extremum

From the optimization viewpoint, the most immediately striking feature of an affine function is the absence of a forced extreme input, that is of a bounded input whose output is either larger than the output of nearby inputs or smaller than the output of nearby inputs. On the other hand, at this point we cannot prove that there is no extreme input.
EXAMPLE 9.14. G iven a cubic function with the offscreen graph:

Since there can be no ∞-height input, we cannot have, for instance, either one of the following

On the other hand, there is nothing to prevent a fluctuation such as:
$¥$

But no extremum input is forced: $¥$

So, we have
EXAMPLE 9.15. Extremum Existence A cubic function has no forced extremum input

11 Height-sign

Given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

recall that when x is near ∞ the Height-sign Near ∞ TEXAMPLE for cubic functions says that:

- When a is + , Height-Sign $\left.\right|_{x \text { near } \infty}=(+,-)$
- When a is - , Height-Sign $\left.\right|_{x \text { near } \infty}=(-,+)$

1. Since the height changes sign as x goes from the left side of ∞ to the right side of ∞ across ∞, the height has also to change sign as x goes from the left side of ∞ to the right side of ∞ across the screen. In other words, there has to be a bounded height-sign change input.

EXAMPLE 9.16. G iven a cubic function whose offscreen graph is

Mercator view

there has therefore to be a height-sign change input But since there cannot be a bounded ∞-height input, we cannot have

Mercator view
and therefore we must have

Mercator view

Magellan view

Magellan view
2. Moreover, because there is no bounded ∞-height input where the height could change sign, $x_{\text {height-sign change }}$ has to be a bounded input where the height is 0 . As a result, we have that

EXAMPLE 9.17. Height-Sign Change Existence A cubic functions must have a Height-sign change input and

$$
x_{\text {Height-sign change }}=x_{0 \text {-height }}
$$

Location Theorems

Previously, we only established the existence of certain essential bounded
inputs of cubic functions and this investigation was based on graphic considerations. Here we will investigate the location of the essential bounded inputs and this investigation will be based on the generic local input-output rule.

12 0-Concavity Location

Given a cubic function, the global problem of locating an input where the local concavity is 0 is still fairly simple.

More precisely, given a cubic function $C U B I C_{a, b, c, d}$, that is the cubic function specified by the global input-output rule

$$
x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

since the concavity near x_{0} is the local square coefficient $3 a x_{0}+b$, in order to find the input(s) where the local concavity is 0 , we need to solve the affine equation

$$
3 a x+b=0
$$

by reducing it to a basic equation:

$$
\begin{aligned}
3 a x+b-b & =0-b \\
3 a x & =-b \\
\frac{3 a x}{3 a} & =\frac{-b}{3 a} \\
x & =\frac{-b}{3 a}
\end{aligned}
$$

So, we have:
EXAMPLE 9.18. 0-slope Location For any cubic function $C U B I C_{a, b, c, d}$,

$$
x_{0-c o n c a v i t y}=\frac{-b}{3 a}
$$

In fact, we also have:
EXAMPLE 9.19. Global Concavity-sign Given a cubic function
$C U B I C_{a, b, c, d}$,

- When a is positive,

$$
\begin{aligned}
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }<\frac{-b}{3 a}} & =(\cap, \cap) \\
\text { Concavity-sign }\left.C U B I C\right|_{\frac{-b}{3 a}} & =(\cap, \cup) \\
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }>\frac{-b}{3 a}} & =(\cup, \cup)
\end{aligned}
$$

- When a is negative,

$$
\begin{aligned}
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }<\frac{-b}{3 a}} & =(\cup, \cup) \\
\text { Concavity-sign }\left.C U B I C\right|_{\frac{-b}{3 a}} & =(\cup, \cap) \\
\text { Concavity-sign }\left.C U B I C\right|_{\text {Everywhere }>\frac{-b}{3 a}} & =(\cap, \cap)
\end{aligned}
$$

The case is easily made by testing near ∞ the intervals for the corresponding inequations.

13 0-Slope Location

In the case of affine functions and of quadratic functions, we were able to prove that there was no shape difference with the principal term near ∞ by showing that there could be no fluctuation:

- In the case of affine functions we were able to prove that there was no shape difference with dilation functions
- In the case of quadratic functions we were able to prove that there was no shape difference with square functions.
More precisely, given the cubic function $C U B I C_{a, b, c, d}$, that is the function specified by the global input-output rule

$$
x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b^{2} x+c x+d
$$

since the slope near x_{0} is the local linear coefficient $3 a x^{2}+2 b x+c$, in order to find the input(s) where the local slope is 0 , we need to solve the quadratic equation

$$
3 a x^{2}+2 b x+c
$$

which we have seen we cannot solve by reduction to a basic equation and for which we will have to use the 0 -Height TEXAMPLE for quadratic functions, keeping in mind, though, that

- For a as it appears in 0-Height TEXAMPLE for quadratic functions, we have to substitute the squaring coefficient of $3 a x^{2}+2 b x+c$, namely $3 a$,
- For b as it appears in 0-Height TEXAMPLE for quadratic functions, we have to substitute the linear coefficient of $3 a x^{2}+2 b x+c$ namely $2 b$,
- For c as it appears in 0-Height TEXAMPLE for quadratic functions, we have to substitute the constant coefficient of $3 a x^{2}+2 b x+c$ namely c.

1. It will be convenient, keeping in mind the above substitutions, first to compute

$$
x_{0-\text { slope for }\left[3 a x^{2}+2 b x+c\right]}=-\frac{2 b}{2 \cdot 3 a}
$$

$$
\begin{aligned}
& =-\frac{2 b}{6 a} \\
& =-\frac{b}{3 a} \\
& =x_{0-\text { concavity for } C U B I C}
\end{aligned}
$$

2. Then, still keeping in mind the above substitutions, we compute the discriminant of $3 a x^{2}+2 b x+c$:

$$
\begin{aligned}
\text { Discriminant }\left[3 a x^{2}+2 b x+c\right] & =(2 b)^{2}-4(3 a)(c) \\
& =4 b^{2}-12 a c
\end{aligned}
$$

3. Then we have:

- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0$, the local linear coefficient of $C U B I C,\left[3 a x^{2}+2 b x+c\right]$, has no 0-height input and therefore $C U B I C$ has no 0-slope input.
- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0$, the local linear coefficient of CUBIC, $\left[3 a x^{2}+2 b x+c\right]$, has one 0 -height input and therefore $C U B I C$ has one 0 -slope input, namely

$$
\text { - } x_{0-\text { slope for } C U B I C}=x_{0-h e i g h t ~ f o r ~}\left[3 a x^{2}+2 b x+c\right]=-\frac{b}{3 a},
$$

- When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0$, the local linear coefficient of $C U B I C,\left[3 a x^{2}+2 b x+c\right]$, has two 0-height inputs and therefore $C U B I C$ has two 0 -slope inputs., namely:
and

$$
>x_{0-\text { slope for } C U B I C}=x_{0-h e i g h t ~ f o r ~}\left[3 a x^{2}+2 b x+c\right]=-\frac{b}{3 a}+\frac{\sqrt{4 b^{2}-12 a c}}{2 a}
$$

and

$$
\text { - } x_{0-\text { slope for CUBIC }}=x_{0-h e i g h t ~ f o r ~}^{\left[3 a x^{2}+2 b x+c\right]} \text { }=-\frac{b}{3 a}-\frac{\sqrt{4 b^{2}-12 a c}}{2 a}
$$

In terms of the function $C U B I C$, this gives us:
EXAMPLE 9.20. 0-slope Location Given the cubic function $C U B I C_{a, b, c, d}$, when

- Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0, C U B I C$ has no 0 -Slope input
- Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0, C U B I C$ has one 0 -Slope input
- Disc. $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0, C U B I C$ has two 0-Slope inputs

14 Extremum Location

The 0 -slope inputs are the only ones which can be extremum inputs. So, there will therefore be three types of cubic functions according to the number of 0-slopes inputs:

1. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0$ so that $C U B I C$ has no 0 -Slope input, there can be no extremum input and we will say that this type of cubic is of Shape type 0 .

Shape type I
Shape type II

EXAMPLE 9.21.

Since cubic function of Shape type O have no 0-Slope input, their shape is not like that of cubing functions.
2. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0$ so that $C U B I C$ has one 0-Slope input, there will still be no extremum input and we will say that this type of cubic is of Shape type I.

EXAMPLE 9.22.

Cube coefficient positive

zz Cube coefficient negative

Since cubic function of Shape type I do have one 0-Slope input, their shape is very much like that of cubing functions.
3. When Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0$ so that $C U B I C$ has two 0-Slope input, there will be one minimum input and one maximum input and we will say that this type of cubic is of Shape type II.

EXAMPLE 9.23.

We can thus state:
EXAMPLE 9.24. Extremum Location Given the cubic function $C U B I C_{a, b, c, d}$, when

- Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c<0, C U B I C$ has no locally extremum input.
- Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c=0, C U B I C$ has one locally minimum-maximum input or one locally maximum-minimum input.
- Discriminant $\left[3 a x^{2}+2 b x+c\right]=4 b^{2}-12 a c>0, C U B I C$ has both
- $x_{\text {locally }}$ minimum-output,
- $x_{\text {locally }}$ maximum-output,

15 0-Height Location

The location of 0 -height inputs in the case of a cubic function is usually not easy.

1. So far, the situation has been as follows:
i. The number of 0 -height inputs for affine functions is always one,
ii. The number of 0 -height inputs for quadratic functions is already more complicated in that, depending on the sign of the extreme-output compared with the sign of the outputs for inputs near ∞, it can be none, one or two.
It follows from the Extremum Location TEXAMPLE that
iii. The number of 0 -height inputs for cubic functions depends
a. On the Shape type of the cubic function,
b. In the case of Shape type II, on the sign of the extremum outputs relative to the sign of the cubing coefficient

EXAMPLE 9.25. T he cubic function specified by the global graph

is of Shape Type O (No 0-slope
$¥$ input) and always has a single 0 height input.

EXAMPLE 9.26. T he cubic function specified by the global graphs are all of the same shape of Type II and the number of 0 -height inputs depends on how high the graph is in relation to the 0 -output level line.

2. The obstruction to computing the solutions that we encountered when trying to solve quadratic equations, namely that there was one more term than an equation has sides is even worse here since we have four terms and an equation still has only two sides. See ?? on ??

Chapter 10

Quartic Functions

nb, nb, mnb, mbm

Chapter 11

Quintic Functions

Rational Degree, 411 - Graphic Difficulties, 413 • Local I-O Rule Near ∞,419 - Height-sign Near $\infty, 422$ - Slope-sign Near ∞,424 • Concavity-sign Near $\infty, 426$ - Local Graph Near $\infty, 431$ •LocalI-O Rule Near $x_{0}, 438$ - Height-sign Near $x_{0}, 440$ - Slope-sign Near x_{0},443 - Concavity-sign Near $x_{0}, 444$ - Local Graph Near $x_{0}, 445$ - TheEssential Question, 449 - Locating Infinite Height Inputs, 450 - OffscreenGraph, 455 • Feature-sign Change Inputs, 456 • Global Graph,457 • Locating 0-Height Inputs, 459 • Looking Back, 471 • LookingAhead, 472 • Reciprocity Between 0 and $\infty, 474$.
3.1. Reciprocal Function 474
3.2. Reciprocity 477
The Family of Power Functions, 486.
4.1. Types of Regular Functions 486
4.2. What Power Functions Do To Size 487
4.3. Fixed point 487
The bigger the size of the exponent the boxier the graph, 488 - LocalQuantitative Comparisons, 491 - Global Quantitative Comparisons, 494.
7.1. Symmetries Of Power Functions 495
7.2. Coverage By Power Functions 496
Real World Numbers - Paper World Numerals, 501.
1.1. Magnitude of collections of items 502
1.2. Magnitude of amounts of stuff. 503
1.3. Orientation of entities. 503
1.4. Concluding remarks. 504
Things To Keep In Mind, 505.
2.1. Positive numbers vs. plain numbers. 505
2.2. Symbols vs. words. 506
Zero And Infinity, 507.
3.1. Zero. 507

Plain Whole Numbers, 508.
4.1. Size and sign. 509

Comparing., 510 • Adding and Subtracting, 512 • Multiplying and Dividing, 512.
7.1. Reciprocal of a number. 512

Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares), 519 - Division in Descending Exponents, 521 • General case, 523.
nb,nb,mnb,mbm

Part IV

Rational Functions

ZZZZZZZZ

Chapter 12

Rational Degree \& Algebra Reviews

Rational Degree, 411 - Graphic Difficulties, 413 .

Rational functions are functions whose global input-output rule is of the form

$$
x \xrightarrow[R A T]{ } R A T(x)=\frac{P O L Y_{N u m}(x)}{P O L Y_{D e n}(x)}
$$

where $P O L Y_{N u m}(x)$ and $P O L Y_{\text {Den }}(x)$ stand for two positive-exponent polynomial expressions.

EXAMPLE 12.1. \mathbf{T} he function whose global input-output rule is

$$
x \xrightarrow{T A B} T A B(x)=\frac{-3 x^{2}+4 x-7}{-5 x^{4}-8}
$$

is a rational function in which:

- $\operatorname{POLY} Y_{N u m}(x)$ is $-3 x^{2}+4 x-7$
- $P O L Y_{\text {Den }}(x)$ is $-5 x^{4}-8$

1 Rational Degree

Because the upper degree of polynomial functions is what we used to sort polynomial functions into different types, we now try to extend the idea of upper degree to the case of rational functions in the hope that this will also help us sort rational functions into different types.
rational degree
regular rational function exceptional rational function

Given a rational function whose global input-output rule is

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

the rational degree of this rational function is the upper degree of $\operatorname{POL} Y_{\text {Num }}(x)$ minus the upper degree of $P O L Y_{\text {Den }}(x)$:
Rat.Deg. of $\frac{P O L Y_{N u m}(x)}{P O L Y_{D e n}(x)}=\mathrm{UppDeg}$. of $P O L Y_{N u m}(x)-\operatorname{UppDeg}$. of $P O L Y_{D e n}(x)$
Thus, the rational degree of a rational function can well be negative.

CAUTIONARY NOTE 12.1 he rational degree is to rational function very much what the size is to arithmetic fractions in "school arithmetic" which distinguishes fractions according to the size of the numerator compared to the size of the denominator even though, by now, the distinctions are only an inconsequential remnant of history.. What happened is that, historically, the earliest arithmetic fractions were "unit fractions", that is reciprocals of whole numbers such as one half, one third, one quarter, etc. Later came "Egyptian fractions", that is combinations of (distinct) unit fractions, such as one third and one fifth and one eleventh, etc. A much later development were the "proper fractions", also called "vulgar fractions", such as two thirds, three fifths etc. Later still, came "improper fractions" such as five thirds, seven halves, etc. And finally "mixed numbers", such as three and two sevenths. Today, none of these distinctions matters inasmuch as we treat all fractions in the same manner.
However, while these "school arithmetic" distinctions are based on the size of the numerator versus the size of the denominator and make no real differences in the way we handle arithmetic fractions, in the case of rational functions, the above distinction based on the upper degree of the numerator versus the upper degree of the denominator will make a difference - even though no major one - in the way we will handle rational functions of different types.

In fact, by analogy with what we did with power functions, we will say that

- Rational functions whose rational degree is either >1 or <0, are regular rational functions,
- Rational functions whose rational degree is either $=0$ or $=1$, are exceptional rational functions.

EXAMPLE 12.2. \mathbf{F} ind the rational degree of the function $D O U G H$ whose global input-output rule is

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{x^{2}-5 x+6}
$$

Since the rational degree is given by
Rat.Deg. of $\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}=$ UppDeg. of $P O L Y_{\text {Num }}(x)-$ UppDeg. of $P O L Y_{D e n}(x)$ and since, here,

- $\operatorname{POLY} Y_{\text {Num }}(x)=+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9$
- $\operatorname{POL} Y_{\text {Den }}(x)=+1 x^{2}-5 x+6$
we get from the definition of the upper degree of a polynomial that:
UppDeg. of $+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9=$ Exponent of Highest Term

$$
\begin{aligned}
& =\text { Exponent of }+1 x^{4} \\
& =4 \\
& =\text { Exponent of Highest } \\
& =\text { Exponent of }+1 x^{2} \\
& =2
\end{aligned}
$$

$$
\text { UppDeg. of }+1 x^{2}-5 x+6=\text { Exponent of Highest Term }
$$

so that the rational degree of the rational function $D O U G H$ is:

$$
\text { Rat.Deg. of } \begin{aligned}
\frac{+1 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{+1 x^{2}-5 x+6} & =\text { Exponent of }+1 x^{4}-\text { Exponent of }+1 x^{2} \\
& =4-2 \\
& =2
\end{aligned}
$$

so that DOUGH is an example of a rational function of degree >1 and therefore of a regular rational function.

2 Graphic Difficulties

Finally, when there is one or more ∞-height bounded input(s), beginners often encounter difficulties when trying to interpolate smoothly the outlying graph of a rational function.

The difficulties are caused by the fact that, when we draw the local graph near ∞ and the local graphs near the ∞-height inputs from the local input-output rules, we are only concerned with drawing the local graphs themselves from the local input-output rules. In particular, when we draw the local graph near ∞ and the local graphs near the ∞-height inputs, we want to bend them enough to show the concavity but we often end up
bending them too much to interpolate them.
But then, what often happens as a result is that, when we want to interpolate, the local graphs may not line up well enough for us to interpolate them (smoothly).

EXAMPLE 12.3.

Given the rational function whose offscreen graph was drawn so as to show the concavity.

Here is what can happens when we attempt to interpolate

Of course, this is absolutely impossible since, according to this global graph, there would be inputs, such as x_{0}, with more than one output, y_{1}, y_{2}, \ldots :

But if we unbend the local graphs just a bit as in

we have no trouble interpolating:

The way to avoid this difficulty is not to wait until we have to interpolate but to catch any problem as we draw the local graphs by mentally extending the local graphs slightly into the transitions.

EXAMPLE 12.4.

Given the rational function whose offscreen graph was drawn do as to $¥$ show the concavity

we can already see by extending the local graphs just a little bit into the transitions that this will cause a lot of trouble when we try to interpolate the local graph:

So, here, we bend the local graph near ∞ a little bit more and we unbend the local graphs near the ∞ height inputs a little bit:

We check again by extending the local graphs just a little bit into the $¥$ transitions:
and indeed now we have no trouble interpolating:

??
??
??
??
??
??
??
??
??
??
??
??
??
??
$==============================$
??
??
??
??
??
??
??
??

??
??
================================
??
??
??
??
??
??
??
??
??
??

??
??
??
??
??
??
??
??
??
??

??
??
??
??
??
??
??
??
??
??

??
??
??
??

Chapter 13

Rational Functions: Local Analysis Near ∞

Local I-O Rule Near $\infty, 419$ - Height-sign Near $\infty, 422$ • Slope-sign Near $\infty, 424 \cdot$ Concavity-sign Near $\infty, 426$ - Local Graph Near $\infty, 431$.

To do local analysis we work in a neighborhood of some given input and thus count inputs from the given input since it is the center of the neighborhood. When the given input is ∞, counting from ∞ means setting $x \leftarrow$ large and computing with powers of large in descending order of sizes.

Recall that the principal term near ∞ of a given polynomial function $P O L Y$ is simply its highest power term which is therefore easy to extract from the global input-output rule. The approximate input-output rule near ∞ of $P O L Y$ is then of the form
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{P O L Y} P O L Y(x)\right|_{x \text { near } \infty}=$ Highest Term POLY $+[\ldots]$
However, the complication here is that to get the principal part near ∞ of a rational function we must approximate the two polynomial and divide - or the other way round - and the result need not be a polynomial but can also be a negative-exponent power function and the main issue will be whether to do the approximation before or after the division.

1 Local Input-Output Rule Near ∞

Given a rational function $R A T$, we look for the function whose input-output rule will be simpler than the input-output rule of $R A T$ but whose local graph near ∞ will be qualitatively the same as the local graph near ∞ of $R A T$.

More precisely, given a rational function $R A T$ specified by the global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

what we will want then is an approximation for the output of the local input-output rule near ∞

$$
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{R A T} R A T(x)\right|_{x \text { near } \infty}=\left.\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}\right|_{x \text { near } \infty}
$$

from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is ∞, we localize both

- $P O L Y_{\text {Num }}(x)$
and
- $P O L Y_{D e n}(x)$
by writing them in descending order of exponents.

2. Depending on the circumstances, we will take one of the following two routes to extract what controls the wanted feature:
■ The short route to Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$, that is:
i. We approximate both $\left.P O L Y_{N u m}(x)\right|_{x \text { near } \infty}$ and $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } \infty}$ to their principal term - that is to just their highest size termwhich, since x is near ∞, is their highest exponent term:

ii. In order to divide Princ.TERM $\left.M_{N u m(x)}\right|_{x \text { near } \infty}$, that is the principal term near ∞ of the numerator of RAT by Princ.TERM $\left.M_{D e n(x)}\right|_{x \text { near } \infty}$, that is the principal term near ∞ of the denominator of $R A T$ we use monomial division

$$
\frac{a x^{+m}}{b x^{+n}}=\frac{a}{b} x^{+m \ominus+n} \text { where }+m \ominus+n \text { can turn out positive, negative or } 0
$$

$$
\begin{aligned}
& \left.\operatorname{Princ.TERM} R A T(x)\right|_{x \text { near } \infty}=\frac{\operatorname{Princ} .\left.T E R M_{N u m}(x)\right|_{x \text { near } \infty}}{\left.\operatorname{Princ.TERM} M_{\text {Den }}(x)\right|_{x \text { near } \infty}}
\end{aligned}
$$

$$
=\frac{\text { coef. Princ.TERM }\left.M_{\text {Num }}(x)\right|_{x \text { near } \infty} \cdot x^{\text {RatDeg.RAT(x) }}}{\text { coef. Princ.TERM }}
$$

The resulting monomial is Princ.TERMRAT $\left.(x)\right|_{x \text { near } \infty}$, that is the principal term of the rational function $R A T$ near ∞ :

ii. We approximate by stopping the long division as soon as we have the principal part that has the feature(s) we want:

3. Which route we will take in each particular case will depend both on the wanted feature(s) near ∞ and on the rational degree of $R A T$ and so we will now look separately at how we get Height-sign $\left.\right|_{x \text { near } \infty}$, Slope-sign $\left.\right|_{x \text { near } \infty}$ and Concavity-sign $\left.\right|_{x \text { near } \infty}$

422CHAPTER 13. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR ∞

LOCAL ANALYSIS NEAR ∞

When the wanted features are to be found near ∞, the rational degree of the rational function tells us up front whether or not the short route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near ∞

No matter what the rational degree of the given rational function $R A T$, Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$ will give us Height-sign $\left.\right|_{x \text { near } \infty}$ because, no matter what its exponent, any power function has Height-sign $\left.\right|_{x \text { near }}$. So, no matter what the rational degree of $R A T$, to extract the term responsible for Height-sign $\left.\right|_{x \text { near } \infty}$ we can take the short route to Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$:

EXAMPLE 13.1. G iven the rational function $D O U G H$ specified by the global input-output rule

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}
$$

find Height-sign $\left.D O U G H\right|_{x \text { near } \infty}$.
a. We localize both the numerator and the denominator near ∞-which amounts only to making sure that the terms are in descending order of exponents.
$\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}$ Localize near $\infty \quad \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}$
b. Inasmuch as Princ.TERM DOUGH $\left.(x)\right|_{x \text { near } \infty}$ has Height no matter what the degree, in order to extract the term that controls Height-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM $\left.\operatorname{DOUGH}(x)\right|_{x \text { near } \infty}$:
i. We approximate

$$
\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \text { Li. Approximate near Approximate } \frac{+12 x^{5}+[\ldots]}{-3 x^{2}+[\ldots]}
$$

that is we approximate

- the numerator $+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9$ to its principal term, $-12 x^{5}$
- the denominator $-3 x^{2}-5 x+6$ to its principal term, $-3 x^{2}$
ii. And then we divide:

where

$$
\begin{aligned}
\frac{+12 x^{5}}{-3 x^{2}} & =\frac{+12 \cdot x \cdot x \cdot x \cdot x \cdot x}{-3 \cdot x \cdot x} \\
& =-\frac{12}{3} x^{5-2}
\end{aligned}
$$

The more usual way to write all this is something as follows:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)\right|_{x \text { near } \infty} & =\left.\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}\right|_{x \text { near } \infty} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6} \\
& =\frac{+12 x^{5}+[\ldots]}{-3 x^{2}+[\ldots]} \\
& =-\frac{12}{3} x^{5-2}+[\ldots]
\end{aligned}
$$

Whatever we write, the principat term of DOUGH near ∞ is $-\frac{12}{3} x^{3}$ and it gives

$$
\text { Height-sign }\left.D O U G H\right|_{x \text { near } \infty}=(-,+)
$$

EXAMPLE 13.2. G iven the function $P A C$ specified by the global inputoutput rule

$$
x \xrightarrow{P A C} P A C(x)=\frac{-12 x^{3}+7 x+4}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+10}
$$

find Height-sign $\left.P A C\right|_{x \text { near } \infty}$. Inasmuch as Princ.TERM PAC(x) $\left.\right|_{x \text { near } \infty}$ has Height no matter what the degree, in order to extract the term that controls Height-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM DOUGH $\left.(x)\right|_{x \text { near } \infty}$:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{P A C} P A C(x)\right|_{x \text { near } \infty} & =\left.\frac{-12 x^{3}+7 x+4}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+10}\right|_{x \text { near } \infty} \\
& =\frac{-12 x^{3}+7 x+\left.4\right|_{x \text { near } \infty}}{+4 x^{5}-6 x^{4}-17 x^{2}-2 x+\left.10\right|_{x \text { near } \infty}} \\
& =\frac{-12 x^{+3}+[\ldots]}{+4 x^{+5}+[\ldots]} \\
& =\frac{-12}{+4} x^{+3 \ominus+5}+[\ldots] \\
& =-3 x^{-2}+[\ldots]
\end{aligned}
$$

and we get that

$$
\text { Height-sign }\left.P A C\right|_{x \text { near } \infty}=(-,-)
$$

3 Slope-sign Near ∞

In the case of Slope-sign $\left.R A T\right|_{x \text { near } \infty}$, there are two cases depending on the rational degree of the given rational function:

- If the rational function $R A T$ is either:
- A regular rational function, that is of rational degree >1 or <0
or
- An exceptional rational function of rational degree $=1$,
that is not an exceptional rational function of rational degree $=0$, then Princ. TERM RAT(x) $\left.\right|_{x \text { near } \infty}$ will be a power function that will have Slope near ∞ and so in order to extract the term that controls Slope-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ. TERM RAT $\left.(x)\right|_{x \text { near } \infty}$:

EXAMPLE 13.3. G iven the rational function SOUTH specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find Slope-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH
a. We have

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We now proceed with the two steps:

$$
\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9} \stackrel{\text { Approximate }}{\stackrel{\text { Approximate }}{\square} \frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}}
$$

b. The more usual presentation is:

$$
\begin{aligned}
&\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty}=\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
&=\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}} \\
& \text { We and } \\
&+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty} \quad-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty \quad \text { approximate }} \\
&=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
\end{aligned}
$$

and then we divide:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

c. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

which approximates SOUTH near ∞ is <0, the power function $P O W E R$ has all three features, concavity, slope and height. (This was of course to be expected from the fact that the rational degree of SOUTH is <0.)
ii. We get

$$
\text { Slope-sign of SOUTH near } \infty=(/, \backslash)
$$

■ If the rational function $R A T$ is an exceptional rational function whose rational degree $=0$, then Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$ will be an exceptional power function with exponent $=0$ and Princ.TERM RAT(x) $\left.\right|_{x \text { near } \infty}$ will not have Slope and so in order to extract the term that controls Slope-sign $\left.\right|_{x \text { near } \infty}$ we will have to take the long route to a Princ.PART $\left.R A T(x)\right|_{x \text { near } \infty}$ that has Slope:
$\left.\frac{P O L Y_{\text {Num }}(x)}{\operatorname{POLY} Y_{\text {Den }}(x)}\right|_{x \text { near } \infty} \quad$ Localize near $\infty \quad \frac{\left.P O L Y_{\text {Num }}(x)\right|_{x \text { near } \infty}}{\left.\operatorname{LOLY} Y_{\text {Den }}(x)\right|_{x \text { near } \infty}}$

4 Concavity-sign Near ∞

In the case of Concavity-sign $\left.R A T\right|_{x \text { near } \infty}$, there are two cases depending on the rational degree of the given rational function.

- If the rational function $R A T$ is a regular rational function, that is if the rational degree of $R A T$ is either >1 or <0, then Princ. TERM $\left.R A T(x)\right|_{x \text { near } \infty}$ will be a regular power function, that is a power function whose exponent is either >1 or <0 and then, in either case, Princ. TERM $\left.R A T(x)\right|_{x \text { near } \infty}$ will have Concavity and so in order to extract the term that controls

Concavity-sign $\left.\right|_{x \text { near } \infty}$ we take the short route to Princ.TERM $\left.{ }_{\text {Den }}(x)\right|_{x \text { near } \infty}$:

EXAMPLE 13.4. G iven the rational function $S O U T H$ specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find Concavity-sign of SOUTH near ∞
i. We get the local graph near ∞ of SOUTH
a. We have

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We now proceed with the two steps:

$$
\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}
$$

$\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}$

b. The more usual presentation is:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We approximate } \begin{aligned}
& \text { We } \\
&+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}-5 x+\left.6\right|_{x \text { near } \infty} \\
&=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
\end{aligned}
\end{aligned}
$$

and then we divide:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

c. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

which approximates SOUTH near ∞ is <0, the power function $P O W E R$ has all three features, concavity, slope and height. (This was of course to be expected from the fact that the rational degree of SOUTH is <0.) ii. We get

$$
\text { Concavity-sign of SOUTH near } \infty=(\cap, \cap)
$$

- If the rational function $R A T$ is an exceptional rational function that is if the rational degree of $R A T$ is either $=1$ or $=0$ then Princ.TERM RAT $\left.(x)\right|_{x \text { near } \infty}$ will be an exceptional power function with exponent either $=1$ or $=0$ (Chapter 7) and in both cases Princ.TERM $\left.R A T(x)\right|_{x \text { near } \infty}$ will not have Concavity and in order extract the term that controls Concavity-sign $\left.\right|_{x \text { near }} \infty$ we will have to take the long route to a Princ. PART RAT(x) $\left.\right|_{x \text { near } \infty}$ that does have Concavity.
$\left.\frac{\operatorname{POLY}_{\text {Num }}(x)}{\operatorname{POLY} Y_{\text {Den }}(x)}\right|_{x \text { near } \infty} \quad$ Localize near $\infty \quad \frac{\left.\operatorname{POL} Y_{\text {Num }}(x)\right|_{x \text { near } \infty}}{\left.\operatorname{POLY} Y_{\text {Den }}(x)\right|_{x \text { near } \infty}}$

EXAMPLE 13.5. G iven the rational function $B A T H$ specified by the global input-output rule

$$
x \xrightarrow{\text { BATH }} \operatorname{BATH}(x)=\frac{+x^{3}-5 x^{2}+x+6}{+x^{2}-4 x+3}
$$

find Concavity-sign $\left.B A T H\right|_{x \text { near } \infty}$
a. The localization step is to localize both the numerator and the denominator near ∞-which amounts only to making sure that the terms are in descending order of exponents.
$\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3}$
Localize near $\infty \quad \frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near } \infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near } \infty}}$
b. Since Princ. TERM BATH $\left.(x)\right|_{x \text { near } \infty}$ has no Concavity, the extraction step to get Concavity-sign $\left.B A T H\right|_{x \text { near } \infty}$ must take the long route to a Princ. PART BATH $\left.(x)\right|_{x \text { near } \infty}$ that has Concavity:
i. We set up the division as a long division:

ii. We approximate by stopping the long division as soon as we have the principal part of the quotient that has Concavity:

$$
\begin{aligned}
& \frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3} \text { Localize near } \infty \quad \frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near }+\infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near }+\infty}} \frac{+x^{3}+[\ldots]}{+x^{2}+[\ldots]} \\
& \begin{array}{c}
+x^{2}-4 x+3 \begin{array}{|}
+x^{3}-5 x^{2}+x+9 \\
+x^{3}-4 x^{2}+3 x
\end{array} \\
\begin{array}{c}
0 x^{3}-x^{2}-2 x+9 \\
-x^{2}+4 x-3
\end{array} \\
\frac{0 x^{2}-6 x+12}{}
\end{array}
\end{aligned}
$$

that is we stop with $-6 x^{-1}$ since it is the term responsible for Concavity. The more usual way to write all this is:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{B A T H} B A T H(x)\right|_{x \text { near } \infty} & =\left.\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3}\right|_{x \text { near } \infty} \\
& =\frac{+x^{3}-5 x^{2}+x+\left.9\right|_{x \text { near } \infty}}{+x^{2}-4 x+\left.3\right|_{x \text { near } \infty}} \\
& =\frac{+x^{3}-5 x^{2}+x+9}{+x^{2}-4 x+3}
\end{aligned}
$$

and then we divide (in the latin manner):

\[

\]

Whichever way we write it, Princ. PART $\left.\operatorname{BATH}(x)\right|_{x \text { near } \infty}=+x-1-$ $6 x^{-1}$ and its third term, $-6 x^{-1}$, gives

Concavity-sign $\left.B A T H\right|_{x \text { near } \infty}=(\cap, \cup)$

5 Local Graph Near ∞

In order to get the local graph near ∞, we need a local input-output rule that gives us the concavity-signÑand therefore the slope-sign and the height-sign.

So, the route we must take in order to get the local graph near ∞ is the route that will get us the concavity-sign near ∞.

EXAMPLE 13.6. G iven the rational function SOUTH whose global inputoutput rule is

$$
x \xrightarrow{\operatorname{SOUTH}} \operatorname{SOUTH}(x)=\frac{-3 x^{2}-5 x+6}{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}
$$

find its local graph near ∞.
i. We get the local input-output rule near ∞ as in EXAMPLE 1.

We have:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)\right|_{x \text { near } \infty} & =\left.\frac{-3 x^{2}-5 x+6}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}\right|_{x \text { near } \infty} \\
& =\frac{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}
\end{aligned}
$$

We approximate separately the numerator and the denominator:

$$
=\frac{-3 x^{2}+[\ldots]}{+12 x^{5}+[\ldots]}
$$

We divide the approximations:

$$
\begin{aligned}
& =\frac{-3}{+12} x^{2-5}+[\ldots] \\
& =-\frac{1}{4} x^{-3}+[\ldots]
\end{aligned}
$$

ii. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-\frac{1}{4} x^{-3}
$$

is <0, the power function $P O W E R$ is regular and has both concavity and slope. So, the local graph of the power function POWER near ∞ will be approximately the graph near ∞ of the rational function SOUTH.
The local graph near ∞ of the rational function SOUTH is therefore:

EXAMPLE 13.7. G iven the rational function $D O U G H$ whose global input-
output rule is

$$
x \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)=\frac{+12 x^{4}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}
$$

find its local graph near ∞.
i. We get the local input-output rule near ∞.

We have:

$$
\begin{aligned}
\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{\text { DOUGH }} \operatorname{DOUGH}(x)\right|_{x \text { near } \infty} & =\left.\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-9}{-3 x^{2}-5 x+6}\right|_{x \text { near } \infty} \\
& =\frac{+12 x^{5}-6 x^{3}+8 x^{2}+6 x-\left.9\right|_{x \text { near } \infty}}{-3 x^{2}-5 x+\left.6\right|_{x \text { near } \infty}}
\end{aligned}
$$

We approximate separately the numerator and the denominator:

$$
=\frac{+12 x^{5}+[\ldots]}{-3 x^{4}+[\ldots]}
$$

We divide the approximations:

$$
\begin{aligned}
& =-\frac{+12}{-3} x^{5-2}+[\ldots] \\
& =-4 x^{+3}+[\ldots]
\end{aligned}
$$

ii. Since the degree of the power function

$$
x \xrightarrow{P O W E R} P O W E R(x)=-4 x^{+3}
$$

is >1, the power function $P O W E R$ is regular and has both concavity and slope. So, the local graph of the power function $P O W E R$ near ∞ will be approximately the graph near ∞ of the rational function $D O U G H$. The local graph near ∞ of the rational function $D O U G H$ is therefore:

EXAMPLE 13.8. G iven the rational function $B A T H$ specified by the global input-output rule

$$
x \xrightarrow{\text { BATH }} \text { BATH }(x)=\frac{+x^{3}+x^{2}-5 x+6}{+x^{2}-4 x++3}
$$

as in EXAMPLE 1, find the local graph near ∞.
i. We get the local input-output rule near ∞ that gives all three features as we did in EXAMPLE 1:
$\left.\left.x\right|_{x \text { near } \infty} \xrightarrow{B A T H} \operatorname{BATH}(x)\right|_{x \text { near } \infty}=+x+5+27 x^{-1}+[\ldots]$
ii. So the local graph near ∞ of the function BATH is

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

434CHAPTER 13. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR ∞

5. LOCAL GRAPH NEAR ∞
??
??
??
??
??
??
??
??

436CHAPTER 13. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR ∞

Chapter 14

Rational Functions: Local Analysis Near x_{0}

Local I-O Rule Near $x_{0}, 438$ • Height-sign Near $x_{0}, 440$ • Slope-sign Near $x_{0}, 443$ • Concavity-sign Near $x_{0}, 444$ - Local Graph Near $x_{0}, 445$.

Doing local analysis means working in a neighborhood of some given input and thus counting inputs from the given input since it is the center of the neighborhood. When the given input is x_{0}, we localize at x_{0}, that is we set $x=x_{0}+h$ where h is small and we compute with powers of h in descending order of sizes.

EXAMPLE 14.1. G iven the input +2 , then the location of the number +2.3 relative to +2 is +0.3 :

Recall that the principal part near x_{0} of a given polynomial function $P O L Y$ is the local quadratic part
$\left.\left.x\right|_{x \text { near } x_{0}} \xrightarrow{P O L Y} P O L Y(x)\right|_{x \text { near } x_{0}}=[\quad]+[\quad]+[\quad] h^{2}+[\ldots]$
However, the complication here is that to get the principal part near x_{0} of a rational function we must approximate the two polynomial and divide - or the other way round - and the result need not be a polynomial but can also be a negative-exponent power function and the main issue will be whether to do the approximation before or after the division.

1 Local Input-Output Rule Near \boldsymbol{x}_{0}

Given a rational function $R A T$, we look for the function whose input-output rule will be simpler than the input-output rule of $R A T$ but whose local graph near x_{0} will be qualitatively the same as the local graph near x_{0} of $R A T$.

More precisely, given a rational function $R A T$ specified by the global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}
$$

what we will want then is an approximation for the output of the local
input-output rule near x_{0}

$$
\left.\left.x\right|_{x \text { near } x_{0}} \xrightarrow{R A T} R A T(x)\right|_{x \text { near } x_{0}}=\left.\frac{P O L Y_{\text {Num }}(x)}{P O L Y_{\text {Den }}(x)}\right|_{x \text { near } x_{0}}
$$

from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is x_{0}, we localize both

- $P O L Y_{\text {Num }}(x)$
and
- $P O L Y_{D e n}(x)$
by letting $x \leftarrow x_{0}+h$ and writing the terms in ascending order of exponents.

2. Depending on the circumstances, we will take one of the following two routes to extract what controls the wanted feature:
■ The short route to Princ.TERM RAT(x) $\left.\right|_{x \text { near } x_{0}}$, that is:
i. We approximate both $\left.P O L Y_{\text {Num }}(x)\right|_{x \text { near } x_{0}}$ and $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } x_{0}}$ to their principal term - that is to just their lowest size term - which, since x is near ∞, is their lowest exponent term:

ii. In order to divide Princ.TERM $\left.M_{N u m(x)}\right|_{x \text { near } x_{0}}$, that is the principal term near x_{0} of the numerator of RAT by Princ.TERM $\left.M_{D e n(x)}\right|_{x \text { near } x_{0}}$, that is the principal term near x_{0} of the denominator of $R A T$ we use monomial division

The resulting monomial is Princ.TERMRAT $\left.(x)\right|_{x \text { near } x_{0}}$, that is the principal term of the rational function $R A T$ near x_{0}.

However, Princ.TERM RAT $\left.(x)\right|_{x \text { near } x_{0}}$ is useful only in four cases:

- When it is a constant term and what we want is the Height-sign,
- When it is a linear term and what we want is the Height-sign or the Slope-sign,
- When it is a square term,
- When it is a negative-exponent term.

The long route to Princ. PART RAT(x) $\left.\right|_{x \text { near } x_{0}}$:
i. In order to divide $\left.P O L Y_{N u m}(x)\right|_{x \text { near } x_{0}}$ by $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } x_{0}}$, we set up the division as a long division, that is $\left.P O L Y_{\text {Den }}(x)\right|_{x \text { near } x_{0}}$ dividing into $\left.P O L Y_{\text {Num }}(x)\right|_{x \text { near } x_{0}}$ and since these are polynomials in h, in order to be in order of descending sizes, they must be in order of ascending exponents.
ii. We approximate by stopping the long division as soon as we have the principal part that has the feature(s) we want:
iii. The difficulty will be that we will have to approximate at two different stages:

- While we localize both the numerator and the denominator,
- When we divide the approximate localization of the numerator by the approximate localization of the denominator
So, we will have to make sure that the approximations in the localizations of the numerator and the denominator do not interfere with the approximation in the division, that is that, as we divide, we do not want to bump into a [...] coming from having approximated the numerator and the denominator too much, that is before we can extract from the division the term that controls the wanted feature.

3. Which route we will take in each particular case will depend both on the wanted feature(s) near x_{0} and so we will now look separately at how we get Height-sign $\left.\right|_{x \text { near } \infty}, S l o p e-s i g n| |_{x \text { near } x_{0}}$ and Concavity-sign $\left.\right|_{x \text { near } x_{0}}$

Local Analysis Near x_{0}

When the wanted features are to be found near x_{0}, the rational degree of the rational function does not tell us which of the short route or the long route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near x_{0}

If all we want is the Height-sign, then we can always go the short route.

EXAMPLE 14.2. \mathbf{L} et $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

Find the height-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2

$$
\begin{aligned}
h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h) & =\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
& =\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}} \\
& =\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15}
\end{aligned}
$$

ii. Since we want the local input-output rule that will give us the height-sign, we try to approximate before we divide:

$$
\begin{aligned}
& =\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[\ldots]}{\left[(+2)^{4}-(+2)^{3}-10(+2)^{2}+2-15\right]+[\ldots]} \\
& =\frac{[+4+10+6]+[\ldots]}{[+16-8-40+2-15]+[\ldots]} \\
& =\frac{+20+[\ldots]}{-45+[\ldots]} \\
& =-\frac{20}{45}+[\ldots]
\end{aligned}
$$

and since the approximate local input-output rule near +2 is

$$
h \xrightarrow{\mathrm{SOUTH}_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}+[\ldots]
$$

and the local input-output rule includes the term that gives the Height-sign near +2

$$
-\frac{20}{45}
$$

we have:

$$
\text { Height-sign SOUTH near }+2=(-.-)
$$

EXAMPLE 14.3. \mathbf{L} et $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

Find the height-sign of SOUTH near -3
i. We localize both the numerator of SOUTH and the denominator of SOUTH near -3

$$
\begin{aligned}
h \xrightarrow{\text { SOUTH }_{-3}} \operatorname{SOUTH}(-3+h) & =\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow-3+h} \\
& =\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow-3+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-3+h}} \\
& =\frac{(-3+h)^{2}+5(-3+h)+6}{(-3+h)^{4}-(-3+h)^{3}-10(-3+h)^{2}+(-3+h)-15}
\end{aligned}
$$

ii. Since we want the local input-output rule that will give us the height-sign, we try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{\left[(-3)^{2}+5 \cdot(-3)+6\right]+[\ldots]}{\left[(-3)^{4}-(-3)^{3}-10(-3)^{2}-3-15\right]+[\ldots]} \\
& =\frac{[+9-15+6]+[\ldots]}{[+81+27-90-3-15]+[\ldots]} \\
& =\frac{[0]+[\ldots]}{[0]+[\ldots]}
\end{aligned}
$$

We cannot divide as we could get

$$
=\text { any size }
$$

iii. We therefore must approximate the localizations at least to h

$$
\begin{aligned}
& =\frac{[0]+[2 \cdot(-3)+5] h+[\ldots]}{[0]+\left[+4(-3)^{3}-3(-3)^{2}-10 \cdot 2(-3)+1\right] h+[\ldots]} \\
& =\frac{[-6+5] h+[\ldots]}{[-108-27+60+1] h+[\ldots]} \\
& =\frac{[-1] h+[\ldots]}{[-74] h+[\ldots]} \\
& =\frac{-h+[\ldots]}{-74 h+[\ldots]}
\end{aligned}
$$

We divide

$$
=+\frac{1}{74}+[\ldots]
$$

and since the approximate local input-output rule near -3 is

$$
h \xrightarrow{\text { SOUTH }_{-3}} \operatorname{SOUTH}(-3+h)=+\frac{1}{74}+[\ldots]
$$

and the local input-output rule includes the term that gives the Height-sign near -3

$$
+\frac{1}{74}
$$

we have:

$$
\text { Height-sign SOUTH near }-3=(+,+)
$$

3 Slope-sign Near x_{0}

EXAMPLE 14.4. \mathbf{L} et $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH } \operatorname{SOUTH}}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the slope-sign of $S O U T H$ near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2 and since we want the approximate local input-output rule for the slope-sign, we will approximate to h :

$$
\begin{aligned}
&+2+h \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(+2+h)=\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
&=\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}} \\
&=\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15} \\
&=\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[2(+2)+5] h+[\ldots]}{\left[(+2)^{4}-(+2)^{3}-10 \cdot(+2)^{2}+(+2)-15\right]+\left[4(+2)^{3}-3(+2)^{2}-10 \cdot 2(+2)+1\right] h+[\ldots]} \\
&=\frac{[+20]+[+9] h+[\ldots]}{[-45]+[-19] h+[\ldots]}
\end{aligned}
$$

ii. We set up the division with

$$
[-45]+[-19] h+[\ldots] \quad \text { dividing into } \quad[+20]+[+9] h+[\ldots]
$$

that is:

444CHAPTER 14. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR X X_{0}

And since $[9 \cdot 45]-[19 \cdot 20]=405-380=+25$, the approximate local inputoutput rule near +2 is:

$$
h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h+[\ldots]
$$

and the term that gives the slope-sign near +2 is

$$
-\frac{25}{45^{2}} h
$$

so that

$$
\text { Slope-sign SOUTH near }+2=(\backslash . \backslash)
$$

4 Concavity-sign Near x_{0}

EXAMPLE 14.5. L et SOUTH be the function specified by the global input-output rule

$$
x \xrightarrow{\operatorname{SOUTH}} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the concavity-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of SOUTH near +2 and since we want the approximate local input-output rule for the slope-sign, we will approximate to h^{2} :

$$
\begin{aligned}
&+2+h \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(+2+h)=\left.\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}\right|_{x \leftarrow+2+h} \\
&=\frac{x^{2}+5 x+\left.6\right|_{x \leftarrow+2+h}}{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow+2+h}} \\
&=\frac{(+2+h)^{2}+5(+2+h)+6}{(+2+h)^{4}-(+2+h)^{3}-10(+2+h)^{2}+(+2+h)-15} \\
&=\frac{\left[(+2)^{2}+5 \cdot(+2)+6\right]+[2(+2)+5] h+[1] h^{2}}{\left[(+2)^{4}-(+2)^{3}-10 \cdot(+2)^{2}+(+2)-15\right]+\left[4(+2)^{3}-3(+2)^{2}-10 \cdot 2(+2)+1\right] h+\left[6(+2)^{2}-3(+2)-10\right] h^{2}+} \\
&=\frac{[+20]+[+9] h+[1] h^{2}}{[-45]+[-19] h+[8] h^{2}+[\ldots]}
\end{aligned}
$$

ii. We set up the division with

$$
-45+-19 h+8 h^{2}+[\ldots] \quad \text { dividing into } \quad+20+9 h+h^{2}
$$

but carry it out latin style (that is, we write the result of the multiplication as it comes out instead of the opposite of the result.)

And since $\frac{+45[45-8 \cdot 20]-19[9 \cdot 45]-[19 \cdot 20]]}{45^{2}}=-\frac{2401}{45^{2}}$, the local input-output rule near +2 is:
$h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h-\frac{2401}{45^{2}} h^{2}+[\ldots]$
and the term that gives the concavity-sign near +2 is

$$
-\frac{2401}{45^{2}} h^{2}
$$

so that

$$
\text { Concavity-sign SOUTH near }+2=(\cap, \cap)
$$

5 Local Graph Near x_{0}

EXAMPLE 14.6. \mathbf{L} et $S O U T H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\text { SOUTH }} \operatorname{SOUTH}(x)=\frac{x^{2}+5 x+6}{x^{4}-x^{3}-10 x^{2}+x-15}
$$

find the local graph of SOUTH near +2
Since, in order to get the local graph near +2 we need all three features near +2 , height-sign, slope-sign and concavity-sign, we need to get the approximate local input-output rule as we did in the previous example:
$h \xrightarrow{\text { SOUTH }_{+2}} \operatorname{SOUTH}(+2+h)=-\frac{20}{45}-\frac{25}{45^{2}} h-\frac{2401}{45^{2}} h^{2}+[\ldots]$
from which we get:

446CHAPTER 14. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR X_{0}

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

 ??

??
??
??
??
??
??
??
??
??
??

??
??
??
??
??
??
??
??
??
??
$==============================$
??
??
??
??
??
??
??
??
??
??
$=============================$
??
??
??
??
??

448CHAPTER 14. RATIONAL FUNCTIONS: LOCAL ANALYSIS NEAR X X_{0}
??
??
??
??
??
$===============================1$

Chapter 15

Rational Functions: Global Analysis

The Essential Question, 449 - Locating Infinite Height Inputs, 450 • Offscreen Graph, 455 • Feature-sign Change Inputs, 456 • Global Graph, 457 • Locating 0-Height Inputs, 459 .

Contrary to what we were able to do with polynomial functions, with rational functions we will not be able to establish global tEXAMPLEs. Of course, we did not really establish global tEXAMPLEs for all polynomial functions either but only for polynomial functions of a given degree, 0,1 , 2 and 3. But, in the case of rational functions, even the rational degree will not separate rational functions into kinds that we can establish global tEXAMPLEs for inasmuch as even rational functions with a given rational degree can be very diverse.

So, what we will do here is to focus on how to get global information about any given rational function.

1 The Essential Question

Given a rational function, as with any function, the offscreen graph will consist:

- certainly of the local graph near ∞. This is because, as soon as the input is large, the graph point is going to be left or right of the screen and therefore offscreen regardless of the size of the output,
- possibly of the local graph(s) near certain bounded input(s). This is because, in case the outputs for inputs near certain bounded inputs are
large, the graph points will then be above or below the screen and therefore offscreen even though the inputs are bounded.
So, as always, we will need to ascertain whether
- There might be bounded inputs for which nearby inputs will have a large output,
or, as was the case with all polynomial functions,
- The outputs for any bounded input are themselves necessarily bounded In other words, in order to get the offscreen graph, we must begin by asking the Essential Question:
- Do all bounded inputs have bounded outputs or
- Is there one (or more) bounded input which is an ∞ height input, that is, a bounded input whose nearby inputs have unbounded outputs?

And, indeed, we will find that there are two kinds of rational functions:

- rational functions that do have ∞-height input(s)
- rational function that do not have any ∞-height input as was the case with power functions and polynomial functions.

2 Locating Infinite Height Inputs

However, given a rational function, not only will we need to know whether or not there exists ∞-height input(s), if there are any, we will also have to locate the ∞-height inputs, if any, because we will need to get the local graph near these ∞-height input(s). More precisely:

1. Given a rational function $R A T$ specified by a global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{N U M E R A T O R_{R A T}(x)}{D E N O M I N A T O R_{R A T}(x)}
$$

we want to find whether or not there can be a bounded input x_{0} such that the outputs for nearby inputs, $x_{0}+h$, are large. In other words, we want to know if there can be x_{0} such that

$$
\left.h \xrightarrow{R A T} R A T(x)\right|_{x \leftarrow x_{0}+h}=\text { large }
$$

But we have

$$
\left.R A T(x)\right|_{x \leftarrow x_{0}+h}=\left.\frac{N U M E R A T O R_{R A T}(x)}{D E N O M I N A T O R_{R A T}(x)}\right|_{x \leftarrow x_{0}+h}
$$

$$
\begin{aligned}
& =\frac{\text { NUMERATOR }\left.R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}}{\left.D E N O M I N A T O R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}} \\
& =\frac{\text { NUMERATOR }}{\text { RAT }}\left(x_{0}+h\right) \\
& D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)
\end{aligned}
$$

So, what we want to know is if there can be an x_{0} for which

$$
\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}=\text { large }
$$

2. Since it is a fraction that we want to be large, we will use the Division Size TEXAMPLE from Chapter 2:

THEOREM 2 (Division Size)

$$
\begin{array}{llrl}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

There are thus two ways that a fraction can be large:

- When the numerator is large
- When the denominator is small

In each case, though, we need to make sure of the other side of the fraction. So, rather than look at the size of both the numerator and the denominator at the same time, we will look separately at: there are two cases where a fraction could (but need not) be large but in each case we will need to look at the other side of the fraction bar in order to know what the size of the fraction is:

- The first row, that is when the numerator of the fraction is large

$$
\begin{array}{rlrl}
\frac{\text { large }}{\text { large }} & =\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }} & =\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the denominator is not large too.

- The last column, that is when the denominator of the fraction is small.

$$
\begin{array}{lll}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the numerator is not small too.
3. We now deal with $\frac{\text { NUMERATOR }_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR }}$ RAT $\left(x_{0}+h\right)$, looking separately at the numerator and the denominator:

- Since the numerator, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{\text { NUMERATOR }} \text { RAT }
$$

and since we have seen that the only way the outputs of a polynomial function can be large is when the inputs are themselves large, there is no way that NUMERATOR $R_{R A T}\left(x_{0}+h\right)$) could be large for inputs that are bounded. So there is no way that the output of $R A T$ could be large for bounded inputs that make the numerator large and we need not look any further.

- Since the denominator, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of the polynomial function

$$
x \xrightarrow{\text { DENOMINATOR }_{R A T}} \text { DENOMINATOR }_{R A T}(x)
$$

and since we have seen that polynomial functions can have small outputs if they have 0 -height inputs and the inputs are near the 0 -height inputs, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$ can be small for certain bounded inputs and thus so can $\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$. However, we will then have to make sure that $N U M E R A T O R_{R A T}\left(x_{0}+h\right)$, is not small too near these bounded inputs, that is we will have to make sure that x_{0} does not turn out to be a 0 -height input for $N U M E R A T O R_{R A T}$ as well as for $D E N O M I N A T O R_{R A T}$ so as not to be in the case:

$$
\begin{aligned}
& \frac{\text { large }}{\text { small }}=\text { large } \\
& \frac{\text { medium }}{\text { small }}=\text { large } \\
& \frac{\text { small }}{\text { small }}=\text { any size }
\end{aligned}
$$

We will thus refer to a 0 -height input for $\operatorname{DENOMINATOR} R$ RAT as only a possible ∞-height input
Altogether, then, we have:
EXAMPLE 15.1. Possible ∞-height Input The 0 -height inputs of the denominator of a rational function, if any, are the only possible ∞-height inputs for the rational function.
4. However, this happens to be one of these very rare situations in which there is "an easier way": After we have located the 0-height inputs for DENOMINATOR $R_{R A T}$, instead of first making sure that they are not also 0-height inputs for $N U M E R A T O R_{R A T}$, we will gamble and just get the local input-output rule near each one of the 0 -height inputs for DENOMINATOR $R_{R A T}$. Then,

- If the local input-ouput rule turns out to start with a negative-exponent power function, then we will have determined that x_{0} is an ∞-height input for $R A T$ and the payoff will be that we will now get the local graph near x_{0} for free.
- If the local input-ouput rule turns out not to start with a negativeexponent power function, then we will have determined that x_{0} is not a ∞-height input for $R A T$ after all and our loss will be that we will probably have no further use for the local input-output rule.
Overall, then, we will use the following two steps:
Step i. Locate the 0-height inputs for the denominator, DENOMINATOR $R_{R A T}(x)$, by solving the equation

$$
D E N O M I N A T O R_{R A T}(x)=0
$$

Step ii. Compute the local input-output rule near each one of the 0 -height inputs for the denominator, if any.

The advantage is that we need not even refer to the Division Size TEXAMPLE: once we have a possible ∞-height input, we just get the local input-output rule near that possible ∞-height input, "for the better or for the worse".
EXAMPLE 15.2. \mathbf{L} et $C O U G H$ be the function specified by the global input-output rule

$$
x \xrightarrow{\mathrm{COUGH}} \operatorname{COUGH}(x)=\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}
$$

locate the ∞-height input(s) of $C O U G H$, if any.
Step i. The possible ∞-height input(s) of $C O U G H$ are the 0 -height input(s)
of $\operatorname{DENOMINATOR} \operatorname{COUGH}(x)$, that is the solution(s), if any, of the equation

$$
x^{2}+5 x+6=0
$$

In general, solving an equation may or may not possible but in this case, the equation is a quadratic one and we have learned how to do this in Chapter 12. One way or the other, we find that there are two solutions:

$$
-3,-2
$$

which are the possible ∞-height inputs of the rational function $C O U G H$.
Step ii. We compute the local input-output rules near -3 and near -2 :

- Near -3 :

$$
\begin{aligned}
& h \xrightarrow{\text { COUGH }} \text { near }-3 \\
& \text { COUGH }(-3+h)=\left.\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}\right|_{x \leftarrow-3+h} \\
&=\frac{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-3+h}}{x^{2}+5 x+\left.6\right|_{x \leftarrow-3+h}} \\
&=\frac{(-3+h)^{4}-(-3+h)^{3}-10(-3+h)^{2}+(-3+h)-15}{(-3+h)^{2}+5(-3+h)+6}
\end{aligned}
$$

We try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{(-3)^{4}+[\ldots]-(-3)^{3}+[\ldots]-10(-3)^{2}+[\ldots]-3+[\ldots]-15}{(-3)^{2}+[\ldots]+5(-3)+[\ldots]+6} \\
& =\frac{+81+27-90-3-15+[\ldots]}{+9-15+6+[\ldots]} \\
& =\frac{0+[\ldots]}{0+[\ldots]} \\
& =\frac{[\ldots]}{[\ldots]} \\
& =\text { any size }
\end{aligned}
$$

So we must go back and try to approximate to the linear terms, ignoring the constant terms since we just saw that they add up to 0 both in the numerator and the denominator:

$$
\begin{aligned}
& =\frac{4(-3)^{3} h+[\ldots]-3(-3)^{2} h+[\ldots]-10 \cdot 2(-3) h+[\ldots]+h}{2 \cdot(-3) h+[\ldots]+5 h} \\
& =\frac{-108 h+[\ldots]-27 h+[\ldots]+60 h+[\ldots]+h}{-6 h+[\ldots]+5 h} \\
& =\frac{-74 h+[\ldots]}{-h+[\ldots]} \\
& =+74+[\ldots]
\end{aligned}
$$

so that -3 is not an ∞-heigth input

- Near -2 :

$$
\begin{aligned}
h \xrightarrow{\text { COUGH }_{\text {near }-2}} \operatorname{COUGH}(-2+h) & =\left.\frac{x^{4}-x^{3}-10 x^{2}+x-15}{x^{2}+5 x+6}\right|_{x \leftarrow-2+h} \\
& =\frac{x^{4}-x^{3}-10 x^{2}+x-\left.15\right|_{x \leftarrow-2+h}}{x^{2}+5 x+\left.6\right|_{x \leftarrow-2+h}} \\
& =\frac{(-2+h)^{4}-(-2+h)^{3}-10(-2+h)^{2}+(-2+h)-15}{(-2+h)^{2}+5(-2+h)+6}
\end{aligned}
$$

We try to approximate to the constant terms:

$$
\begin{aligned}
& =\frac{(-2)^{4}+[\ldots]-(-2)^{3}+[\ldots]-10(-2)^{2}+[\ldots]-2+[\ldots]-15}{(-2)^{2}+[\ldots]+5(-2)+[\ldots]+6} \\
& =\frac{+16+8-40-2-15+[\ldots]}{+4-10+6+[\ldots]} \\
& =\frac{-33+[\ldots]}{0+[\ldots]} \\
& =\frac{-33}{[\ldots .} \\
& =\text { large }
\end{aligned}
$$

So -2 is an ∞-height input for COUGH and we need only find exactly how small $[. .$.$] is to get the local input-output rule near -2$

$$
\begin{aligned}
& =\frac{-33+[\ldots]}{2 \cdot(-2) h+[\ldots]+5 h} \\
& =\frac{-33+[\ldots]}{h+[\ldots]} \\
& =-33 h^{-1}+[\ldots]
\end{aligned}
$$

3 Offscreen Graph

Once the Essential Question has been answered, and if we do not already have the local input-output rule near each one of the ∞-height inputs, we need to get them and the corresponding local graphs so that we can then join them smoothly to get the offscreen graph.

Altogether, given a rational function $R A T$ the procedure to obtain the offscreen graph is therefore:
i. Get the approximate input-output rule near ∞ and the local graph near ∞
ii. Answer the Essential Question and locate the ∞ input(s), if any,
iii. Find the local input-output rule and then the local graphs near each ∞-height inputs

EXAMPLE 15.3. L et $M A R A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{M A R A} M A R A(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the offscreen graph.
i. We get the local approximation near ∞ :

$$
\text { Near } \begin{aligned}
\infty, x \xrightarrow{\text { MARA }} \operatorname{MARA}(x) & =\frac{x+[\ldots]}{x^{2}+[\ldots]} \\
& =+x^{-1}+[\ldots]
\end{aligned}
$$

and the local graph near ∞ of MARA is

ii. We locate the ∞-height inputs, if any. The possible ∞-height input(s) of $M A R A$ are the 0 -height input(s) of $D E N O M I N A T O R_{M A R A}(x)$, that is the solution(s), if any, of the equation

$$
x^{2}+5 x+7=0
$$

In general, solving an equation may or may not possible but in this case, the equation is a quadratic one and we have learned how to do this in Chapter 12. One way or the other, we find that there are no solution. So, the function MARA has no ∞-height input.
iii. The offscreen graph therefore consists of only the local graph near ∞.

4 Feature-sign Change Inputs

Given a rational function, in order to get the feature-sign change input(s), if any, we need only get the outlying graph and then we proceed as in Chapter 3 so we need only give an example.

EXAMPLE 15.4. L et $M A R A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{M A R A} \operatorname{MARA}(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the feature-sign change inputs of $M A R A$, if any.
i. We find the offscreen graph of $M A R A$ as in the preceding example:

ii. We mark the features of the offscreen graph:

iii. Therefore:

- there must be at least one height-sign change input,
- there does not have to be a slope-sign change input
- there must be at least one concavity-sign change input,

5 Global Graph

Given a rational function, in order to get the essential global graph, we need only get the outlying graph and then we join smoothly so we need only give an example.

EXAMPLE 15.5. L et $M A R A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{M A R A} M A R A(x)=\frac{x-15}{x^{2}+5 x+7}
$$

Find the feature-sign change inputs of $M A R A$, if any.
i. We find the offscreen graph of $M A R A$ as in the preceding example:

ii. We join smoothly the offscreen graph:

iii. Observe that, in fact,

- there must be at least one height-sign change input,
- there must be at least two slope-sign change inputs
- there must be at least three concavity-sign change input,

6 Locating 0-Height Inputs

Locating the 0 -height inputs of a given rational function is pretty much the mirror image of what we did to locate its ∞-height inputs. More precisely:

1. Given a rational function $R A T$ specified by a global input-output rule

$$
x \xrightarrow{R A T} R A T(x)=\frac{N U M E R A T O R_{R A T}(x)}{\text { DENOMINATOR RAT }}(x)
$$

we want to find whether or not there can be a bounded input x_{0} such that the outputs for nearby inputs, $x_{0}+h$, are small. In other words, we want to know if there can be x_{0} such that

$$
\left.h \xrightarrow{R A T} R A T(x)\right|_{x \leftarrow x_{0}+h}=\text { small }
$$

But we have

$$
\begin{aligned}
& \left.R A T(x)\right|_{x \leftarrow x_{0}+h}=\left.\frac{\operatorname{NUMERATOR} R_{R A T}(x)}{\operatorname{DENOMINATOR} R_{R A T}(x)}\right|_{x \leftarrow x_{0}+h} \\
& =\frac{\left.N U M E R A T O R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}}{\text { DENOMINATOR }\left.R_{R A T}(x)\right|_{x \leftarrow x_{0}+h}} \\
& =\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}
\end{aligned}
$$

So, what we want to know is if there can be an x_{0} for which

$$
\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{D E N O M I N A T O R_{R A T}\left(x_{0}+h\right)}=\operatorname{small}
$$

2. Since it is a fraction that we want to be small, we will use the Division Size TEXAMPLE from Chapter 2:

$$
\begin{array}{lll}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

There are thus two ways that a fraction can be small:

- When the numerator is small
- When the denominator is large

In each case, though, we need to make sure of the other side of the fraction. So, rather than look at the size of both the numerator and the denominator at the same time, we will look separately at:

- The third row, that is when the numerator of the fraction is small

$$
\begin{array}{lll}
\frac{\text { large }}{\text { large }}=\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }}=\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the denominator is not small too.

- The first column, that is when the denominator of the fraction is large.

$$
\begin{array}{llll}
\frac{\text { large }}{\text { large }} & =\text { any size } & \frac{\text { large }}{\text { medium }}=\text { large } & \frac{\text { large }}{\text { small }}=\text { large } \\
\frac{\text { medium }}{\text { large }} & =\text { small } & \frac{\text { medium }}{\text { medium }}=\text { medium } & \frac{\text { medium }}{\text { small }}=\text { large } \\
\frac{\text { small }}{\text { large }}=\text { small } & \frac{\text { small }}{\text { medium }}=\text { small } & \frac{\text { small }}{\text { small }}=\text { any size }
\end{array}
$$

because in that case all we will then have to do is to make sure that the numerator is not large too.
3. We now deal with $\frac{N U M E R A T O R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$, looking separately at the numerator and the denominator:

- Since the numerator, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{\text { NUMERATOR }_{R A T}} \text { NUMERATOR }_{R A T}(x)
$$

and since we have seen that polynomial functions can have small outputs if they have 0 -height inputs and the inputs are near the 0 -height inputs, NUMERATOR $R_{R A T}\left(x_{0}+h\right)$ can be small for certain bounded inputs and thus so can $\frac{\text { NUMERATOR } R_{R A T}\left(x_{0}+h\right)}{\text { DENOMINATOR } R_{R A T}\left(x_{0}+h\right)}$. However, we will then have to make sure that DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is not small too near these bounded inputs, that is we will have to make sure that x_{0} does not turn out to be a 0 -height input for DENOMINATOR $R_{R A T}$ as well as for NUMERATOR $R_{R A T}$ so as not to be in the case:

$$
\frac{\text { small }}{\text { small }}=\text { any size }
$$

We will thus refer to a 0 -height input for $N U M E R A T O R_{R A T}$ as only a possible 0-height input for $R A T$.

- Since the denominator, DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$, is the output of a polynomial function, namely

$$
x \xrightarrow{\text { DENOMINATOR }_{R A T}} \text { DENOMINATOR }_{R A T}(x)
$$

and since we have seen that the only way the outputs of a polynomial function can be large is when the inputs are themselves large, there is no way that DENOMINATOR $R_{R A T}\left(x_{0}+h\right)$) could be large for inputs that are bounded. So there is no way that the output of $R A T$ could be small for bounded inputs that make the denominator large and we need not look any further.
Altogether, then, we have:
EXAMPLE 15.6. Possible 0 -height Input The 0 -height inputs of the numerator of a rational function, if any, are the only possible 0-height inputs for the rational function.
4. However, this happens to be one of these very rare situations in which there is "an easier way": After we have located the 0-height inputs for $N U M E R A T O R_{R A T}$, instead of first making sure that they are not also 0-height inputs for $D E N O M I N A T O R_{R A T}$, we will gamble and just get the local input-output rule near each one of the 0 -height inputs for NUMERATOR RAT. Then,

- If the local input-ouput rule turns out to start with a positive-exponent power function, then we will have determined that x_{0} is a 0 -height input for $R A T$ and the payoff will be that we will now get the local graph near x_{0} for free.
- If the local input-ouput rule turns out to start with a 0 -exponent power function or a negative-exponent power function, then we will have deter-
mined that x_{0} is not a 0 -height input for $R A T$ after all and our loss will be that we will probably have no further use for the local input-output rule.

Overall, then, we will use the following two steps:

$$
\begin{aligned}
& \text { Step i. Locate the } 0 \text {-height inputs for the numerator, } \\
& \text { NUMERATOR } R_{R A T}(x) \text {, by solving the equation } \\
& \text { NUMERATOR } R_{R A T}(x)=0
\end{aligned}
$$

Step ii. Compute the local input-output rule near each one of the 0 -height inputs for the numerator, if any.

The advantage is that we need not even refer to the Division Size TEXAMPLE: once we have a possible 0-height input, we just get the local input-output rule near that possible 0-height input, "for the better or for the worse".

EXAMPLE 15.7. L et $T A R A$ be the function specified by the global inputoutput rule

$$
x \xrightarrow{T A R A} \operatorname{TARA}(x)=\frac{x^{3}-8}{x^{2}+3 x-10}
$$

locate the 0 -height input(s) if any.
Step i. The possible 0 -height input(s) of $T A R A$ are the 0 -height input(s) of $\operatorname{NUMERATOR} R_{T A R A}(x)$, that is the solution(s), if any, of the equation

$$
x^{3}-8=0
$$

In general, solving an equation may or may not possible and in this case, the equation is a cubic one. Still, here it is a very incomplete one and we can see that the solution is +2 which is the possible 0 -height input of the rational function TARA.
Step ii. We compute the local input-output rule near +2 .

$$
\begin{aligned}
h \xrightarrow{T A R A_{\text {near }-3}} T A R A(+2+h) & =\left.\frac{x^{3}-8}{x^{2}+3 x-10}\right|_{x \leftarrow+2+h} \\
& =\frac{x^{3}-\left.8\right|_{x \leftarrow+2+h}}{x^{2}+3 x-\left.10\right|_{x \leftarrow+2+h}} \\
& =\frac{(+2+h)^{3}-8}{(+2+h)^{2}+3(+2+h)-10}
\end{aligned}
$$

We try to approximate to the constant terms:

$$
=\frac{(+2)^{3}+[\ldots]-8}{(+2)^{2}+[\ldots]+3(+2)+[\ldots]-10}
$$

$$
\begin{aligned}
& =\frac{+8-8+[\ldots]}{+4+6-10+[\ldots]} \\
& =\frac{0+[\ldots]}{0+[\ldots]}=\frac{[\ldots]}{[\ldots]}=\text { any size }
\end{aligned}
$$

So we must go back and approximate to the linear terms, ignoring the constant terms since we just saw that they add up to 0 both in the numerator and the denominator:

$$
\begin{aligned}
& =\frac{3(+2)^{2} h+[\ldots]}{2(+2) h+[\ldots]+3 h} \\
& =\frac{+12 h+[\ldots]}{+4 h+[\ldots]+3 h}=\frac{+12 h+[\ldots]}{+7 h+[\ldots]} \\
& =+\frac{12}{7}+[\ldots]
\end{aligned}
$$

and, since $+\frac{12}{7} \neq 0,+2$ is not an 0 -heigth input for $T A R A$.

Chapter 16

Homographic Functions

Part V

Transcendental Functions

pppppp

Part VI

Epilogue

Looking Back, 471 • Looking Ahead, 472 • Reciprocity Between 0 and ∞, 474 - The Family of Power Functions, 486 - The bigger the size of the exponent the boxier the graph, 488 - Local Quantitative Comparisons, 491 - Global Quantitative Comparisons, 494 .

- Derived functions
- Functions defined equationally
- Matters of size e.g. the bigger the size of the exponent, the boxier the graph
Check that reciprocity has been moved correctly to Chapter 7

1 Looking Back

Until now, the global graph of each new kind of function was qualitatively very different as we moved from one kind of functions to the next.

1. In the case of the power functions, we found that the qualitative features of the global graphs of
i. regular positive-exponent power functions,
ii. negative-exponent power functions,
iii. exceptional power functions, that is

- 0-exponent power functions
- 1-exponent power functions
were very different but the differences among power functions of any particular type were not really that great in that, from the point of view of the shape of the global graph, there were really only four types of regular power functions (depending on the sign and the parity of the exponent) and only two types of exceptional power functions (depending on the parity of the exponent).

2. In the case of the polynomial functions, we found that the qualitative features of the global graphs changed a lot when we moved from one degree to the next:
i. The global graph of a constant function (Degree 0)

- has no height-sign change input, (same height everywhere)
- has no slope,
- has no concavity,
ii. The global graph of an affine function (Degree 1)
- always has exactly one height-sign change input,
- has no slope-sign change input, (same slope everywhere)
- has no concavity,
iii. The global graph of a quadratic function (Degree 2)
- may or may not have height-sign change input(s),
- always has exactly one slope-change input,
- has no concavity-sign change input, (same concavity everywhere)
iv. The global graph of a cubic function (Degree 3)
- has at least one height-sign change inputs,
- may or may not have slope-change input(s),
- has exactly one concavity-sign change input,

As for the qualitative differences among the global graphs of polynomial functions of a same degree, they are not great - but growing along with the degree.
i. The difference among constant functions is the height of the global graph.
ii. The differences among affine functions are the height and the slope of the global graph.
iii. The differences among quadratic functions are the height, the slope and the concavity of the global graph.
iv. The differences among cubic functions are not only the height, the slope and the concavity of the global graph but also whether or not there is a bounded fluctuation.
Thus, in terms of content organization, the degree of polynomial functions was a very powerful organizer if only because this allowed us introduce the features, height, slope, concavity, one at a time.

The emphasis throughout will be to convince ourselves of the need to proceed very systematically while keeping our eyes open so as to take advantage of whatever might make our life easier and not to do anything that we do not absolutely have to do.

2 Looking Ahead

We will now say a few words about the way rational functions will be dealt with in the rest of this text.

1. While, so far, we have had a very transparent content organization, in contrast, in the case of rational functions, the rational degree will not be such a powerful organizer because the four different types of rational functions will not be markedly different.
Still, in each one of the next four chapters, we will investigate a given type of rational function but this will be mostly in order not to upset the reader with too much variety from the get go. However, we will not be able to
develop much of a theory for each type and we will mostly go about gathering experience investigating rational functions without paying too much attention to the type of rational function being dealt with, taking things as they come.
On the other hand, the differences among rational functions of any given type of rational degree, will be quite significant because of the possible ∞ height inputs.
Thus, the other side of the coin will be that, while, until now, once we had a theory of a kind of function, the investigation of this kind of functions quickly became a bit boring in that we knew what the overall global graph was going to look like, in the case of rational functions, there will be a much more interesting diversity.
2. Before anything else, it should be stressed that in the investigations of any given rational function we will follow essentially the exact same approaches that we used in the investigation of any given power function and of any given polynomial function: We will thus
i. get its local graph near ∞,
ii. get the answer to the Essential question and find the ∞-height input(s), if any. (This will involve solving an equation.)
iii. get the local graph near the ∞-height inputs, if any.
iv. get the global graph by interpolating the local graph near ∞ and the local graphs near the ∞-height inputs, if any.
3. As happened each time we investigated a new kind of function, finding the local rule near bounded inputs-and therefore near ∞-height input(s)will require a new algebra tool.
4. As with any function, rational or otherwise, what we will actually do will depend of course on what information we need to find and there are going to be two main kinds of questions:
a. Local questions, that is, for instance:

- Find the local concavity-sign near a given input,
- Find the local slope-sign near a given input,
- Find the local height-sign near a given input,
- Find the local graph near a given input,

The given input can of course be any input, that is ∞ or any given bounded input, for instance an ∞-height input, a concavity-sign change input, a slope-sign change input, a height-sign change input or any ordinary input whatsoever.
b. Global questions, that is, for instance
reciprocal function reciprocal

- Find the concavity-sign change input(s), if any
- Find the slope-sign change input(s), if any
- Find the height-sign change input(s), if any
- Find where the output has a given concavity-sign
- Find where the output has a given slope-sign
- Find where the output has a given height-sign
- Find the global graph

In the case of global questions, it will usually be better to start by getting the bounded graph and then to get the required information from the bounded graph. But then of course, since the bounded graph is really only the essential bounded graph, that is the graph that is interpolated from the outlying graph, the global information that we will get will only be about the essential features that is the features forced onto the bounded graph by the outlying graph.

The curious reader will obviously have at least three questions:
i. How do the various power functions compare among each other?
ii. What of polynomial functions of degree higher than 3 ?
iii. What of Laurent polynomial functions?

In the "overview", we will discuss the several manners in which regular positive-power functions, negative-power functions and exceptional-power functions all fit together. This will require discussing the size of slope.

3 Reciprocity Between 0 and ∞

We will now investigate the relationship between 0 and ∞

1. Reciprocal Function The reciprocal function is the power function with exponent -1 and coefficient +1 , that is the function whose global input-output rule is

$$
\begin{aligned}
x \xrightarrow[R E C I P R O C A L]{\longrightarrow E C I P R O C A L}(x) & =(+1) x^{-1} \\
& =+\frac{1}{x}
\end{aligned}
$$

so that the output is the reciprocal of the input (hence the name).

1. The first thing about the reciprocal function is that it is typical of negative-exponent power functions in terms of what it does to the size of the output:

$$
+ \text { large } \xrightarrow{\text { RECIPROCAL }} \text { RECIPROCAL(large })=+ \text { small }
$$

$$
\text { -large } \xrightarrow{\text { RECIPROCAL }} \text { RECIPROCAL(large })=- \text { small }
$$

and

$$
\begin{aligned}
& + \text { small } \xrightarrow{\text { RECIPROCAL }} \text { RECIPROCAL }(\text { small })=+ \text { large } \\
& - \text { small } \xrightarrow[\text { RECIPROCAL }]{ } \text { RECIPROCAL }(\text { small })=- \text { large }
\end{aligned}
$$

2. More generally, the global graph of the reciprocal function is:

- Mercator picture:

- Magellan picture:

3. Although quite different from the identity function, the reciprocal
family
prototypical
functions does play a role in the family of all power functions that is quite similar in some respects to the role played by the identity function
For instance, because the size of the exponent in both cases is 1 , they are both the "first" of their kind.
However, that is not very important because:

- The identity function is not prototypical of the other power functions because the identity function is a linear function and has no concavity.

EXAMPLE 16.1. The identity function lack concavity while all regular power function have concavity.

- The reciprocal function is prototypical of the other negative power functions in many ways.

EXAMPLE 16.2. The shape of the reciprocal function is essentially the same as the shape of all (negative-exponent) power functions of type NOP

One thing the identity function and the reciprocal function have in common, though and for what it's worth at this time, is that the reciprocal function is the mirror image of itself when the mirror is the identity function.

In particular, they intersect at a 90 degree angle.

Another way way to look at it is that the local graphs near +1 are locally mirror images of each other when the mirror is the input level line for +1 :

2. Reciprocity

far
reciprocal of each other

1. It will be convenient to introduce two new terms:

- We introduced the word "near" almost from the begining and, with Magellan graphs in mind, we will now introduce the word "far". Thus,
- When an input is large, it is near ∞ and therefore far from 0 ,
- When an input is small, it is near 0 and therefore far from ∞.
- More generally, we will say that two power functions are reciprocal of each other when:
- their coefficient are the same,
- the size of their exponents are the same,
- the sign of their exponents are the opposite.

In other words, two power functions are reciprocal of each other whenever they differ only by the sign of their exponents.

EXAMPLE 16.3. The identity function and the reciprocal function are reciprocal.

We will see that, when the mirror is the input level line for +1 , the local graphs near +1 of two power functions that are reciprocal of each other are approximately mirror images of each other. But the angles will not be 45 degrees anymore.
2. The point of all this is that the local graph near ∞ of a regular power function is the same as the local graph near 0 of the power function that it is reciprocal of and, vice versa, the local graph near 0 of a regular power function is the same as the local graph near ∞ of the power function that it is reciprocal of.

EXAMPLE 16.4. Given the local graph near 0 of $J A C K$, an odd positive power function with positive coefficient :

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more closing down the gap until the edges touch.

We then glue shut the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut open the cylinder along the input level line for 0

We widen out and unbend the screen forward more and more until it becomes flat.

$\xrightarrow{+}$
The local graph near ∞ that we end up with:

is exactly like the local graph near 0 of $J A C K$'s reciprocal power function which is an odd positive power function with positive coefficient:

(On both graphs, outputs for negative inputs are negative and outputs for positive inputs are positive.)

EXAMPLE 16.5. Given the local graph near 0 of the even positive power function JILL:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

We then glue the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:
 rotating

Now we cut the cylinder open along the input level line for 0

We unbend the screen forward more and more until it becomes flat.

shrink

The local graph near ∞ that we get (Remember that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞):

is just like the local graph near 0 of $J I L L$'s reciprocal power function which is a negative, even-exponent power function:

EXAMPLE 16.6. Given the local graph near 0 of the even positive power function $J A C K$:

We enlarge the extent of the input ruler more and more while shrinking the scale by the edges more and more and, as we do so, we bend the screen backward more and more until the edges touch.

closing

We then glue the edges of the screen at ∞ to get a cylinder.

Then we turn the cylinder half a turn so that ∞ gets to be in front of us:

Now we cut the cylinder at 0

and we unbend the screen forward more and more until it becomes flat.

The local graph near ∞ that we get (Remember that the left side of ∞ is the positive side of ∞ and the right side of ∞ is the negative side of ∞):

is just like the local graph near 0 of $J A C K$'s reciprocal power function which is an even positive power function:

4 The Family of Power Functions

The following is more of an informative nature at this stage than something that we will be building on in this text. The purpose here is mostly to give some coherence to all the power functions by showing various ways in which they fit together. It should help the reader organize her/his vision of power functions.

1. Types of Regular Functions This is just a recapitulation of stuff we saw in the preceding two chapters:

Sign exponent	Parity exponent	Sign coefficient	TYPE
+	Even	+	PEP
		-	PEN
	Odd	+	$P O P$
		-	PON
-	Even	+	NEP
		-	NEN
	Odd	+	NOP
		-	NON

size-preserving
size-inverting
fixed point
2. What Power Functions Do To Size We will say that a function is size-preserving when the size of the output is the same as the size of the input, that is "small gives small" and "large gives large".

EXAMPLE 16.7. Regular positive-exponent power functions are sizepreserving:

Correspondingly, we will say that a function is size-inverting when the size of the output is the reciprocal of the size of the input, that is "small gives large" and "large gives small".

EXAMPLE 16.8. Negative-exponent power functions are size-inverting:
By contrast, with exponent-zero power functions, the output for small inputs has size 1 and so is neither small nor large and so exponent-zero power functions are neither size-preserving nor size-inverting. You might say that they are "size-squashing".

Thus, in a way, constant functions separate regular positive-exponent power functions from negative-exponent power functions.

On the other hand, even though linear functions are exceptional, they are nevertheless size-preserving.
3. Fixed point A fixed point for a function is an input whose output is equal to the input.

EXAMPLE 16.9. Given the identity function, every input is a fixed point. In particular, both 0 and +1 are fixed points.

EXAMPLE 16.10. 0 is a fixed point for all regular power functions.

EXAMPLE 16.11. +1 is a fixed point for all regular power functions.

EXAMPLE 16.12. -1 is a fixed point for all regular even-exponent power functions.

5 The bigger the size of the exponent the boxier the graph

We will call template something that looks like it could be the graph of a regular power function except that it is not a function because the inputs -1 and +1 both have an unbounded number of outputs. Each type of regular power function has its own template.

1. We begin by comparing power functions with their template two at a time.

EXAMPLE 16.13. The positive-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }_{+4}} P O W E R_{+4}(x)=+x^{+4}
$$

is much closer to its template than the positive-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }{ }_{+2}} \text { POWER } R_{+2}(x)=+x^{+2}
$$

EXAMPLE 16.14. The positive-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{+5}} P O W E R_{+5}(x)=+x^{+5}
$$

is much closer to its template than the positive-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{\text { POWER }_{+3}} P O W E R_{+3}(x)=+x^{+3}
$$

EXAMPLE 16.15. The negative-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{-4}} P O W E R_{+5}(x)=+x^{-4}
$$

is much closer to its template than the negative-even-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{-2}} P O W E R_{-2}(x)=+x^{-2}
$$

EXAMPLE 16.16. The negative-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{-3}} P O W E R_{-3}(x)=+x^{-3}
$$

is much closer to its template than the negative-odd-exponent power function whose global input-output rule is

$$
x \xrightarrow{P O W E R_{-1}} P O W E R_{-1}(x)=+x^{-1}
$$

2. Together, power functions make an interesting pattern:

6 Local Quantitative Comparisons

1. Local quantitative comparison near ∞

2. Local quantitative comparison near +1

Local quantitative comparison near 0 , between -0.1 and +0.1

7 Global Quantitative Comparisons

1. Global quantitative comparison between -1 and +1

2. Global quantitative comparison between -1 and +1

1. Symmetries Of Power Functions

3.

2. Coverage By Power Functions

Observe that there are graphs of power functions whose exponent is a fraction or a decimal number and that these graphs are exactly where we would expect them to be based on the way the fractional or decimal exponent fits with the whole number exponents. This, though, is a something that will be investigated in the next volume: Reasonable Transcendental Functions.

Part VII

Appendices

Appendix A

Dealing With Numbers

Real World Numbers - Paper World Numerals, 501 - Things To Keep In Mind, 505 • Zero And Infinity, 507 • Plain Whole Numbers, 508 • Comparing., 510 • Adding and Subtracting, 512 • Multiplying and Dividing, 512.
numeral
magnitude
quantitative information
denominator
essence
qualtative information

Collection of objects can be listed.

1 Real World Numbers - Paper World Numerals

Separating what is happening in the real world from what is happening in the paper world of a text is not easy so this section will use the terminology used in Model Theory and Linguistics. And since it is impossible to exhibit in the paper world the real world entities we will want to calculate about, we will use paper world drawings as stand-ins for real world entities:

There are two kinds of real world entities which we will both denote with paper world numeral phrases consisting of:

- A numerator using numerals (https://en.wikipedia.org/wiki/Numeral_ (linguistics)) to provide the magnitude of the entity. (Quantitative information.)
and
- A denominator using words to provide the essence of the entity. (Qualtative information.)
However, the two kinds of real world entities are different enough that we will have to use two different kinds of paper world numerals in the numerators.
collection
item
whole number
count
plain whole numeral

1. Magnitude of collections of items.

i. Real world. Since we get a real world collection of identical real world items just by gathering the real world items, determining how many real world items there are in a collection is simple: we get the whole number of real world items in the collection just by counting the real world items in the collection. .

EXAMPLE A.1. The real world items

are not all the same and so cannot be gathered into a real world collection but the real world items

are all the same and so can be gathered into a real world collection:

and we get the whole number by counting the items:

ii. Paper world. Collections of items are then denoted by paper world numeral phrases in which:

- The paper world numerator is the paper world plain whole numeral which says how many items there are in the collection, that is which denotes the real world whole number of items in the real world collection,
- The paper world denominator is the paper world word which says what kind of items are in the collection, that is which denotes the kind of real world items in the real world collection.

EXAMPLE A. 2.

where:

- The numeral 3 says how many items in the collection, and where
- The word Apple says what kind items in the collection.

2. Magnitude of amounts of stuff.

i. Real world. Since stuff comes in bulk, determining how much stuff there is in an amount of stuff is much more complicated than deciding how many items there are in a collection of items because, in order to determine how much stuff there is in a real world amount of stuff, we first need a real world unit of that stuff. Only then can we determine the decimal number of units in the amount of stuff.
EXAMPLE A.3. Milk is stuff we drink and before we can say how much milk we have or want, we must have a real world unit of milk, say liter of milk or pint of milk.
ii. Paper world. Amounts of stuff are then denoted by paper world numeral phrases in which:

- The paper world numerator is the paper world plain decimal numeral which says how much stuff there is in the amount of stuff, that is, more precisely, the plain decimal numeral in which the decimal pointer indicates which digit corresponds to the unit of stuff in the denominator, which denotes the real world decimal number of units of stuff in the amount of stuff.
- The paper world denominator is the paper world word which says what kind of stuff in the amount of stuff and what unit of stuff.
EXAMPLE A.3. (Continued) Then we may say we have or want, say, 6.4 liters of milk or, say, 3 pints of milk.

It should be noted that decimal numerals work hand in hand with the Metric System of units while US Customary units usually require fractions, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$, etc and mixed fractions.
3. Orientation of entities. Numerators can provide more information than just the magnitude of the entity, that is about the whole number of
unit
decimal number
plain decimal numeral decimal pointer digit

Which is why "The Weights and Measures Division promotes uniformity in U.S. weights and measures laws, regulations, and standards to achieve equity between buyers and sellers in the marketplace." (https://www. usa. gov/federal-agencies/ weights-and-measures-division)

Which points to its left.

Although panels on interstate roads have begun to show such things as 3.7 Miles.
orientation
signed whole numeral
signed decimal numeral
thing
give
qualifier

Told him it wouldn't! Didn't believe me! Wasted a lot of time trying anyway.

Of course, sales people would write \$11.99!
items or the decimal number of units of stuff, and can also provide information about the orientation of the entity by using signed whole numerals and signed decimal numerals instead of plain whole numerals and plain decimal numeral

4. Concluding remarks.

i. Since decimal numeral denote amounts of stuff while whole numerals denote collections of items, we absolutely need to distinguish decimal numerals from whole numerals.

EXAMPLE A.4. We need to distinguish the decimal numeral 27. which we would denote an amount of stuff from the whole numeral 27 which would denote a collection of items.

So, it would be tempting to agree that "The decimal point will never go without saying in this text." but, unfortunately, this is not really sustainable.
So, like everybody, we will have to agree that
AGremment A. 1 will often go without saying and we will often leave it to the reader to decide which kind of numeral is intended.

EXAMPLE A.5. When using money, pennies may or may not be beside

 the point:- We are more likely to write $\$ 12.00$ than $\$ 12$
but
- We are more likely to write $\$ 7000000$ than $\$ 7000000.00$.
ii. Altogether then, since the kind of numeral used in the numerator depends on:
A. Whether the real world entity we want to denote is:
- A collection of items
or
- An amount of stuff
and also on:
B. Whether the information we want about the real world entity is:
- The magnitude of the entity alone,
or
- The magnitude and the orientation of the entity,
the word numeral should always be used with one of the following qualifiers

	Collections	Amounts
Magnitude only	plain whole	plain decimal
Magnitude and orientation	pigned whole signed decimal	

Example A.6.

- 783043 is a plain whole numeral which may denote a collection of people,
- 648.07 is a plain decimal numeral which may denote an amount of money,
- -547048308 and +956481 are signed whole numerals,
- -137.0488 and +0.048178 are signed decimal numerals.

And, since, as mentioned almost from the outset of ?? - Preface You Don't Need To Read (Page xv), this text assumes that the reader knows how to "compare, add/subtract, multiply/divide" signed decimal 'numbers', we will take the qualifiers plain/signed and whole/decimal to have been defined.

In fact, mathematicians, scientists, and engineers also use many other kinds of 'numbers' for many other kinds of entities. (https://en. wikipedia.
org/wiki/Number)
iii. However,

Cautionary note A. 1 While Discrete Mathematics deals with collections of items, Calculus deals only with amounts of stuff and we will use whole numerals only occasionally and then mostly as an explanatory backdrop for decimal numbers.

2 Things To Keep In Mind

1. Positive numbers vs. plain numbers. Except for subtraction, And in only half the cases at computing with positive numbers goes exactly the same way as computing that. with the plain numbers that are their sizes..

Example A.7.

In fact, negative numbers were called absurd numbers for a long time until "Calculus made negative numbers necessary. "(https: // en. wikipedia. org/ wiki/Negative_number\# Hresttbery)words, you get exactly what you see, no more, no less.

So it is tempting to skip the + sign in front of positive numbers as "going without saying". But then sentences lose their symmetry.

EXAMPLE A.8. The sentences

- "The opposite of +5 is -5 " and "The opposite of -3 is +3 "
are both nicely symmetric while the sentences
- "The opposite of 5 is -5 " and "The opposite of -3 is 3 "
both lack symmetry.
But then experience shows that skipping the + sign in front of positive numbers can lead to ignoring the difference between positive numbers and plain numbers and that leads to misunderstanding and mistakes because
- while working with plain numbers we can just focus on the numbers we are working with,
- when working with positive numbers we have to keep constantly in mind that the numbers we are working with have a sign, namely + , and therefore have opposites, namely negative numbers.
And so, in order to help distinguishing signed numbers from plain numbers and more individually positive numbers from their sizes, in this text:

Agreement A. 2 will never go without saying.

EXAMPLE A.9. We will always distinguish, for instance,

- The positive number +51.73 from the plain number 51.73 which is the size of +51.73 . (As well as the size of -51.73)
- The positive number +64300 from the plain number 64300 which is the size of +64300 . (As well as the size of -64300)

2. Symbols vs. words. Another issue is that, in everyday language, instead of using signed numbers we still tend to use plain numbers with everyday words instead of symbols to denote the orientation.

Yet, even banks, which used to use plain numbers in two columns, one for debits, one for credits, now use signed numbers in a single column.

In other words, in this text, no sign does NOT mean positive but plain and therefore NO opposite.

EXAMPLE A.10. We often use words like credit and debit, left and right, up and down, income and expense, gain and loss, incoming and outgoing, etc instead of the symbols + and - to denote the orientation and using plain numbers to denote the size.

3 Zero And Infinity

As simple as numbers may appear, numbers actually present several conceptual difficulties that we need to acknowledge. We also need to make sure that the words we will be using concerning numbers, if only in the Procedures, will be perfectly clear.

1. Zero. There are two difficulties with zero that set $\mathbf{0}$ apart from other numbers and in fact already "the ancient Greeks [...] seemed unsure about the status of zero as a number." (https://en.wikipedia.org/wiki/ 0\#Classical_antiquity).
i. In the real world, there is no such thing as zero amount of stuff.

Example A.11.

- There is no such thing as a perfect vacuum. (https://en.wikipedia. org/wiki/Vacuum).
- There is no such thing as an absolute zero temperature. (https://en. wikipedia.org/wiki/Absolute_zero)

And when we try to get 0 unit of any stuff all we get is the error! ?? ?? ?? (??)

EXAMPLE A.12. 0 quart of milk denotes the amount of milk that appears to be in an empty bottle-but it might just be that the amount of milk in the

Whose existence most CalcuLUS texts blissfully omit even to mention.

And that's no joke! bottle is too small for us to see.

So the difficulty is that since 0 does not symbolize any amount in the real world 0 cannot have a size to begin with.
ii. Even though mathematicians do distinguish \mathbb{N}, whole numbers including 0 , and \mathbb{N}^{*}, the whole numbers excluding 0, AKA counting numbers, (https: //en.wikipedia.org/wiki/Natural_number)

Language note A. 1 Mathematicians accept 0 as a signed number even though ... 0 has no sign!

A9ferererinns of waffling! collection
iぁfm course, to say the size qguntmerely moves the issue plonin signed numbers to plain whabers.
natural
positive integer
how many
Hsck that thanvenient?
decimal
amount
stuff
orientation
magnitude
Remember that words between single quotes will be explained when their time comes.

But not in this text.

Since it is standard practice, we will have to accept that
CAUTIONARY NOTE A. 2 even if a number with size 0 -and no sign.

So, what we will do is to distinguish non-zero numbers, that is all numbers except 0 , from just numbers which include 0 . So, all non-zero numbers have both a size and a sign.

4 Plain Whole Numbers

Because we can deal with collection of items one by one, describing how many items there are in a collection is easy: just count the items in the collection. Then, how many items there are in the collection will be given by a plain (as opposed to 'signed') whole (as opposed to 'decimal') number.

EXAMPLE A.13. Apples are items. (We can eat apples one by one.) To say how many ω are in the collection $\omega \boldsymbol{\omega} \boldsymbol{\omega}$ we count them that is we point successively at each ω while singsonging "one, two, three".

Language note A. 2 Plain whole numbers are also called counting numbers or natural numbers (https://en.wikipedia. org/wiki/Natural_number)—and, incorrectly, 'positive integers'.
$=============================$
decimal (as opposed to whole
An amount of stuff we can deal with only in bulk orientation
magnitude that is how many items in the collection or how much stuff in the amount

LANGUAGE NOTE A. 3 The word orientation is not too good but the words "direction" and "way" aren't either.

A lot of times, describing how many items we have or want in a collection or how much stuff we have or want in an amount of stuff is not enough and we also need to describe the orientation of the collection of items or of the amount of stuff: up/down, left/right, in/out, etc.

EXAMPLE A.14. How many people are going into or coming out of a building usually depends on the time of the day.
At least for the rest of us, how much money is coming into or going out of our bank account usually depends on the day of the month.

1. Size and sign. So, both signed (as opposed to plain) whole numbers and signed (as opposed to plain) decimal numbers carry two kinds of information:

- The size of a signed number (whole or decimal) is the quantitative information which is given by the plain whole number that describes how many items there are in the collection or the plain decimal number that describes how much stuff there is in the amount.

Language note A. 4 Size is called absolute value in most textbooks but some use numerical value or modulus or norm.

The standard symbol for size is \mid | but we will not use it and just write size of.
EXAMPLE A.15. Instead of $|-3|=3$ we will write: size $-3=3$.

- The sign of a signed-number (whole or decimal) is the qualitative information which is given by + or - , the symbols that describe the orientation of the collection or of the amount, up/down, left/right, in/out, after a decision has been made as to which orientation is to be symbolized by + and therefore which by - . Then,

Positive (whole or decimal) numbers are the signed numbers whose sign is + ,
Negative (whole or decimal) numbers are the signed numbers whose sign is -.

EXAMPLE A.16. +17.43 Dollars specifies a real world transaction:

- The size of $+17.43,17.43$, describes the magnitude of the transaction,
- The sign of $+17.43,+$, describes the orientation of the transaction.

LANGUAGE NOTE A. 5 Signed whole numbers are usually called integers.

Two signed numbers are:

- the same whenever they have the same size and the same signs. (So, when one is positive, the other has to be positive and vice versa.)
signed
size
quantitative
absolute value
numerical value
modulus
norm
${ }_{\text {sign }} \mid$
qualitative
$+$
-

positive
negative
integers
the same

But how could a plain whole number ever be called a positive integer?
the opposite
opp
$<$
$>$
$=$
\leqq

- the opposite whenever they have the same size but different signs. (So, when one is positive, the other has to be negative and vice versa.) We will use opp as shorthand for opposite of.

Example A.17.

opp $(+32.048)=(-32.048)$

$$
\text { opp }(-32.048)=(+32.048)
$$

comparison (plain) $=======$ End LOOK UP $======$
comparison (signed) larger-than (plain) smaller-than (plain) equal-to (plain) not-equal-to (plain)
larger-than-or-equal-to (plain)
smaller-than-or-equal-to (plain)
larger-than (signed)
smaller-than (signed)

As implied by the title, operating on plain numbers, whole and decimal, is assumed to be known and this Appendix deals only with the complications brought about by the signs.

- ?? ?? - ?? (??) • ?? ?? - ?? (??) • ?? ?? - ?? (??)

5 Comparing.

The symbols, $<,>,=\leqq, \geqq$, are used for both (plain) comparisons and (signed) comparisons

Definition A. 1 Given the signed numbers x_{1} and x_{2},

- When x_{1} and x_{2} are both positive,

$$
\begin{aligned}
& x_{1}>x_{2} \text { iff Size } x_{1}>\text { Size } x_{2} \\
& x_{1}<x_{2} \text { iff Size } x_{1}<\text { Size } x_{2} \\
& x_{1}=x_{2} \text { iff Size } x_{1}=\text { Size } x_{2}
\end{aligned}
$$

- When x_{1} and x_{2} are both negative,

$$
\begin{aligned}
& x_{1}>x_{2} \text { iff Size } x_{1}<\text { Size } x_{2} \\
& x_{1}<x_{2} \text { iff Size } x_{1}>\text { Size } x_{2} \\
& x_{1}=x_{2} \text { iff Size } x_{1}=\text { Size } x_{2}
\end{aligned}
$$

- When x_{1} and x_{2} have opposite signs,
$x_{1}<x_{2}$ iff x_{1} is negative (and therefore x_{2} is positive) $x_{1}>x_{2}$ iff x_{1} is positive (and therefore x_{2} is negative)

larger-than smaller-than
equal-to
not-equal-to
larger-than-or-equal-to
smaller-than-or-equal-to
larger-than
smaller-than

```
equal-to
not-equal-to
larger-than-or-equal-to
smaller-than-or-equal-to
```

The easiest way is to picture the two numbers on a quantitative ruler and then, because of ?? ?? - ?? (??), the number to our left will be smaller than the number to our right and the number to our right will be larger than the number to our left.
EXAMPLE A.18. Given the numbers -7.2 and -0.9 we have

so -7.2 is smaller than -0.9 and -0.9 is larger than -7.2
The standard symbols for sign-size-comparisons of all four kinds of numbers are:

Sign-size-comparisons	Symbols
equal to	$=$
not equal to	\neq
smaller than	$<$
smaller than or equal to	\leqq
larger than	$>$
larger than or equal to	\geqq

Example A.19. In symbols, Example A. 18 becomes

add
subtract
multiply
divide
reciprocal (plain)
so $-7.2<-0.9$ as well as $-0.9>-7.2$

6 Adding and Subtracting

. To add
In this text, for reasons explained in Subsection 6.2 - Mercator view (Page 108), when dealing with signed numbers, we will use the word oplus instead of the word add which we will reserve for plain numbers.
we will use the symbol \oplus
addition
To subtract a number we oplus its opposite instead.
subtraction

7 Multiplying and Dividing

. To multiply

Memory A. 1 Multiplication and Division of Signs

To divide

1. Reciprocal of a number.

i. The reciprocal of a plain number is 1 . divided by that number. (https: //www.mathsisfun.com/reciprocal.html). So:
i. Reciprocal $1 .=1$.
ii. The reciprocal of 1 followed or preceded by 0 s is easy to get: read the number you want the reciprocal of and insert/remove "th" accordingly,
Example A. 20.

$$
\begin{aligned}
\text { Reciprocal } 1000 & =1 \text { thousand th }=0.001 \\
\text { Reciprocal } 0.000001 & =1 \text { million th }=1000000 .
\end{aligned}
$$

iii. The reciprocal of other numbers needs to be calculated and, for most, we may as well use a calculator.

EXAMPLE A. 21.

$$
\begin{aligned}
& \text { Reciprocal } 4.00=\frac{1.00}{4.00}=+0.25 \text { (Hopefully by hand.) } \\
& \text { Reciprocal } 0.89=\frac{1.00}{0.89}=1.13 \text { (Use a calculator.) } \\
& \text { Reciprocal } 2.374=\frac{1.00}{2.374}=0.421 \text { (Use a calculator.) }
\end{aligned}
$$

An important property of reciprocals is that:
MEMORY A. 2 Sizes of plain reciprocal numbers
The larger a plain number is, the smaller its reciprocal will be, The smaller a plain number is, the larger its reciprocal will be.

Proof.

Example A. 22.

ii. The reciprocal of a signed number is +1 . divided by that number. So, getting the reciprocal of a signed number involves Memory A. 1 - Multiplication and Division of Signs (Page 512) which complicates matters:
EXAMPLE A. 23.

$$
\begin{aligned}
\text { Reciprocal }+1000 . & =+1 \text { thousand th }=+0.001 \\
\text { Reciprocal }-0.000001 & =-1 \text { milliontK }=-1000000 . \\
\text { Reciprocal }+4.00 & =\frac{+1.00}{+4.00}=+0.25 \text { (Hopefully by hand.) } \\
\text { Reciprocal }-0.89 & =\frac{+1.00}{-0.89}=-1.13 \text { (Use a calculator.) } \\
\text { Reciprocal }-2.374 & =\frac{+1.00}{-2.374}=-0.421 \text { (Use a calculator.) }
\end{aligned}
$$

In particular, even just stating the extension of Memory A. 2 - Sizes of plain reciprocal numbers (Page 513) to signed numbers is a bit complicated and is much easier done in Subsection 8.1 - Input level band (Page 119).

To be specific: ?? ?? - ?? (??).

Appendix B

Localization

Inputs are counted from the origin that comes with the ruler. However, rather than counting inputs relative to the origin of the ruler, it is often desirable to use some other origin to count inputs from.

Appendix C

Equations - Inequations

The following is essentially lifted from Reasonable Basic Algebra, by A. Schremmer, freely downloadable as PDF from (Links live as of 2020-12-31):

- Lulu.com (https://www.lulu.com/en/us/shop/alain-schremmer/reasonable-basic-algebra/ ebook/product-1m48r4p5.html?page=1\&pageSize=4)
and/or
- ResearchGate.net (https://www.researchgate.net/publication/346084126_ Reasonable_Basic_Algebra_Lulu_2009)

Appendix D

Addition Formulas

Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares), 519.

1 Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares)
In order to get

Appendix E

Polynomial Divisions

Division in Descending Exponents, 521.

1 Division in Descending Exponents

Since decimal numbers are combinations of powers of TEN, it should not be surprising that the procedure for dividing decimal numbers should also work for polynomials which are combinations of powers of x.

Appendix F

Systems of Two First Degree Equations in Two Unknowns

General case, 523.

1 General case
XXXX XXXXX XXXXX

Appendix G

List of Agreements

Agreement 0.1 xviii
AGREEMENT 0.2 xxi
AGREEMENT 0.1 2
AGREEMENT 0.2 'Number' (without qualifier) 3
AGREEMENT 3.1 (Restated) Interpolation 17
Agreement 0.3 Sides of the origin 18
Agreement 0.4 Computable expressions 22
Agreement 0.5 28
Agreement 3.1 (Restated) Interpolation 32
Agreement 0.6 38
AGREEMENT $0.7 \quad 0$ and ∞ are reciprocal. 55
AGreement 1.1 64
Agreement 1.2 Colors for left things and Tight things 64
Agreement 1.3 115
Agreement 1.4 The functions we will investigate in this text 118
AGREEMENT 3.1 Interpolation 187
Agreement 6.1 278
Agreement A. 1 The decimal point 504
Agreement A. 2 The + sign 506

Appendix H

List of Cautionary Notes

CAUTION 0.1 xxiv
CAUTION 0.2 Lagrange's approach to Calculus xxv
CAUTION 0.1 1
CAUTION 0.20 is a dangerous number 5
CAUTION 0.3∞ is not a number 6
CAUTION $0.4+\infty$ and $-\infty$ are not numbers 7
CAUTION 0.5 No calculating with points 8
CAUTION 0.6 Global variables can be replaced by 0 8
CAUTION 0.7 A number cannot specify an amount just by itself. 16
CaUtion 0.7 (Restated) A number cannot specify an amount just by itself 16
CAUTION 0.8 Larger than, smaller than, equal to 20
CAUTION 0.9 No symbol for size-compare 25
CAUTION 0.100 is not a small-size number 30
CAUTION 0.11∞ is not a large-size number 31
CAUTION 0.12 Positive and negative variables are not to be confused with inequations: 39
CAUTION $0.13{ }^{+}$or ${ }^{-}$up to the right and by itself 52
CAUTION 1.1 64
CAUTION 1.2 Rulers vs. axes 78
CAUTION 1.3 sets of plot dots are sparse 80
CAUTION 1.4 Inputs with no output. 90
CAUTION 1.5 Inputs with same output 90
CAUTION 1.6 Parentheses 91
CAUTION 1.7 Smooth curves not necessarily simple 108
CAUTION 1.8 On-screen graphs not conclusive 112
CAUTION 1.9 Smothness near vs. smoothmess at 119
CAUTION 1.10 Neighgorhood of output 124
CAUTION 2.1 133
CAUTION 2.2 133
CAUTION 2.3 Local extreme-height inputs 143
CAUTION 2.4 Local extreme-height inputs 145
CAUTION 3.1 Location of essential inputs 185
CAUTION 5.1 229
CAUTION 5.2 241
CAUTION 5.3 245
CAUTION 6.1 Usual shortcuts we won't use. 259
CAUTION 7.1 W 314
CAUTION 8.1 340
CAUTION 9.1 376
CAUTION 12.1 T 412
CAUTION A. 1 505
CAUTION A. 20 is a number 508

Appendix I

List of Definitions

DEFINITION 0.1 Meaninglessness xix
Definition 0.1 Points 7
DEFINITION $0.2 \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ 8
Definition 0.3 Non-zero global variables 9
DEFINITION $0.4 \boldsymbol{x}_{0}, \boldsymbol{y}_{0}, \boldsymbol{z}_{0}$ 9
DEFINITION 0.5 Real world numbers 17
DEFINITION $0.6 \oplus$ and \ominus 20
DEFINITION 0.7 Size-comparison. 23
DEFINITION 0.8 Small-size numbers 30
DEFINITION $0.9 \boldsymbol{h}, \boldsymbol{k}$, 30
DEFINITION 0.10 Large-size numbers 30
DEFINITION $0.11 \quad L, M$, 31
DEFINITION 0.12 Medium-size numbers 31
DEFINITION 0.13 The positive variables $\boldsymbol{x}_{>\mathbf{0}}, \boldsymbol{y}_{>\mathbf{0}}, \boldsymbol{z}_{>\mathbf{0}}$, and the negative variables $\boldsymbol{x}_{<\mathbf{0}}, \boldsymbol{y}_{<\mathbf{0}}, \boldsymbol{z}_{<\mathbf{0}}$ 39
DEFINITION 0.14 Neighborhoods. 42
DEFINITION $0.15 \quad x_{0} \oplus h$ 42
DEFINITION 0.16 [...] 59
DEFINITION 1.1 Function Requirement 88
DEFINITION 2.1 Local behaviour coding format (Restated) 89
DEFINITION 1.2 I-O function formats 94
DEFINITION 2.1 Local behaviour coding format (Restated) 95
DEFINITION 2.1 Local behaviour coding format 135
DEFINITION 3.1 Essential onscreen graph 185
DEFINITION 4.1 Input-output rule. 207
DEFINITION 4.2 Pointwise formats 207
DEFINITION 4.3 Local formats 216
Definition 5.1 Zero Function 227
Definition 5.2 Unit Functions 229
Definition 5.3 Diagonal Functions 235
Definition 5.4 Affine Functions 243
Definition 6.1 Power Functions 257
Definition 6.2 Squaring Functions 262
Definition 6.3 Cubing Functions 263
Definition 6.4 Reciprocating Functions 263
Definition 6.5 Square-reciprocating Functions 264
Definition A. 1 Comparison (Signed) 510

Appendix J

List of Language Notes

LANGUAGE NOTE 0.1 iff xx
LANGUAGE NOTE 0.2 xx
LANGUAGE NOTE 0.1 8
LANGUAGE NOTE 0.2 9
LANGUAGE NOTE 0.3 9
LANGUAGE NOTE 0.4 Figure 14
LANGUAGE NOTE 0.5 Number line 18
LANGUAGE NOTE 0.6 The mathematical words 33
LANGUAGE NOTE 1.1 63
LANGUAGE NOTE 1.2 69
LANGUAGE NOTE 1.3 75
Language note 1.4 Reverse Polish Notation 92
LANGUAGE NOTE 1.5 Alternate arrow notation. 92
LANGUAGE NOTE 1.6 107
LANGUAGE NOTE $2.1 \quad \boldsymbol{x}_{\max }$ 141
LANGUAGE NOTE $2.2 \boldsymbol{x}_{\text {min }}$ 142
LANGUAGE NOTE $2.3 \boldsymbol{x}_{\max }$ 144
LANGUAGE NOTE $2.4 \boldsymbol{x}_{\text {min }}$ 145
LANGUAGE NOTE 2.5 Slope-sign 148
Language note 2.6 Concavity-sign 150
LANGUAGE NOTE 3.1 Removable height discontinuity at \boldsymbol{x}_{0} 172
LANGUAGE NOTE 3.2 Continuity at ∞ 176
LANGUAGE NOTE 5.1 227
LANGUAGE NOTE 5.2 233
LANGUAGE NOTE 5.3 235
LANGUAGE NOTE 5.4 241
Language note 6.1 Power Functions 260
LANGUAGE NOTE 8.1 341
LANGUAGE NOTE 9.1 376
LANGUAGE NOTE A. 1 Mathematicians accept 0 as a signed num- ber 507
LANGUAGE NOTE A. 2 508
LANGUAGE NOTE A. 3 508
LANGUAGE NOTE A. 4 509
LANGUAGE NOTE A. 5 509

Appendix K

List of Theorems

THEOREM 0.1 Opposite numbers add to 0: 20
THEOREM 0.2 Reciprocal non-zero numbers multiply to +1 21
THEOREM 0.3 Sizes of reciprocal numbers: 24
THEOREM 0.4 Mid-size numbers are non-zero numbers. 31
THEOREM 0.5 Oplussing qualitative sizes numbers 34
THEOREM 0.6 Otiming qualitative sizes 35
THEOREM 0.7 Odividing qualitative sizes 36
THEOREM 0.8 Reciprocity of qualitative sizes 38
THEOREM 0.8 (Restated) Reciprocity of qualitative sizes 55
THEOREM 5.1 Global graphs of the $\mathcal{D} \mathcal{I} \mathcal{A} \mathcal{O} \mathcal{N} \mathcal{A} \mathcal{L}$ functions. 237
THEOREM 5.2 Approximate output near ∞ 248
THEOREM 5.3 Approximate output near x_{0} 252
THEOREM 6.1 260
THEOREM 6.2 Output Sign for regular power functions 278
THEOREM 6.3 Output Size for regular power functions 280
THEOREM 6.3 (Restated) Output Size for regular power functions 282
THEOREM 6.4 Even regular power functions are horizontally sym- metrical 285
THEOREM 6.5 Odd regular power functions are diagonally sym- metrical 286
THEOREM 6.6 Symmetry 286
THEOREM 6.7 286
ThEOREM 6.8 287
THEOREM 6.9 Reciprocity 299
ThEOREM 6.10 Output Sign for positive inputs. 305
THEOREM 7.1 324
Theorem 7.2 Approximate output near x_{0} 324
Theorem 7.3 thm:10-2 324
Theorem 7.4 Approximate output near ∞ 325
Theorem 7.5 Offscreen Graph 325
Theorem 7.6 Slope-Sign Change Non-Existence 326
Theorem 7.7 0-Slope Input Non-Existence 327
Theorem 7.8 Extremum Non-existence 327
Theorem 7.9 0-Height Existence 328
Theorem 7.10 Global Slope-sign 330
THEOREM 8.1 Approximate output near ∞ 345
Theorem 8.2 Bounded Height 357
Theorem 8.3 Offscreen Graph 357
Theorem 8.4 Concavity-sign Change Non-Existence 359
Theorem 8.5 0-Concavity Input Non-Existence 359
Theorem 8.6 Slope-sign Change Existence 360
Theorem 8.7 0-Slope Existence 360
Theorem 8.8 Extremum Existence 361
Theorem 8.9 0-Height Existence 363
Theorem 8.10 Global Concavity-sign 366
THEOREM 8.11 -slope Location 366
Theorem 8.12 Global Slope-sign 366
Theorem 8.13 G 368
Theorem 8.14 0-height Location 371
Theorem 8.15 Global Height-sign 373
Theorem 9.1 Approximate output near ∞ 380

Appendix L

List of Procedures

Procedure 0.1 Evaluate a generic expression at a given number 10
Procedure 0.2 size-comparison 25
Procedure 0.3 Evaluate a generic expression near a point. . 42
Procedure 1.1 Picture a few pairs 73
Procedure 1.2 Plot a pair of numbers 74
Procedure 1.3 Read a Plot dot 76
Procedure 1.4 Right number(s) for a left number 80
Procedure 1.5 right number for a left number (set of plot dots84

Procedure 1.6 Get $f\left(x_{0}\right)$ for x_{0} off a I-O plot. 98
Procedure 1.7 Get input for given y_{0} from a I-O plot. . . . 102
Procedure 1.8 Input level band for a point 120
Procedure 1.9 Output level band for a given point 121
Procedure 1.10 Local frame for an input point 124
Procedure 1.11 Local graph near a point from a global graph 127
Procedure 2.1 Localheight-sign near a point from a global graph . 137
Procedure 2.2 Height-size near a point from a global graph, 138
Procedure 2.3 Slope-sign near a point from a global graph . 148
Procedure 2.4 Concavity-sign near a point from a global graph 150
Procedure 2.5 To get the sided local graph box for an inputoutput pair knowing which side of the input neighborhood is paired with which side of the output neighborhood. 156

Procedure 2.6 To get the sided local graph frame for an inputoutput pair knowing which side of the input neighborhood is paired with which side of the output neighborhood. 162

Procedure 3.1 Interpolate an offscreen graph. 190
Procedure 3.2 Existence of essential feature sign changes in inbetween curves . 191
Procedure 3.3 Get essential graph of f given by I-O rule . . . 198
Procedure 4.1 Get the output at x_{0} from the I-O rule giving f. 208

Procedure 4.2 Get output near ∞ from f given by an I-O rule. 216
Procedure 4.3 Get output near 0 from f given by an I-O rule.218
Procedure 4.4 Get output near x_{0} from f given by an I-O rule. 220
Procedure 5.1 Global graph of a unit function 228
Procedure 5.2 Local graphs of a $\mathcal{U N} \mathcal{I} \mathcal{T}$ function 230
Procedure 5.3 Global graph of a unit function 231
Procedure 5.4 Global graph of a diagonal function 236
Procedure 5.5 Local graphs of a diagonal function 238
Procedure 5.6 Output near a point for a diagonal function. 240Procedure 5.7 To evaluate at x_{0} the function given by $x \xrightarrow{\text { AFFINE }}$$\operatorname{AFFINE}(x)=a x+b$.245
Procedure 5.8 To evaluate near ∞ the function given by$x \xrightarrow{\text { AFFINE }}$ AFFINE $(x)=a x+b$247
Procedure 5.9 To evaluate near x_{0} the function given by$x \xrightarrow{\text { AFFINE }}$ AFFINE $(x)=a x+b \ldots \ldots251$
Procedure 6.1 Get the output of a power function at x_{0} 265
Procedure 6.2 To get the input-output pairs on one side of
∞ 268
Procedure 6.3 To get the input-output pairs on one side of 0.273
Procedure 6.4 To get the plot dot for a given medium size input 288
Procedure 6.5 To locate the graph place near ∞ or 0 290
Procedure 6.6 Graph a regular monomial function: 305

Procedure 7.1 To graph near ∞ the function given by $x \xrightarrow{\text { AFFINE }}$ AFFINE $(x)=a x+b$. 317
Procedure 7.2 To graph near x_{0} the function given by the generic global input-output rule $x \xrightarrow{A F F I N E}$ AFFINE $(x)=$ $a x+b$
Procedure 7.3 To get the feature-signs near ∞ of the function given by $x \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=a x+b$.
Procedure 7.4 To get the feature-signs near x_{0} of the function given by $x \xrightarrow{\text { AFFINE }} A F F I N E(x)=a x+b$321

Procedure 7.5 Find the input(s), if any, whose output under the function given by

$$
x \xrightarrow{\text { AFFINE }} \operatorname{AFFINE}(x)=a x+b
$$

Procedure 8.1 To evaluate at x_{0} the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c \ldots 341$
Procedure 8.2 To evaluate near ∞ the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$
Procedure 8.3 To evaluate near x_{0} the function specified by $x \xrightarrow{\text { QUADRATIC }}$ QUADRATIC $(x)=a x^{2}+b x+c \ldots 345$
Procedure 8.4 To graph near ∞ the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$ 348
Procedure 8.5 To graph near x_{0} the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U \operatorname{ADRATIC}(x)=a x^{2}+b x+c$ 350
Procedure 8.6 To get the feature-signs near ∞ of the function specified by $x \xrightarrow{Q U A D R A T I C}$ QUADRATIC $(x)=a x^{2}+$ $b x+c$. .
Procedure 8.7 To get the feature-signs near x_{0} of the function specified by $x \xrightarrow{\text { QUADRATIC }} Q U A D R A T I C(x)=a x^{2}+$ $b x+c$

Procedure 9.1 To evaluate at x_{0} the function specified by $x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b x^{2}+c x+d$
Procedure 9.2 To evaluate near ∞ the function specified by $x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b x^{2}+c x+d$ 379

Procedure 9.3 To evaluate near x_{0} the function specified by

$$
\begin{equation*}
x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d . \tag{380}
\end{equation*}
$$

Procedure 9.4 To graph near ∞ the function specified by $x \xrightarrow{\text { CUBIC }} C U B I C(x)=a x^{3}+b x^{2}+c x+d \ldots \ldots384$
Procedure 9.5 To graph near x_{0} the function specified by $x \xrightarrow{\text { CUBIC }} C U$ BIC $(x)=a x^{3}+b x^{2}+c x+d \ldots \ldots 38$
Procedure 9.6 To get the feature-signs near ∞ of the function specified by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d 388$
Procedure 9.7 To get the feature-signs near x_{0} of the function specified by $x \xrightarrow{C U B I C} C U B I C(x)=a x^{3}+b x^{2}+c x+d 391$
Procedure 9.8 Essential graph of a function specified by $x \xrightarrow{\text { CUBIC }}$ $\operatorname{CUBIC}(x)=a x^{3}+b x^{2}+c x+d \ldots392$

Appendix M

List of Demos

DEMO 0.1a From x to +5 11
DEMO 0.1b From x to -3 12
DEMO 0.1c From x to +3 12
DEMO 0.2 Size-compare signed numbers. 25
DEMO 0.3a To evaluate 43
DEMO 0.3b To evaluate 44
DEMO 0.3c To evaluate 45
Demo 0.3d To evaluate 46
Demo 1.1 Picture (Andy, walk) 73
Demo 1.2 Plot given ($\mathrm{L}-\mathrm{R}$) 75
Demo 1.3 Get the I-O pair 76
Demo 1.4a Get right number related to -2 81
DEMO 1.4b Get output related to a given input 82
DEMO 1.4c Get right number related to +1 83
DEMO 1.5a Get left number(s) related to +30 84
DEMO 1.5b Get right number related to -50 85
DEmo 1.5c Get left number(s) related to -30 86
Demo 1.6a Get $f(-2.5)$ 99
Demo 1.6b Get $f(-2.5)$ 100
Demo 1.7a Input(s) for -80, if any, from I-O plot 102
Demo 1.7b Input(s) for -80, if any, from I-O plot 103
DEMO 1.7c Input(s) for -80 , if any, from I-O plot 104
DEMO 1.8a Input level band for -31.6 120
DEMO 1.8b Input level band for ∞ 120
DEMO 1.9a Output level band for -7.83 122
DEMO 1.9b Output level band for ∞ 122
DEMO 1.10a Local frame for the regular input -3.16 124
DEMO 1.10b Local frame for the pole -3.16 125
DEMO 1.10c Local frame for low infinity $(\infty,+71.6)$ 125
DEMO 1.10d Local frame for high infinity (∞, ∞) 126
Demo 1.11a Local graph near -3 from a given global graph. 127
DEMO 1.11b Local graph near ∞ from a given global graph 128
DEMO 1.11c Local graph near ∞ from a given global graph 129
DEMO 1.11d Local graph near ∞ from a given global graph 129
DEMO 1.11e Local graph near ∞ from a given global graph 130
DEMO 2.1 Local height-sign near +5 137
DEMO 2.2a 138
DEMO 2.2b 139
Demo 2.2c ListEntry 140
DEMO 2.3a 148
DEMO 2.3b 149
DEMO 2.4 151
DEMO 2.5 157
DEMO 2.6 162
DEMO 2.7 162
DEMO 2.8 163
Demo 3.1 Let f be the function whose offscreen graph is 191
DEMO 3.2a Let f be the function whose offscreen graph is 192
DEMO 3.2b Let f be the function whose offscreen graph is 192
DEMO 3.2c Let f be the function whose offscreen graph is 193
DEMO 3.2d Let f be the function whose offscreen graph is 193
DEMO 3.3 xxxxxx 199
DEMO 4.1a Output from an I-O rule at -5 209
DEMO 4.1b 210
DEMO 4.2 Get from $\frac{x^{+2} \ominus+1}{x \oplus 0}$ 217

246
Demo 5.8 To evaluate near ∞ the function given by $x \xrightarrow{\text { NINA }}$ NIN $A(x)=-61.03-82.47 x$

248
Demo 5.9 To evaluate near -3 the function given by $x \xrightarrow{A L D A} A L D A(x)=-32.67 x+71.07$

Demo 6.1a Get $D I P(-3)$ for $x \xrightarrow{D I P} D I P(x)=+1 x^{+6} \quad 266$
Demo 6.1b Get $F I P(-3)$ for $x \xrightarrow{F I P} F I P(x)=-1 x^{0} \cdot 266$
DEMO 6.1c Get $\operatorname{GIP}(-3)$ for $x \xrightarrow{G I P} G I P(x)=+1 x^{-5} .267$
DEMO 6.1d Get $G I P(-0.2)$ for $x \xrightarrow{G I P} G I P(x)=+1 x^{-5} 267$
DEmo 6.2 Let NADE be the function given by the global inputoutput rule

$$
x \xrightarrow{N A D E} N A D E(x)=(-83.91) x^{-5}
$$

To get the input-output pairs near $+\infty$ for $N A D E$: 268
DEMO 6.3 zZZ 269
DEMO 6.4 zZZ 271
DEMO 6.5 zzz 272
DEMO 6.6 Let $M A D E$ be the function given by the global input- output rule

$$
x \xrightarrow{M A D E} M A D E(x)=(+27.61) x^{+5}
$$

To get the input-output pairs near 0^{+}for $M A D E$: 273
DEMO 6.7 zZZ 274
DEMO 6.8 zzz 276
DEMO 6.9 zzz 277
DEMO 6.10 ZZZ 288
DEMO 6.11 zzz 288
DEMO 6.12 Let $N A D E$ be the function given by the global input-output rule
$x \xrightarrow{N A D E} N A D E(x)=(-83.91) x^{-5}$
To locate the graph place of $N A D E$ near $+\infty$: 290
DEMO 6.13 ZZZ 291
DEMO 6.14 ZZZ 291
DEMO 6.15 ZZZ 292
DEMO 6.16 ZZZ 292
DEMO 6.17 zzz 293
DEMO 6.18 ZZZ 294
DEMO 6.19 ZZZ 294
DEMO 6.20 zzz 295
DEMO 6.21 zzz 296
DEMO 6.22 ZZZ 296
DEMO 6.23 ZZZ 297
DEMO 6.24 zzz 297
DEMO 6.25 Get the global graph of the function specified by the input-output rule $x \xrightarrow{\text { KIR }} K I R(x)=(+52.92) \cdot x^{-13}$306DEMO 6.26 Get the global graph of the function specified by theglobal input-output rule$x \xrightarrow{\text { KIM }} K I M(x)=(-40) x^{+6}$

Demo 6.27 Get the global graph of the function specified by the global input-output
rule $x \xrightarrow{\text { KIN }} K I N(x)=(-40.87) x^{+5}$

308
DEmo 6.28 Get the global graph of the function specified by the
global input-output rule

$$
x \xrightarrow{K I B} K I B(x)=(+77.03) \cdot x^{-8}
$$

Demo 7.1 To graph near ∞ the function given by $x \xrightarrow{\text { NINA }}$ NIN $A(x)=-61.03-82.47 x$

DEMO 7.2 To graph near -3 the function given by $x \xrightarrow{A L D A} A L D A(x)=-32.67 x+71.07$

Demo 7.3 . 320
Demo 7.4 . 321
Demo 7.5 . 322
Demo 7.6 . 322
Demo 8.1 To evaluate at -3 the function specified by $x \xrightarrow{A V I A} A V I A(x)=+21.03 x^{2}-32.67 x+71.07$

DEMO 8.2 To evaluate near ∞ the function specified by $x \xrightarrow{\text { KINA }} K I N A(x)=-61.03+51.32 x^{2}-82.47 x$

Demo 8.3 To evaluate near -3 the function specified by $x \xrightarrow{\text { ARNA }}$ ARN $A(x)=-32.67 x+71.07+81.26 x^{2}$

DEMO 8.4 To graph near ∞ the function specified by $x \xrightarrow{\text { KINA }}$ KINA $(x)=-61.03+51.32 x^{2}-82.47 x$

348
Demo 8.5 To graph near -3 the function specified by $x \xrightarrow{\text { ARNA }}$ ARN $A(x)=-32.67 x+71.07+81.26 x^{2}$

Demo 8.6 L . 353
DEMO 8.7 L 353
DEMO 8.8 L 355
DEMO 9.1 To evaluate at -3 the function specified by$x \xrightarrow{\text { ARIA }} A R I A(x)=+17.52 x^{3}+21.03 x^{2}-32.67 x+71.07$377
DEMO 9.2 To evaluate near ∞ the function specified by the global input-output rule
$x \xrightarrow{\text { DINA }} D I N A(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x$379
Demo 9.3 To evaluate near -3 the function specified by$x \xrightarrow{A R B A} A R B A(x)=-32.67 x-31.18 x^{3}+71.07+81.26 x^{2}$381
DEMO 9.4 To graph near ∞ the function specified by the globalinput-outputrule
$x \xrightarrow{\text { DINA }} D I N A(x)=-61.03+37.81 x^{3}+51.32 x^{2}-82.47 x$384
DEMO 9.5 To graph near -3 the function specified by$x \xrightarrow{A R B A} A R B A(x)=-32.67 x-31.18 x^{3}+71.07+81.26 x^{2}$386
DEMO 9.6 389
DEMO 9.7 389
DEMO 9.8 391

Index

$+, 509$
$+\infty, 6,52$
-, 509
$-\infty, 6,52$
$0,4,507$
0 -height input, 461
$0^{+}, 51$
$0^{-}, 51$
$<, 510$
$=, 510$
>, 510
L, 31
-, 21
$\geqq, 510$
$\infty, 6$
$\leqq, 510$
| |, 509
$\mathcal{U N I T}^{+}, 229$
$\mathcal{U N I T}^{-}, 229$
$\mathcal{Z E R O}, 227$
$\odot, 21$
$\ominus, 20$
$\oplus, 20$
$\xrightarrow{f}, 92$
f, 91
$f(x), 91$
$h, 30,250$
$x, 8$
$x_{+}, 39$
$x_{0 \text {-height }}, 140$
$x_{0}, 9$
$x_{<0}, 39$
$x_{\infty \text {-height }}, 140$
$x_{\neq 0}, 9$
$x_{\text {maxi-height }}, 141,144$
$x_{\text {min-height }}, 142,145$
$y, 8$
y-axis, 78
$y_{+}, 39$
$y_{0}, 9$
$y_{<0}, 39$
$y_{\neq 0}, 9$
$z, 8$
$z_{+}, 39$
$z_{<0}, 39$
$z_{\neq 0}, 9$
[...], 59
x-axis, 78
$\mathrm{x} \square$, xx
2-tuple, 63
absolute value, 509
absurd, 506
add, 512
add-on function, 202
add-on number, 202
addition, 20
addition formula, 345
affine function, 244
affine part, 341
amount, 508
angle, 135
application, xxv
appreciable number, 31
approximate, 58, 248
arrow connector, 65
arrow diagram, 65
arrow notation, 92
at, 10
axiom, xxiii
axis, 18,78
bar graph, 78
base function, 202
basic format, 135
believe, xxii
bump, 197
calculate, xix
calculus word, xix
capital script letters, 91
Cartesian table, 67
center, 42
change, xix, 87
changeable, 3
characteristic, 261
circa variable, 42
circle, 6
code, 289
coefficient, 257
collection, 502, 508
column, 67
compact, 6
compactor, 48
comparison (plain), 510
comparison (signed), 510
compute, xix
concavity, 150
concavity-sign, 150
concavity-size, 150
conclusive, 110
connect, 63
connector, 65
constant coefficient, 229, 244, 340, 375
constant function, 233
constant part, 244
constant term, 244, 341, 376
control point, 224
count, 502, 508
counting, 508
critical for the Concavity, 390
critical for the Height, 354
critical for the Slope, 354
cubic coefficient, 375
cubic term, 376
Cubing function, 263
curve, 107
cut-off input, 169
cutoff size, 29
Da Vinci, xvii
data point, 75
de-locate, 371
decide, xxii
decimal, 508
decimal number, 503
decimal pointer, 503
declare, $8,10,98$
deductive rule, xxiii
define, xviii
denominator, 501
Descartes, 67
diagonal flip, 285
diagonal function, 235
diagram, 64
differ, 15
digit, 13, 503
dilation function, 241
direct problem, 92
discrete function, 107
discriminant, 368
divide, 512
domain, 90
donut view, 113
dotted line, 108
end of the line, 5
endorelation, 69
entity, xvii, 501
equal-in-size, 24
equal-to (plain), 510
equal-to (signed), 511
error, 15
essence, 501
essential, 180, 184, 191
essential -feature input, 393
essential graph, 198
essential local extreme-height input, 195
essential on-screen graph, 198
essential onscreen graph, 198
evaluate, 10
even pole, 147
even power function, 261
even zero, 146
everyday word, xix
exceptional power function, 260
exceptional rational function, 412
execute, 10
executed expression, 218, 219
existence, 199
exponent, 257
expression, 10
extended number, 7
extract, 419
extraneous, 180
extremity, 152
factual evidence, xxii
false, xxii
family, 476
far, 478
farther, 26
figure, 14
finite, 33
first derivative, 324
fixed point, 487
forced, 180, 295
formal, xix
formula, 8
fraction, 56
frame, 124
function, 88
function problem, 92
function requirement, 88
gap, 167
general local analysis, 323
generic expression, 10
generic local input-output rule, 324
give, 17, 504
global concavity, 359
global graph, 108
global height, 233
global slope, 239, 327
global variable, 8
globlal I-O rule, 207
graph dot, 108
height, 136, 140
height discontinuous, 166
height discontinuous at $x_{0}, 166$
Height height continuous at $x_{0}, 165$
histogram, 78
hollow dot, 75, 166
horizontal flip, 284
how many, 508
how much, 508
I-O device, 89
I-O function format, 94
I-O pair, 93
I-O plot, 95
iff, xx
indeterminate number, 42
individual expression, 10
individualr, 26
infinite, 33
infinitesimal, 33
infinity, 5
information, 2, 504
input, 89
input level band, 119
input level line, 95
Input Sign, 278
Input Size, 278
input-output function format, 94
input-output pair, 93
Input-Output plot, 95
input/output device, 89
integers, 509
intermediate plot dot, 96
interpolate, 96
interpolation, 178
isolated input, 119
item, 502, 508
jet near $x_{0}, 381$
join smoothly, 160, 198
jump, 166
kink, 173
language, xvii
large variable, 31
large-size, 30
larger than, 511
larger-size, 24
larger-than (plain), 510
larger-than (signed), 510
larger-than-or-equal-to (plain), 510
larger-than-or-equal-to (signed), 511
largest permissible error, 59
left, 51
left number, 73
left number level line, 74
left number problem, 80
left problem, 70
left thing, 64
left-neighborhood, 51
limit, 170
linear coefficient, 235, 244, 340, 375
Linear function, 241
linear part, 244
linear term, 244, 341, 376
link, 73
list, 501
list table, 67
local arrow pair, 215
local executed expression, 217
local extreme-height input, 143,145
local graph, 127
local height-sign, 137
local height-size, 138
local input-output arrow pair, 217
local input-output pair, 215, 217-219
Local input-Output rule, 215
local input-output rule, 215, 217-219
local maximum-height input, 141, 144
local minimum-height input, 142, 144
locate, 102
lower, 29

Magellan, 6
Magellan height continuous at, 170, 177
Magellan view, 114
magnifier, 47
magnitude, 501, 508
max-min fluctuation, 197
meaning, xvii
meaningless, xix
measure, 15
medium-size, 31
Mercator, 50

Mercator view, 108
metric, 28
min-max fluctuation, 197
model theory, xviii
modulus, 509
multiply, 512
natural, 508
near 0,41
near $\infty, 41$
nearby number, 41
negative, 509
neighborhood, 42
non-zero, 508
non-zero global variable, 9
non-zero number, 5
norm, 509
not-equal-to (plain), 510
not-equal-to (signed), 511
nothingness, 4
number, 3
number line, 18
numeral, 501
numeral phrase, 501
numerator, 501
numerical value, 509
odd pole, 147
odd power function, 261
odd zero, 146
offscreen, 108
offscreen graph, 108
on-off function, 169
one-point compactification, 6
onscreen graph, 108
opp, 510
opposite input, 286
ordinary numbers, 32
orientation, 504, 508
origin, 6
out-of-range, 28
output, 89
output jet, 343
output jet near $x_{0}, 346$
output level band, 121
output level line, 95
Output Sign, 278
Output Size, 278
override, 172
pair, 63
paper world, xvii, 501
parity, 146, 147, 261
plain, 508
plain decimal numeral, 503
plain whole numeral, 502
plot dot, 74
plot point, 75
point, 7
pointwise format, 207
pole, 106, 147
positive, 509
positive integer, 508
postulate, xxiii
power function, 257
precise, xviii
primary power function, 262
procedure, 58
prototypical, 476
proximate on-screen graph, 199
quadratic coefficient, 340, 375
quadratic equation, 369
Quadratic function, 340, 375
quadratic part, 376
quadratic term, 341, 376
qualifier, 2, 504
qualitative, 509
qualitative Cartesian setup, 108
qualitative ruler, 48
qualitative size, 30
qualtative information, 501
quantitative, 509
quantitative Cartesian setup, 74
quantitative information, 501
quantitative ruler, 17
quantitative ruler for left numbers, 74
quantitative ruler for right numbers, 74
quasi-height continuous at, 172
quincunx, 79
range, 28
rational degree, 412
Rational function, 411
real number, 55
real world, xv
real world number, 17
reason, xxv
reciprocal, 474
reciprocal (plain), 512
reciprocal (signed), 513
reciprocal function, 474
reciprocal of each other, 478
reciprocating function, 263
regular input, 100
regular power function, 261
regular rational function, 412
related, 65
relation, 64
relation problem, 70
relative, 515
removable height discontinuity at, 172
remove, 172
replace, 10
restricted, 39
return, 89
reverse problem, 93
right, 51
right number, 73
right number level line, 74
right number problem, 84
right problem, 71
right thing, 64
right-neighborhood, 51
rigor, xxiv
rise, 240
root, 56
row, 67
rule, 22
run, 240
scale, 17
screen, 74
semantic, 4
send, 92
sentence, xviii
set, 3
set of plot dots, 77
set variable, 9
shape, 295
Shape type I, 402
Shape type II, 402
Shape type O, 401
side, 18
side-neighborhoods, 51
sided local graph box, 156
sign, 509
signed, 509
signed decimal numeral, 504
signed whole numeral, 504
significant, 14,16
simple, 118
simplest, 185
situation, xviii, xix
sizable number, 31
size, 509
size-compare, 23
size-inverting, 487
size-preserving, 487
slope, 148
slope-sign, 148
slope-size, 150
small variable, 30
small-size, 30
smaller than, 511
smaller-size, 24
smaller-than (plain), 510
smaller-than (signed), 510
smaller-than-or-equal-to (plain), 510
smaller-than-or-equal-to (signed), 511 smooth, 118
smooth continuation, 115
smooth interpolation, 178
solid dot, 75
solid line, 108
sparse, 80
specify, 13
square-reciprocating functions, 264
state, xxii
straight, 328
straight function, 227
straight line, 227
stuff, 508
subtract, 512
subtraction, 20
sum function, 202
supplement, 172
symbol, xx
symmetrical, 19
syntactic, 4
table, 67
template, 488
term, 341, 376
the opposite, 510
the same, 509
theorem, xxiii
thicken, 42
thing, 2, 64, 504
tickmark, 17
tolerance, 16
transition, 169, 178
transition function, 169
trinomial function, 339
true, xxii
tube view, 112
two-points compactification, 6
type, 261
uncertainty, 15
undetermined, 35
unit, 503
upper, 29
variable, 8
vertical flip, 285
whole, 508
whole number, 502
wiggle, 197
word, xvii
zero, 105, 146, 507
The Numbers We Will Use, 2.
1.1. Signed decimal numbers 2
1.2. Changeable number vs. set number. 3
Zero and Infinity, 4.
2.1. Zero. 4
2.2. Infinity. 5
Numbers In General, 7.
3.1. Points. 7
3.2. Global variables. 8
3.3. Generic expression 10
3.4. Evaluation at a given number. 10
Real-world Numbers, 13.
4.1. Non-zero digits 14
4.2. Significant digits. 14
4.3. Size of a collection of items. 15
4.4. Size of an amount of stuff. 15
4.5. Specifying an amount of stuff. 15
4.6. Real world numbers. 17
4.7. Giving a number. 17
Picturing Real World Numbers, 17.
5.1. Quantitative rulers. 17
5.2. Origin. 18
Computing with Real World Numbers, 19.
6.1. Comparing given numbers 19
6.2. Adding and subtracting given numbers. 20
6.3. Multiplying and dividing real world numbers. 20
6.4. Operating with $\mathbf{0}$. 21
6.5. Operating with more than two given numbers 21
Size-comparing Real World Numbers, 23.
7.1. Size-comparing vs. comparing sizes. 24
7.2. Procedure. 25
7.3. Picturing size-comparisons of given numbers 25
Qualitative Sizes, 26.
8.1. Sizes beyond belief 26
8.2. Ranges of numbers. 28
8.3. Out-of-range numbers 28
8.4. Cutoff sizes. 29
8.5. Numbers we can or cannot give. 29
8.6. Qualitative sizes. 30
8.7. About the language 32
Computing with Qualitative Sizes, 33 .
9.1. Adding and subtracting qualitative sizes. 34
9.2. Multiplying qualitative sizes. 35
9.3. Dividing qualitative sizes. 36
9.4. Reciprocal of a qualitative size. 36
Computing with Extended Numbers., 39.
10*.1. Positive and negative variables. 39
10*.2. Operation tables. 39
10*.3. Are ∞ and 0 reciprocal? 40
Neighborhoods, 40.
11.1. Nearby numbers. 41
11.2. Evaluation near a given point. 42
11.3. Picturing a neighborhood of $\mathbf{0}$. 47
11.4. Picturing a neighborhood of ∞. 48
11.5. Picturing a neighborhood of x_{0}. 50
11.6. Side-neighborhoods. 51
11.7. Interplay between $\mathbf{0}$ and ∞ 53
Real Numbers, 55 .
12*.1. What are real numbers? 55
12*.2. Fractions and roots 56
12*.3. Calculating with real numbers. 57
Approximating Real Numbers, 58.
13*.1. Approximation procedures 58
13*.2. Approximation error 59
Conclusion, 59 - Relations, 63.
1.1. Ordered pairs 63
1.2. Connected things. 64
1.3. (left thing, right thing) pairs. 66
1.4. Tables. 67
1.5. Endorelations. 68
1.6. Relation problems. 69
Picturing Relations, 73.
2.1. Basic picture. 73
2.2. Quantitative Cartesian setup. 73
2.3. Plotting pairs of numbers. 74
2.4. Reading plot dots. 75
Relations Given By Sets Of Plot Dots, 77 .
3.1. Sets of plot dots. 77
3.2. Axes. 78
3.3. The quincunx. 79
3.4. Sparseness of sets of plot dots. 80
3.5. Left number problems. 80
3.6. Right number problems. 84
Functions, 87.
4.1. Function requirement. 88
4.2. Inputs and outputs 89
4.3. Language for functions. 91
4.4. Function problems 92
4.5. Input-Output pairs. 93
4.6. I-O pair problems 94
Functions Given by I-O Plots, 95.
5.1. Input- Output plots. 95
5.2. Interpolation 96
5.3. Direct function problems 98
5.4. Reverse function problems 102
5.5. Zeros 105
5.6. Poles 106
5.7. Discrete Calculus. 107
Functions Given By Curves, 107.
6.1. Qualitative Cartesian setup 107
6.2. Mercator view. 108
6.3. Mercator views are not conclusive. 110
6.4. Compact views. 112
6.5. Compact views are conclusive. 114
"Simple" Functions?, 116 - Local graph near a point, 119.
8.1. Input level band. 119
8.2. Output level band. 121
8.3. A Few Words of Caution Though. 123
8.4. Frames. 124
8.5. ZZZZZZZZZZZZZZZ 127
8.6. Local graph near x_{0}. 127
8.7. Local graph near ∞. 129
Local Code, 133.
1.1. Facing the neighborhood. 134
1.2. Local code. 135
Local Height, 136.
2.1. Local height near a given point. 137
2.2. Local height-sign. 137
2.3. Height-size 138
2.4. Local height near ∞ 140
Local extreme, 141.
3.1. Local maximum-height input 141
3.2. Local minimum-height input. 142
3.3. Local extreme-height input. 143
3.4. Optimization problems. 143
3.5. Local extreme 144
3.6. Local maximum-height input. 144
3.7. Local minimum-height input. 144
3.8. Local extreme-height input. 145
3.9. Optimization problems. 146
Zeros And Poles, 146.
4.1. Zeros. 146
4.2. Poles. 147
Local Slope, 148.
5.1. Slope-sign. 148
5.2. Slope-size 150
Local Concavity, 150.
6.1. Concavity-sign 150
6.2. 0-concavity input. 151
Feature Sign-Change Inputs, 153.
7.1. height sign-change input 154
7.2. \quad Slope sign-change input 154
7.3. Concavity sign-change input 155
7.4. Offscreen graph. 157
7.5. Sided local frame. 161
Height-Continuity, 165.
1.1. Height-continuity at \boldsymbol{x}_{0}. 165
1.2. Height-discontinuity at x_{0}. 166
1.3. Magellan height-continuity at x_{0} 170
1.4. Height-continuity at ∞ 170
1.5. Magellan height-continuity at ∞. 171
1.6. Quasi height-continuity at x_{0}. 172
Slope-Continuity, 172.
2.1. Tangent. 173
Concavity-Continuity, 173.
3.1. Osculating circle. 173
3.2. Dealing with poles 173
3.3. At ∞ 175
3.4. Magellan height-continuity at a pole \boldsymbol{x}_{0} 177
4.1. 178
4.2 178
4.3. 178
Smooth Interpolations, 178.
5.1. 178
5.2 180
Essential Onscreen Graph, 181
6.1. Offscreen vs. onscreen. 181
6.2. Seen from far away. 182
6.3. Forcing 184
6.4. Essential interpolation vs Non-essential Interpolation 185
6.5. Smoothing out non-essential features 186
Interpolating An Offscreen Graph, 187.
7.1. Functions without pole. 187
7.2. Functions with pole(s) 189
7.3. Interpolating an offscreen graph. 190
Essential Feature-Sign Changes Inputs, 191.
8.1. Essential sign-change input 191
8.2. more complicated 193
8.3. non-essential 194
8.4. Essential Extreme-Height Inputs 195
8.5. Non-essential Features 196
8.6. The essential onscreen graph. 198
Dilation of Functions, 201.
9.1. Dilating functions given by table. 201
9.2. Dilating functions given by curve. 201
Addition of Functions, 202.
10.1. Adding functions given by table. 202
10.2. Adding functions given by bar graphs. 203
Linear Combinations of functions, 203 • Global Input-Output Rules,
207 • Output at a given number., 208.
2.1. Getting input-output pairs 208
Global Graph: Why Not Just Plot \& Interpolate?, 211.
3^{*}.1. How do we get the off-screen graph? 211
3*.2. How do we know which numbers to declare? 211
3^{*}.3. How do we know how many numbers to declare? 212
3^{*}.4. How do we know with which curve to interpolate? 212
$3^{*} .5$. How do we know the curve we got is the graph? 213
Local Input-Output Rule, 214.
4.1. $N e a r \infty$ 216
4.2. Near 0 218

INDEX

4.3. Near x_{0} 219Towards Global Graphs., 224.
5.1. Direct problems 224
5.2. Reverse problems. 224
5.3. Global graph. 224
5.4. Need for Power Functions. 225
The Function $\mathfrak{z e r o}, 227$.
1.1. Local I-O rule. 228
1.2. Local graph. 228
1.3. Local features. 228
1.4. Control point(s). 228
1.5. Global graph. 228
The Functions $\boldsymbol{U N I T}^{+}$and $\boldsymbol{U N I T} \mathcal{T}^{-}, 229$.
2.1. Local I-O rules. 229
2.2. Local graphs. 230
2.3. Local features. 231
2.4. Control point(s). 231
2.5. Global graph. 231
Constant functions, 233 - Piecewise constant functionss, 234 - TheDiagonal Functions $\operatorname{IDENTITY}$ and $\mathcal{O P P O S I T E}, 235$.
5.1. Global I-O rules. 235
5.2. Global graphs. 236
5.3. Control point(s) 238
5.4. Local graphs 238
5.5. Local features. 239
5.6. Local I-O rules. 240
5.7. Local features. 241
Linear Functions, 241 • Piecewise Linear Functions, 243 • AffineFunctions, 243.
8.1. Output at a given number 245
8.2. Output near ∞ 246
8.3. 247
8.4 247
8.5. Output near x_{0} 249
8.6 249
8.7. 250
8.8. 251
8.9. 252
8.10. 253
8.11. 254
Piecewise Affine Functions, 254.
0.1. I-O rule. 257
0.2. Exceptional power functions. 260
0.3. Regular power functions. 261
Functions $\mathcal{S Q U A R I N G}{ }^{+}$and $\mathcal{S Q U A R I N G}{ }^{-}, 262$.
1.1. Control point(s). 262
1.2. Global graphs. 262
1.3. Local graphs. 262
1.4. Local I-O rules. 262
1.5. Local features. 262
Functions CuBING^{+}and $\mathrm{cuBING}^{-}, 263$.
2.1. Global I-O rules. 263
2.2. Global graphs. 263
2.3. Control point(s). 263
2.4. Local graphs. 263
2.5. Local I-O rules 263
2.6. Local features. 263
Functions $\mathfrak{R E C L P R O C A L}{ }^{+}$and $\operatorname{RECIPROCAL}{ }^{-}, 263$.
3.1. Global I-O rules. 263
3.2. Global graphs. 264
3.3. Control point(s). 264
3.4. Local graphs. 264
3.5. Local I-O rules 264
3.6. Local features. 264
The Functions $\mathcal{S Q U A R E R E C I P}{ }^{+}$and $\mathcal{S Q U A R E R E C I P}{ }^{-}, 264$.
4.1. Global I-O rules. 264
4.2. Control point(s). 264
4.3. Global graphs. 264
4.4. Local graphs. 264
4.5. Local I-O rules. 264
4.6. Local features. 264
Secondary Regular Power Functions, 264.
5.1. Global I-O rules. 265
5.2. Global graphs. 265
5.3. Local graphs. 265
5.4. Local I-O rules 265
5.5. Local features. 265
5.6. Output at x_{0} 265
5.7. Output near x_{0}. 268
5.8. Output near ∞. 268
5.9. Output near 0 273
5.10. Output Sign and Output Size 278
5.11. Symmetries. 284
Graphing Power Functions, 287.
6.1. Plot dot. 288
6.2. Thickening the plot dot. 289
6.3. Graph box near ∞ and near 0 290
6.4. Local Graph Near ∞ and Near 0 295
6.5. Local Features Near ∞ and Near 0 296Reciprocity, 298 - Global Graphing, 305 - Types of Global Graphs,310 • Binomial Functions, 313.
1.1. 313
1.2 313
Graphs of Binomial Functions, 315 .
2.1. 315
2.2. 315
Local graphs, 317 • Local Feature-signs, 319.
4.1. 320
4.2 321Affine Functions: Global Analysis, 323 - Smoothness, 323 - The EssentialQuestion, 324 • Slope-sign, 326 • Extremum, 327 • Height-sign,327 • Bounded Graph, 328 • 0-Slope Location, 330 • Locating InputsWhose Output $=y_{0}, 330$ • Locating Inputs Whose Output $>y_{0}$ Or $<y_{0}$,330 • Initial Value Problem, 331 • Boundary Value Problem,
333 - Piecewise affine functions, 334 - Trinomial Functions,
339 • Output at $x_{0}, 341$ • Output near $\infty, 343$ • Output near x_{0},
345 • Local graphs, 348 • Local Feature-signs, 352 • Quadratic
Functions: Global Analysis, 355 - The Essential Question,
357 • Concavity-sign, 358 • Slope-sign, 359 • Extremum,
360 - Height-sign, 361 - Bounded Graph, 363 • 0-Concavity Location,
365 • 0-Slope Location, 366 • Extremum Location, 367 • 0-Height
Location, 368 - Output at $x_{0}, 377$ - Output near $\infty, 378$ - Output near
$x_{0}, 380$ • Local graphs, 384 - Local Feature-signs, 388 • Cubic
Functions: Global Analysis, 392 - Global Graph, 392 • Concavity-sign,
393 • Slope-sign, 395 • Extremum, 396 • Height-sign, 397 • 0-Concavity
Location, 399 • 0-Slope Location, 400 • Extremum Location,
401 • 0-Height Location, 403 • Rational Degree, 411 • Graphic
Difficulties, 413 - Local I-O Rule Near ∞, 419 - Height-sign Near ∞,
422 - Slope-sign Near $\infty, 424$ • Concavity-sign Near $\infty, 426$ • Local
Graph Near $\infty, 431$ - Local I-O Rule Near $x_{0}, 438$ - Height-sign Near x_{0},
440 - Slope-sign Near $x_{0}, 443$ - Concavity-sign Near $x_{0}, 444$ • Local
Graph Near $x_{0}, 445$ - The Essential Question, 449 • Locating Infinite
Height Inputs, 450 - Offscreen Graph, 455 - Feature-sign Change Inputs,

456 • Global Graph, 457 • Locating 0-Height Inputs, 459 • Looking Back, 471 • Looking Ahead, 472 • Reciprocity Between 0 and $\infty, 474$.
3.1. Reciprocal Function 474
3.2. Reciprocity . 477

The Family of Power Functions, 486.
4.1. Types of Regular Functions 486
4.2. What Power Functions Do To Size 487
4.3. Fixed point . 487

The bigger the size of the exponent the boxier the graph, 488 - Local Quantitative Comparisons, 491 - Global Quantitative Comparisons, 494.
7.1. Symmetries Of Power Functions 495
7.2. Coverage By Power Functions 496

Real World Numbers - Paper World Numerals, 501.
1.1. Magnitude of collections of items. 502
1.2. Magnitude of amounts of stuff. 503
1.3. Orientation of entities. 503
1.4. Concluding remarks. 504

Things To Keep In Mind, 505.
2.1. Positive numbers vs. plain numbers. 505
2.2. Symbols vs. words. 506

Zero And Infinity, 507.
3.1. Zero. 507

Plain Whole Numbers, 508.
4.1. Size and sign. 509

Comparing., 510 • Adding and Subtracting, 512 • Multiplying and
Dividing, 512.
7.1. Reciprocal of a number. 512

Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares), 519 • Division in Descending Exponents, 521 - General case, 523.

[^0]: ${ }^{1}$ Bulletin of the American Mathematical Society, Vol 47 Number 1 Pages 139-144
 ${ }^{2}$ Here is all of the review: 'The book by Simmons is a fine one. It was written with care and intelligence. It has good problems, and the historical material is almost a course in the history of mathematics. It is nicely printed, well bound, and expensive. Future historians of mathematics will look back on it and say, 'Yes, that is an excellent example of a late twentieth-century calculus book. '").
 ${ }^{3}$ Free from https://archive.org/details/elementsofdiffer00loom/page/n4/

[^1]: ${ }^{3}$ A legal term! (https://en.wikipedia.org/wiki/Criminal_conversation)

[^2]: ${ }^{2}$ Just about the very highest honors for a mathematician. (https://en.wikipedia. org/wiki/Fields_Medal)

[^3]: ${ }^{3}$ Einar Hille, Analysis, 1964
 ${ }^{4}$ As quoted from his letters by his daughter, May Sarton, in her book I Knew a Phoenix

[^4]: ${ }^{1}$ As discussed, very thoroughly, in https://history.stackexchange.com/questions/ 45470/source-of-quote-attributed-to-w-e-b-du-bois-when-you-have-mastered-numbers? $\mathrm{rq}=1$, this famous quote is indeed from Geneen's book, Managing, Chapter Nine - The Numbers, p. 151, rather than from W.E.B. Dubois, as often asserted-with no reference.

[^5]: ${ }^{0}$ Calculus, 4th edition. Publish or Perish Press. https://en.wikipedia.org/wiki/ Michael_Spivak
 ${ }^{1}$ According to https://quoteinvestigator.com/2022/03/31/connected/. However, the earliest published version is from Gotthold Ephraim Lessing in 1769.

[^6]: ${ }^{1}$ Inventor of AnALytic Geometry which links the previously separate fields of ALGEBRA and GEOMETRY (https://en.wikipedia.org/wiki/Analytic_geometry)

[^7]: ${ }^{2}$ See https://en.wikipedia.org/wiki/Histogram
 ${ }^{3}$ See https://en.wikipedia.org/wiki/Bar_chart

[^8]: ${ }^{1}$ Educologists will surely appreciate "Sign-slope $f=/$ iff Sign-heigth $f^{\prime}=+$ ".

[^9]: ${ }^{2}$ Educologists will surely appreciate "Sign-concavitye $f=\cup$ iff Sign-heigth $f^{\prime \prime}=+$ ".

[^10]: ${ }^{1}$ The absolute silence maintained by Educologists in this regard is rather troubling.

[^11]: ${ }^{1}$ The plot appears on the back cover of Strang's Calculus, 1991, Wellesley-Cambridge Press, where it is discussed in Section 1.6 A Thousand Points of Light, pages 34-36.

