Chapter 2

Accounting for Money On the Counter (II).

In which it will be found that combinations, much cumbersome to work with, can be "coded" in a marvelously efficient way. The search being a bit convoluted, it will be conducted in careful stages, focussed on what is written on the board and illustrated of course with money, it being the only entity whose TEN to 1 rate of change is likely to be familiar to U. S. students.
Note. There is nothing sacred about TEN: it is simply how many fingers (digit is just a fancy word for finger) we have on our two hands and TEN is not the only number of digits that we could have used. Deep down in their innards, computers use Two digits, 0 and 1 , because any electronic device is either off or on. At a higher level, computers engineers may use EIGHT ($0,1,2,3,4,5,6$, 7) or sixteen digits $(0,1,2,3,4,5,6,7,8,9$, a, b, c, d, e, f.) The Babylonians used SIXTY digits, a historical remnant of which is the fact that there are SIXTY seconds to a minute and SIXTY minutes to an hour. In fact, all that we will do can be easily redone with any number of digits.

2.1 (Decimal) Headings

A somewhat natural idea is to write the denominators only once and then write just the numerators as needed. The problem is how to know which numerator goes with which denominator. What we do is to write the denominators into a heading such as

Clevelands	Franklins	Hamiltons	Washingtons	Dimes

with the numerators directly underneath the corresponding denominators. For instance, we will write the combination 3 Franklins \& 1 Washington \& 7 Dimes as follows:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	3		1	7

Thus, each column corresponds to a collection of a different kind of objects. While this may look like going from cumbersome to very cumbersome, we will now see how much easier it is to work with.

2.2 Adding Under A Heading

We saw earlier that the problem with addition was mostly that the aggregation of collections produces a collection larger than any of the collections we start with so that to count the aggregate collection we could be in a position where we may not have "large" enough denominators. We shall deal with that problem presently and here we shall deal with the bookkeeping that is involved and this is where adding under a heading makes things easy.

Suppose for instance that we wanted to add the three combinations,

> 8 Hamiltons \& 7 Dimes
> 8 Washingtons \& 2 Dimes
> 5 Hamiltons \& 3 Washingtons \& 4 Dimes

First, we write the three combinations under the heading:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		8		7
			8	2
		5	3	4

Adding up the Dimes

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		8		7
			8	2
		5	3	4
				THIRTEEN

gives us Thirteen Dimes but we cannot write that. If we can change TEN of the Thirteen Dimes for 1 Washington, then the situation becomes ${ }^{1}$:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
			1	
		8		7
		5	8	2
			3	4
				3

[^0]Adding up the Washingtons

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
			1	
		8		7
			8	2
		5	3	4
			TWELVE	3

gives us TWelve Washingtons but we cannot write that. Again, if we can change ten of the TWElVE Washingtons for 1 Hamilton, then the situation becomes:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		1	1	
		8		7
			8	2
		5	3	4
			2	3

Finally, adding the Hamiltons

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		1	1	
		8		7
			8	2
		5	3	4
		FOURTEEN	2	3

gives us fourteen Hamiltons but we cannot write that. Again, if we can change ten of the fourteen Hamiltons for 1 Franklin, then the situation becomes:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	1	1	1	
		8		7
			8	2
		5	3	4
	1	4	2	3

Thus, if we have changing facilities, we can then carry out the addition ${ }^{2}$ and the result will be 1 Franklin \& 4 Hamiltons \& 2 Washingtons \& 3 Dimes.

2.3 Subtracting Under A Heading.

While, in the case of addition, the problem was on the board in that it had to do with not having large enough denominators, in the case of subtraction by

[^1]remove subtraction
contrast, we shall see that the problem is mostly with what we have on the counter.

1. Given money on the counter, we can remove some, or all, of it. As with addition, subtraction is a (board) procedure to get the resulting numberphrase.
a. When the collections are small, things are simple.

- For instance, given dollar, dollar, dollar, dollar, dollar, dime, dime, dime, if we remove, say, dollar, dime, dime, we are then left with dollar, dollar, dollar, dollar, dime.
* The (board) procedure consists in just "erasing" the names of the objects we are removing:
[5 Dollars \& 4 Dimes] - [1 Dollar \& 3 Dimes] = Dollar, Dollar, Dollar, Dollar, Dollar, Dime, Dime, Dime, Dime,
from which we must erase
Dollar,
Dime, Dime, Dime
= Dollar, Dollar, Dollar, Dollar, Dhollak,
Dime, Diandé, Diandé, Diandé,
$=$ Dollar, Dollar, Dollar, Dollar, Dime
$=4$ Dollars \& 1 Dime
b. When the collections are larger and are represented by (counting-) number-phrases, we want a (board) procedure to get the (counting-) numberphrases for the resulting collection in terms of the (counting-) number-phrases for the given collections.
- Suppose for instance that, from seventy-eight dollars in the form of SEVEN ten-dollar-bills and EIGHT one-dollar-bills, we wanted to remove twenty-five dollars, in the form of two ten-dollar-bills and five one-dollar-bills.
What we do in the real world is in fact exactly represented by what we write on the board, so we skip what we do on the counter.
* On the board, we can represent the actual money by, say, the (counting-) number-phrases 7.8 Hamiltons and 25 Washingtons. What we choose as unit (denominator) does not matter since the first thing we do is to place the (counting-) number-phrases under a heading:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		7	8	
		2	5	

Then of course we get:
placeholder

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		7	8	
		2	5	
		5	3	

that is 5 Hamiltons \& 3 Washingtons.
Which we can write as 0.053 Clevelands, 0.53 Franklins, 5.3 Hamiltons, 53. Washingtons or 530. Dimes.
c. Most of the time, though, we need to change.
© Suppose for instance that, instead of SEVENTY-EIGHT dollars, we had only SEVENTY-THREE dollars in the form of SEVEN ten-dollar-bills and THREE one-dollar-bills from which to remove TWENTY-FIVE dollars, in the form of TWO ten-dollar-bills and FIVE one-dollar-bills. While, obviously, we still have enough money to remove TWENTY-FIVE dollars, the problem is that we don't have enough one-dollar-bills.
Since, here again, what we do in the real world is in fact exactly represented by what we write on the board, we now move on to that:

* On the board, this means that, from 7.3 Hamiltons we want to subtract 25 Washingtons:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		7	3	
		2	5	

We immediately run into a problem even though we obviously have plenty enough money to pay out 25 Washingtons. The problem is that 3 Washingtons is not enough from which to pay out 5 Washingtons. However, if we can change 1 Hamiltons for TEN Washingtons, then the situation becomes ${ }^{3}$

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		$\$ / 6$	THIRTEEN	
		2	5	
		4	8	

From which we get the result 4 Hamiltons \& 8 Washingtons.
Which we can write as 0.048 Clevelands, 0.48 Franklins, 4.8 Hamiltons, 48. Washingtons or 480. Dimes.
2. Until now, we have been using 0 only as a placeholder when writing number-phrases. It is with subtraction that 0 becomes absolutely necessary as a numerator because we want to be able to write the result of, say, 3 Franklins 3 Franklins as 0 Franklin.

[^2]place-notation (decimal-counting) number-phrase pick
unit denominator
3. Finally, as long as we are dealing with money on the counter, writing stuff such as 3 Washingtons - 5 Washingtons makes no sense whatsoever because, when there are only THREE ten-dollar-bills on the counter, we cannot remove FIVE one-dollar-bills!

2.4 (Decimal-Counting) Number-Phrases

1. While headings are convenient when we want to work with several combinations, they are much too cumbersome when all we want is just to write one combination. So we will now develop yet another way, called place-notation, which will be convenient both to write a single combination and to add several combinations.
a. Suppose that, for a while, we wanted to deal with combinations such as 7 Franklins \& 2 Hamiltons \& 4 Washingtons.
Since the denominators remain fixed for the duration and can thus "go without saying", a natural idea would be just to give the numerators 7, 2, 4. The problem, though, is that someone being given these numerators wouldn't know under which denominator to write each numerator and thus wouldn't be able to reconstruct the combination.
For instance, s/he wouldn't know if the numerators 7, 2, 4 should be placed under the heading this way

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
7	2	4		

or that way

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
		7	2	4

or any other way.
So, we cannot give someone just the numerators. Along with the numerators, we must also give some information as to how the numerators are to be placed under the heading.
b. To that purpose, we shall now introduce a new type of (counting) number-phrase that we shall call a (decimal-counting) number-phrase. Here is how we shall proceed.
First, we "pick" one of the denominators and call it our unit (denominator). By "pick", we mean that our unit (denominator) can be any of the denominators and that the choice is entirely ours. The price for this freedom, though, is that we will have to indicate up front what our choice of unit (denominator) will be ${ }^{4}$. Thus, to write a (decimal-counting) number-phrase,

- we write the numerators in the order that they appear in the combination,
- we write the unit (denominator)

[^3]- we mark with a decimal pointer which of the numerators is to be placed under the unit (denominator).
decimal pointer (decimal) numerator decimal point
All the individual numerators, together with the decimal pointer, will be collectively referred to as (decimal) numerator. Thus, just like a (counting) number-phrase consisted of a numerator and a denominator, a (decimal-counting) number-phrase consists of a (decimal) numerator and a unit denominator. Note. To see how things work, we will use for a while \leftarrow as our decimal pointer. But, after this section, we shall conform and just use a dot called a decimal point. (However, this use of a dot as decimal pointer is not universal and many languages use a comma instead of a dot.)
The unfortunate thing about decimal points, as opposed to decimal pointers, is that we will have to remember that the decimal point points to its left, the way the decimal pointer \leftarrow does.
Example 1. After we have taken Hamiltons as our unit, we can rewrite the combination 7 Franklins \& 2 Hamiltons \& 4 Washingtons as the number-phrase $72_{\leftarrow} 4$ Hamiltons.
Then, anyone given the (decimal-counting) number-phrase $72_{\leftarrow} 4$ Hamiltons would be able to recover the combination because,
- since 2 is being pointed at, 2 goes under Hamiltons since it is the unit (denominator),
- since 7 is left of 2,7 goes under Franklins, the denominator left of Hamiltons, and,
- since 4 is right of 2,4 goes under Washingtons, the denominator right of Hamiltons.
that is,

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	7	2	4	

which is indeed 7 Franklins \& 2 Hamiltons \& 4 Washingtons.
c. There is however a problem with combinations such as 5 Franklins \& 3 Hamiltons \& 8 Dimes which, under a heading, looks like

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	5	3		8

Say we take again Hamiltons as our unit (denominator). The problem is that what is immediately to the right of Hamiltons is Washingtons rather than Dimes. So, we cannot write $53 \leftarrow 8$ Hamiltons because that (decimal-counting) numberphrase would be read as meaning

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	5	3	8	

that is 5 Franklins \& 3 Hamiltons \& 8 Washingtons.

In order to get 5 Franklins \& 3 Hamiltons \& 8 Dimes we must indicate that there are no Washingtons, This is where we introduce the new digit $\mathbf{0}$ and we now write $53 \leftarrow 08$ Hamiltons as that gives

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	5	3	0	8

which is 5 Franklins \& 3 Hamiltons \& 0 Washingtons \& 8 Dimes and indeed the same as 5 Franklins \& 3 Hamiltons \& 8 Dimes.
2. There are two default rules. (We now use ".", the decimal point, instead of " \leftarrow ", the decimal pointer.)

- When the decimal point is to the right of the numerator, as in 7204. Dimes, it is customary not to write it and just to write 7204 Dimes and the corresponding default rule is:
When there is no decimal point, it goes without saying that the DECIMAL POINT IS TO THE RIGHT OF THE (DECIMAL) NUMERATOR.
- When there is no doubt as to what the unit (denominator) is, say Hamiltons, it is customary not to write it and, for instance, just to write 72.04 instead of 72.04 Hamiltons. The corresponding default rule is:

When there is no denominator, it goes without saying that the DENOMINATOR IS THE UNIT (DENOMINATOR).

This way of putting it, though, is very dangerous because it depends on us remembering what the unit is ${ }^{5}$. Unfortunately, it is done all the time.
Note. It is usual to write, for instance, . 56 Hamiltons rather than 0.56 Hamiltons. The energy saving is not worth it and we shall not do so in this book.
3. (Decimal-counting) number-phrases have several advantages:
a. As we already saw, we can pick any denominator we want to be our unit (denominator). For instance, a rich person might pick Clevelands as her/his unit (denominator) while the rest of us would probably pick Washingtons as our unit (denominator).
b. Not only does place-notation allow us to pick any denominator we want to be our unit (denominator) but, by placing the number-phrase back under the heading, we can easily change the denominator we want to use as our unit (denominator) -and to adjust the decimal point accordingly. For instance, placing 72.04 Hamiltons back under the heading,

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
	7	2	0	4

we see that the (decimal-counting) number-phrase 72.04 Hamiltons could just as well be rewritten as any of the following (decimal-counting) number-phrases:

[^4]
0.7204 Clevelands 7.204 Franklins 720.4 Washingtons
 7204. Dimes

Any of the above means the same as 7 Franklins \& 2 Hamiltons \& 4 Dimes.
c. Another advantage is that if, for whatever reason, we needed to have "smaller" or "larger" (decimal) numerators, it would be easy to do. We would change the digit being pointed and change correspondingly the denominator to be used as unit. We would do that by placing the number-phrase back under a heading.
d. Finally, there is another, intriguing, advantage. We saw earlier that with our heading we could now count all the way up to 9 Clevelands \& 9 Franklins \& 9 Hamiltons \& 9 Washingtons \& 9 Dimes. What if we wanted to add 1 Hamilton? Let us do it under a heading:

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
9	9	9	9	9
		1		

We have no trouble reaching the following stage (in the presence of changing facilities):

Clevelands	Franklins	Hamiltons	Washingtons	Dimes
1	1			
9	9	9	9	9
		1		
TEN	0	0	9	9

At this point, though, the trouble is that we do not have any denominator beyond Clevelands so that we cannot change the TEN Clevelands and we cannot write the result either as a combination or as a (decimal-counting) numberphrase. On the other hand, if we pick any of the existing denominators, say Franklins, then we can write the number-phrase 100.099 Franklins.
Note. To some extent this would be cheating because we still do no have a denominator under which to place the leftmost 1 but, other than that, everything looks fine and we could even say that we wrote the decimal number phrase pending the creation of that new denominator!!! In case you should worry, though, we will develop in the next chapter several ways to get automatically as many denominators as we need.

To be continued with, much to the contentmen of Physicists, Chemists, Biologists, and other, assorted Scientists, a detailed investigation of the various ways in which insisting on being very systematic leads to being able to write very, very large numbers fairly painlessly.

[^0]: ${ }^{1}$ No Educologist has ever bothered to explain what "carry over" is supposed to evoke in this context.

[^1]: ${ }^{2}$ Might this be the origin of "carryover"?

[^2]: ${ }^{3}$ Educologists will certainly have no trouble explaining why they advocate the term"borrowing" even though it is both completely unfounded and perfectly non-explanatory.

[^3]: ${ }^{4}$ This is somewhat similar to what is called a declaration in software engineering.

[^4]: ${ }^{5}$ This is perhaps one more place to remind Educologists that memory is the weakest part of the mind, that it is the first to go and that, so far, humans can be defined as thinking entities, that is entities amenable to logic.

