After a private exchange with Warren Esty à propos Teaching about Inverse Functions, his Spring 2005 article in these pages, Part One of Mathematics For Learning was completely reorganized with the result that Algebra is now integrated with Arithmetic from the very beginning:

As serialized:

1. Counting With Number-Phrases Accounting for Money Addition
2. Accounting for Money
(Decimal) Headings
Adding Under A Heading
Subtracting Under A Heading
(Decimal) Number-Phrases

As reorganized-rewritten:

1. Basic Collections of Money

Counting up to NINE
Equalities \& Inequalities
Equations \& "Inequations"
Addition
Subtraction
Combinations
2. Extended Collections of Money
Bundles and Exchanges
The rest essentially as before.

This should result in a better course for developmental students who often feel slighted by having to spend a lot of time on Arithmetic before being allowed to "graduate" to Algebra. The following consists of the early introductions of Equalities \& Inequalities and Equations \& "Inequations". Hopefully, the whole "new improved" version will eventually be available for download.

0.1 Comparing Collections: Equalities and Inequalities

We now want to compare collections-involving the same kind of objects.

1. We begin with the comparison of two collections on the counter and the board procedure for getting the result of the comparison.
A On the counter, what we do is to match one-to-one the objects in the two collections; the relationship between the two collections depends on which of the two collections the leftover objects are in.

* On the board, we count the two collections and then we count from the numerator of the first number-phrase to the numerator of the second number-phrase, that is, starting after the numerator of the first numberphrase, we count to the numerator of the second number-phrase.
Either way, we then have the following three possibilities:
a. In general,

A When the leftover objects are in the second collection, the first collection is less numerous than the second collection ${ }^{1}$.

[^0]count forward succeed is more numerous than count backward precede precession

* To count from the first numerator to the second one, starting with the digit after the first numerator, we must count forward, that is, we must call the digits that succeed it in $1,2,3,4,5,6,7,8,9$ and end with the second numerator.
For instance, $\xrightarrow{4,5,6,7}$ is a forward count that starts after 3 and ends with 7.
For instance,

$\boldsymbol{¢}$ On the counter.	* On the board.
Jack has	We count Jack's collection: $\xrightarrow{1,2,3}$

We count Jill's collection:
$\xrightarrow{1,2,3,4,5,6,7}$

Jack's collection is less $\xrightarrow{4,5,6,7}$ numerous than Jill's collection We must count forward.
b. In general,

A When the leftover objects are in the first collection, the first collection is more numerous than the second collection.

* To count from the first numerator to the second one, starting with the digit before the first numerator, we must count backward, that is, we must call the digits that precede it in $1,2,3,4,5,6,7,8,9$ and end with the second numerator. For instance, $\stackrel{3,4}{\longleftarrow}$ is a backward count that starts before 5 and ends with 3 .
Note. Thus, the precession $9,8,7,6,5,4,3,2,1$ should be memorized as well as the succession $1,2,3,4,5,6,7,8,9^{2}$.
For instance,
terms for use on the counter and to write on the board and only experience can tell if the difference is worth making.
${ }^{2}$ Should Educologists ask children to do so, they might discover that children actually love to count backward.

c. In general,

A When there are no leftover objects, the first collection is as numerous as the second collection.

* The two numerators are the same and we must count neither forward nor backward.
For instance,

¢ On the counter.	* On the board.
Jack has \square	We count Jack's collection: $\xrightarrow{1,2,3}$

Jack's collection is equal to Jill's collection.

We count Jill's collection:
$\xrightarrow{1,2,3}$

We must count neither forward nor backward.
2. In order to represent on the board the result of comparing two collections, we must expand our mathematical language beyond number-phrases.
a. Given a relationship between two collections, we write a sentence involving the two number-phrases that represent the collections and a verb that represents the relationship between the two collections:

```
<
is smaller than
>
is larger than
=
is equal to
strict inequality
equality
bounded inequality
\leqq
less than or equal to
```


$<$

```
smaller than
is larger than
\(=\)
is equal to
strict inequality
equality
bounded inequality
less than or equal to
```

- We will use the verb < to represent the relationship is less numerous than and we will read it is smaller than For instance, in the first of the above three examples, we will write the sentence 3 Dollars <7 Dollars which we will read "THREE dollars is smaller than FIVE dollars."
- We will use the verb $>$ to represent the relationship is more numerous than and we will read it is larger than. For instance, in the second of the above three examples, we will write the sentence 5 Dollars >3 Dollars which we will read "Five dollars is larger than three dollars."
- We will use the verb $=$ to represent the relationship is as numerous as and we will read it is equal to. For instance, in the third of the above three examples, we will write the sentence 3 Dollars $=3$ Dollars which we will read "THREE dollars is equal to THREE dollars."
In other words,

When we must count forward	we write $, \ldots, \ldots$,	which is read as "is smaller than"
When we must count backward	we write	which is read as
$\longleftrightarrow \ldots$,	$>$	"is larger than"
When we must not	we write	which is read
count either way	$=$	"is equal to"

Note. Beware that the symbols $<$ and $>$ go in directions opposite to that of the arrowheads when we count from the first numerator to the second numerator. (If need be, one can think of $<$ as •: with • being "smaller" than : and of $>$ as : • with : being "larger" than \cdot.)
b. Sentences involving the verbs $>$ or $<$ are called strict inequalities while sentences involving the verb $=$ are called equalities. For example,

3 Dollars <7 Dollars and 8 Dollars >2 Dollars are strict inequalities

$$
3 \text { Dollars }=3 \text { Dollars } \quad \text { is an equality }
$$

c. In English, when we say that we allow "up to" 5 Dollars, we mean that we allow 1 Dollar, 2 Dollars, 3 Dollars, 4 Dollars but that we do not allow the endpoint itself, 5 Dollars. If we do want also to allow the endpoint, 5 Dollars, we say "up to and including" 5 Dollars.
In mathematics we shall also need to make this distinction, that is, to allow or not to allow the endpoint, and, when we do allow it, we will say that the inequality is a bounded inequality:

- We will use the verb \leqq to represent the relationship is less numerous than or as numerous as and we will read it less than or equal to.
- We will use the verb \geqq to represent the relationship is more numerous than or as numerous as and we will read it more than or equal to.
d. Inasmuch as the sentences that we wrote above represented actual relationships between collections on the counter, they were true but there is of course nothing to prevent us from writing sentences that are false in the sense that there is no way that we could come up with situations that these sentences would represent. For example, the sentence

5 Dollars $=3$ Dollars

is false because there is no way that we could realize this on the counter with actual collections.
However, while occasionally useful, it is usually not very convenient to write sentences that are false because we must not forget to say so when writing and we may miss where it says so when reading and, so, inasmuch as possible, we shall write only sentences that are true and use the default rule:
When no indication of truth or falsehood is given, mathematical sentences will be understood to be true and this will go without saying.

Moreover, when a sentence is false, rather than writing it, what we shall usually do is to write its negation - which is true - which we can do either by placing the false sentence within the symbol $\neg[\quad]$ or by slashing the verb.
For instance, instead of writing that
the sentence 5 Dollars $=3$ Dollars is false
we will write either the (true) sentence

$$
\neg[5 \text { Dollars }=3 \text { Dollars }]
$$

or the (true) sentence

$$
5 \text { Dollars } \neq 3 \text { Dollars }
$$

3. The (linguistic) duality that exists between $<$ and $>$ must not to be confused with (linguistic) symmetry, a concept which we tend to be more familiar with ${ }^{3}$.
a. Examples of linguistic symmetry include:

- Jack is a child of Jill versus Jill is a child of Jack
- Jill beats Jack at poker versus Jack beats Jill at poker
- Jack loves Jill versus Jill loves Jack
- 9 Dimes >2 Dimes versus 9 Dimes <2 Dimes

[^1]more than or equal to true
false
realize negation
$\neg[\quad]$
slashing
(linguistic) duality
(linguistic) symmetry
dual
specify
requirement satisfy

In each example, the two sentences represent opposite relationships between the two people/collections because, even though the verbs are the same, the two people/collections are mentioned in opposite order.
Observe that just because one of the two sentences is true (or false) does not, by itself, automatically force the other to be either true or false and that whether or not it does depends on the nature of the relationship.
b. Examples of linguistic duality include:

- Jack is a child of Jill versus Jill is a parent of Jack
- Jill beats Jack at poker versus Jack is beaten by Jill at poker
- Jack loves Jill versus Jill is loved by Jack
- 9 Dimes >2 Dimes versus 2 Dimes <9 Dimes

In each example, the two sentences represent the same relationship between the two people/collections because, even though the people/collections are mentioned in opposite order, the two verbs are dual of each other which "undoes" the effect of the order so that only the emphasis is different.
Observe that, as a result, if one of the two sentences is true (or false) this automatically forces the other to be true (or false) and this regardless of the nature of the relationship.
c. The following are examples of simultaneous linguistic symmetry and linguistic duality because the verbs are the same and the order does not matter.

- Jack is a sibling of Jill versus Jill is a sibling of Jack
- 2 Nickels $=1$ Dime versus $\quad 1$ Dime $=2$ Nickels

Observe that, in that case, it looks as if as soon as one sentence is true (or false), by itself, this automatically forces the other to be true (or false) and that it does not seem to depend on the nature of the relationship.

0.2 Specifying Collections: Equations and "Inequations"

In real life, we often have to specify things by stating some requirement(s) that the things we want must satisfy.

Here, we will specify collection(s) by the requirement that they stand in a given relationship, namely one or the other of the following,

- is more numerous than the given collection,
- is less numerous than the given collection.
- is as numerous as the given collection,
with a given collection.
For instance, say that

Jack has three dollars, Jill has Seven dollars,
Dick has three dollars,
Jane has FOUR dollars.
and that we specify the collection(s) that satisfy the requirement that they be more numerous than Jack's collection.

1. We could of course proceed as we did in Section ??:

A On the counter, matching Jack's collection one-to-one with each one of the collections of Jill, Dick and Jane shows that this specifies the collections of Jill and Jane.

* On the board, counting from Jack's collection each one of the collections of Jill, Dick and Jane would give the same result.
This approach, though, is somewhat short of ideal if only because it would become very time-consuming with large numbers of collections to compare. So, what we want is to develop a board procedure that is more efficient in that the time it requires will not go up appreciably as the number of collections and of objects in the collections goes up.

2. Before we do that, though, we need a way to phrase requirements that lends itself to procedural manipulations.
a. Essentially, what we will do is to introduce the mathematical version of something common in everyday life, namely forms such as

$$
\square \text { was President of the United States. }
$$

which, when we fill it it with some data, say,
Kissinger
produces a sentence, namely
Kissinger was President of the United States.
which happens to be false while, when we fill it with the data

Bill Clinton

it produces the sentence
Bill Clinton was President of the United States.
which happens to be true.
b. In the case of the above example,
© On the counter, we want the collections of dollars that satisfy the requirement that they be more numerous than three dollars.
solution non-solution
unspecified numerator equations strict inequation bounded inequation replace
instruction
:=
specifying-phrase
identity
identify

* On the board, we want the solutions of the corresponding form

$$
\text { Dollars > } 3 \text { Dollars }
$$

For instance, we found above that

- the data 7 produces the sentence 7 Dollars >3 Dollars which is true,
- the data 4 produces the sentence 4 Dollars >3 Dollars which is true,
- the data 3 produces the sentence 3 Dollars >3 Dollars which is false.

Thus 7 and 4 are solutions of the form \square Dollars >3 Dollars while 3 is a non-solution.
c. Boxes, though, would soon turn out to be impossibly difficult to use and, instead, we will use unspecified numerators, such as for instance the letter x, as in
x Dollars
and, instead of the form Dollars >3 Dollars we shall write

$$
x \text { Dollars }>3 \text { Dollars }
$$

We shall call:

- equations those forms whose verb is $=$,
- strict inequations those forms whose verb is either $<$ or $>$,
- bounded inequations those forms whose verb is either \leqq or \geqq.
d. Instead of filling the box with the data, say, 3 , we replace x by 3 and the instruction to do so will be

$$
\left.\right|_{\text {where } x:=3}
$$

in which the symbol $:=$, borrowed from a computer language called Pascal, is read as "is to be replaced by." Thus

$$
x \text { Dollars }_{\text {where } x:=3}
$$

is a specifying-phrase in that it specifies

3 Dollars

The following sentence

$$
x \text { Dollars }\left.\right|_{\text {where } x:=3}=3 \text { Dollars }
$$

is therefore "trivially" true; it is an example of a type of sentence called identity because it identifies the numerator specified by the specifyingphrase.
We also have

- x Dollars $_{\text {where } x:=7}>3$ Dollars,
- x Dollars $\left.\right|_{\text {where } x:=4}>3$ Dollars,
- x Dollars $\left.\right|_{\text {where } x:=3} \ngtr 3$ Dollars.

3. We now turn to the simplest possible instance of a more general problem which is that we shall now want all the collection(s), if any, that stand in a given relationship with a given collection.
For example,
© Say Jack has FIVE dollars on the counter. We then want to find all collections of dollars that satisfy whichever one of the following three requirements:
i. is less numerous than Jack's collection,
ii. is more numerous than Jack's collection,
iii. is as numerous as Jack's collection.
(In other words, we are looking here at three distinct problems at once.)

* On the board, we are looking for the solution set of the corresponding inequation / equation:
i. x Dollars <5 Dollars
ii. x Dollars >5 Dollars
iii. x Dollars $=5$ Dollars

We now proceed to do just so.
a. Regardless of which one of the three requirements we are trying to satisfy, we begin by considering the equation

$$
x \text { Dollars }=5 \text { Dollars }
$$

whose solution set contains of course one, and only one, numerator: 5 .
b. If it was the equation we were trying to solve, we are of course done.

If it was either one of the inequations

$$
x \text { Dollars }<5 \text { Dollars } \quad \text { or } \quad x \text { Dollars }>5 \text { Dollars },
$$

that we were trying to solve, we need to determine which side of the breakeven point is the solution set of the inequation. (The break-even point is the solution of their associated equation, x Dollars $=5$ Dollars, that is, of the equation obtained from the inequation by replacing the verb, $<$ or $>$, by the verb =.)

That the solution set must be a complete side of the break-even point is because, if there were both a solution and a non-solution on the same side of the break-even point, there would then have to be another break-even point in-between the solution and the non-solution. But that cannot be since a
general
solution set
break-even point
associated equation
pick
test
test-point curly brackets endpoint
break-even point is a solution of the associated equation x Dollars $=5$ Dollars which can have only one solution, namely 5 .

So, on each side of the break-even point, all we need to do is to pick one numerator and test it against the wanted requirement, that is to ask whether this test-point $i s$ or is a solution or a non-solution: every numerator on the same side of the break-even point as the test-point will then be the same.

For instance, say we are looking at the inequation

$$
x \text { Dollars }>5 \text { Dollars }
$$

The associated equation is

$$
x \text { Dollars }=5 \text { Dollars }
$$

so that the break-even point of the inequation is 5 . Then, on each side of 5 , we pick a test-point. Say we pick 3 and 7 . Since to count from 3 to 5 we have to count forward, 3 is not a solution and all numerators on the same side of 5 as 3 will not be solutions either. Since to count from 7 to 5 we have to count backward, 7 is a solution and all numerators on the same side of 5 as 7 will also be solutions so that the solution set of the inequation

$$
x \text { Dollars }>5 \text { Dollars }
$$

is $6,7,8, \ldots$
Note. It is customary, though, to write solutions sets in-between curly brackets as in $\{6,7,8, \ldots\}$ and we shall follow the custom.

Observe that the time we spent with the above procedure does not depend anymore on the number of collections we are dealing with.

Observe that, here, the break-even point is also an endpoint in that all the numerators on the one side of the break-even point are solutions and all the numerators on the other side of the break-even point are not solutions. This, though, will not be always the case and we will encounter break-even points that will turn out not to be endpoints.

[^0]: ${ }^{1}$ Educologists may question this contrived term. Of course, the issue is to have different

[^1]: ${ }^{3}$ This confusion is a most important linguistic stumbling block for students and one that Educologists utterly fail to take into consideration.

