Mathematics For Learning

With Inflammatory Notes for the Mortification of Educologists and the Vindication of "Just Plain Folks"

Abstract

Alain Schremmer The opinions expressed are those of the author and should not be construed as representing the position of AMATYC, its officers, or anyone else. Letters to the Editor and/or author are welcome. Criticisms, enquiries, suggestions, etc. can be sent directly to the author at Schremmer.Alain@gmail.com.

[Editor's note: In the Spring 2004 issue of The AMATYC Review, Schremmer introduced his idea for an open-source serialized text: Mathematics For Learning. The Preface to the text appeared in the Spring 2004 issue with a new chapter in each subsequent issue of The AMATYC Review. This issue contains Chapter 5.]

5. Multiplication

As children, we first encounter multiplication as additive power, that is as repeated addition, of whole numbers on the basis of which we are made to memorize the multiplication tables.

Our goal here will be to extend the notion of multiplication to signed decimal numbers. The difficulty ${ }^{1}$ is that multiplication is an operation much different from addition in that, for instance and independently of what the denominator Blob might stand for, while 3 Blobs +2 Blobs $=6$ Blobs is a meaningful-if false-sentence, 3 Blobs $\times 2$ Blobs $=6$ Blobs is utterly meaningless.

Multiplication occurs in three very different types of situation, namely:

- As dilation, e.g. 3.2 (20.1 Blobs) $=64.36$ Blobs
- As co-multiplication, e.g. 3.2 Blobs $\times 20.1 \frac{\text { Dollars }}{\text { Blob }}=64.36$ Dollars
- As external composition law, e.g. 3.2 Blobs $\times 20.1$ Blobs $=64.36$ SquareBlobs

We shall develop the procedures for multiplication based on the multiplication tables. In order to do so, though, it will be convenient to have denominators for each digit in a decimal number-phrase.

Metric Headings

A heading in the metric denominator system involves

[^0]- picking a unit denominator
- using the following metric prefixes:

Kilo	Hecto	Deka	-	Deci	Centi	Milli

We can illustrate with money: if we pick Franklins as our unit denominator, then the heading that corresponds to

Clevelands	Franklins	Hamiltons	Washingtons	Dimes

in the metric denominator system is

DEKA				
Franklins	Franklins	DECI Franklins	CENTI Franklins	MILLI Franklins

and, for instance, under this metric heading,
3.2 Clevelands becomes 3.2 DekaFranklins,
3.72 Franklins remains 3.72 Franklins,
7.45 Hamiltons becomes 7.45 DeciFranklins.

But, of course, the unit denominator can be anything and, for instance, when dealing with 327.8 Foot we will be able to say that 2 is the number of DekaFoot, 3 is the number of НестоFoot and 8 is the number of DeciFoot. ${ }^{2}$

Note: The above is taken from a comprehensive chapter designed to let students familiarize themselves with the several variants of the metric denominator system such as, for instance, the exponential denominator system in which, say, НестоFoot is replaced by $\times \operatorname{Ten}^{+2}$ Foot and where \times is just a separator or the decimal denominator system in which НестоFoot is replaced by $\times 100$. Foot where \times is first seen as a separator and then as multiplication symbol. The chapter was omitted from this serialization for the sake of brevity but is available from the author.

Multiplication As Dilation

Given a rubber band that, in the initial state, is two feet long, and given a three-fold dilation, the rubber band in the final state will be six feet long. If we are able to assimilate this dilation to a repeated addition of length, ${ }^{3}$ we then have a

[^1]procedure to get the final length namely
\[

$$
\begin{aligned}
3(2 \text { Foot }) & =2 \text { Foot }+2 \text { Foot }+2 \text { Foot } \\
& =6 \text { Foot }
\end{aligned}
$$
\]

In any case, the issue here is to extend this to decimal numerators, for instance to 3.4 (20.1 Foot).

The idea is to decompose the decimal numerators into "single-digit" numerators by use of metric prefixes so as to be able to use the multiplication tables. (Recall that we use " $\&$ " for combinations, i.e. with different denominators, and " + " only for addition, i.e. with identical denominators.)

In order to overcome their initial "fear of proving", the students first need to reduce a great many specifying-phrases down to where they can use multiplication tables as in, say,

$$
\begin{aligned}
2(0.3 \text { Foot }) & =2(3 \text { DeciFoot }) \\
& =(2 \times 3) \text { DeciFoot } \\
& =6 \text { DeciFoot } \\
& =0.6 \text { Foot }
\end{aligned}
$$

where:
i. 0.3 Foot is read under a heading as 3 DeciFoot
ii. the "repeated addition" $2(3$ DeciFoot $)$ is turned into the multiplication (2×3) DeciFoot,
iii. the multiplication (2×3) DeciFoot gives, by way of the multiplication table, 6 DeciFoot
iv. the result, 6 DeciFoot, is changed under the heading back to the original denominator: 0.6 Foot.

Then they should go through a sequence of progressively more complicated instances, all the way up to, say,
$3.4(20.1$ Foot $)=3 .(20.1$ Foot $)+0.4(20.1$ Foot $)$
and, decomposing 20.1 Foot into the combination 2 DekaFoot \& 1 DeciFoot,

$$
\begin{aligned}
& =3(2 \text { DekaFoot } \& 1 \text { DeciFoot }) \& 4 \text { Deci }(2 \text { DekaFoot } \& 1 \text { DeciFoot }) \\
& =(3 \times 2) \text { DekaFoot } \&(3 \times 1) \text { DeciFoot }) \&(4 \times 2) \text { Foot } \&(4 \times 1) \text { CentiFoot }
\end{aligned}
$$

$=6$ DekaFoot $\& 3$ DeciFoot $\& 8$ Foot $\& 4$ CentiFoot

and, changing back to the initial Foot as common denominator,

$$
\begin{aligned}
& =60 . \text { Foot }+0.3 \text { Foot }+8 . \text { Foot }+0.04 \text { Foot } \\
& =68.34 \text { Foot }
\end{aligned}
$$

Finally, the students must learn to streamline the above to, say:

$$
\begin{aligned}
3.4(20.1 \text { Foot }) & =34 .(201 . \text { Centi Foot }) \\
& =(34 . \times 201 .) \text { Centi Foot } \\
& =6834 . \text { Centi Foot } \\
& =68.34 \text { Foot }
\end{aligned}
$$

In other words, on the first line, we moved the two decimal points one place each to the right and, on the last line, we undid what we had done on the first line by moving the decimal point two places to the left. ${ }^{4}$

Multiplication as Co-multiplication

We seldom deal with collections of items without wanting to know their worth given the unit-worth of the items. For instance, given a collection of three apples -represented on the board ${ }^{5}$ as 3 Apples-with a unit-worth of SEVEN dimes-per-apple-represented as $7 \frac{\text { Dimes }}{\text { Apple }}$, its worth is TWENTY-ONE dimes.
In order to obtain the value 21 Dimes on the board, we co-multiply as follows ${ }^{6}$

$$
\begin{aligned}
\text { Collection's Value } & =[3 \text { Apples }] \times\left[7 \frac{\text { Dimes }}{\text { Apptete }}\right] \\
& =[3 \times 7] \text { Dimes } \\
& =21 \text { Dimes }
\end{aligned}
$$

[^2]$$
[3 \text { Dollars }] \times\left[7 \frac{\text { Cents }}{\text { Dothar }}\right]=[3 \times 7] \text { Cents }=21 \text { Cents }
$$

The extension to decimal number-phrases goes essentially as in the case of dilation.
We now extend the concept of co-multiplication to obtain the gain or loss caused by a transaction. Suppose for instance that we look at transactions occurring in an apple store where, for whatever reason to be left to the reader's imagination,

- apples can appear in or disappear from the store, For instance,

$\boldsymbol{4}$ We can have:	We then write:
THREE apples appearing in the store, or	$[+3$ Apples $]$
FIVE apples disappearing from the store.	$[-5$ Apples $]$

- apples can be either good, with therefore a sale profit, or bad, with therefore a disposal cost.
For instance,

- We can have:	* We then write:
apples that are good and could be sold at a unitprofit of, say, SEVEN cents-per-apple or	$+7 \frac{\text { Cents }}{\text { Apple }}$
apples that are bad and must be disposed of at a unit-loss of, say, SEVEN cents-per-apple	$-7 \frac{\text { Cents }}{\text { Apple }}$

Then, no student has ever contested that:

THREE apples that appear in the store and are good, with a unit-profit of SEVEN cents-per-apple, result in a profit of tWENTY-one cents.	[+3 Apples] $\begin{aligned} & \quad\left[+7 \frac{\text { Cents }}{\text { Apple }}\right] \\ & {[+3 \text { Apples }] \times\left[+7 \frac{\text { Cents }}{\text { Appte }}\right]} \\ & =[+3] \times[+7] \text { Cents } \\ & =+21 \text { Cents } \end{aligned}$
THREE apples that appear in the store and are bad, with a unit-loss of SEVEN cents-per-apple, result in a loss of TWENTY-ONE cents	$\begin{aligned} & {[+3 \text { Apples }]} \\ & {\left[-7 \frac{\text { Cents }}{\text { Apple }}\right]} \\ & {[+3 \text { Apples }] \times\left[-7 \frac{\text { Cents }}{\text { Apple }}\right]} \\ & =[+3] \times[-7] \text { Cents } \\ & =-21 \text { Cents } \end{aligned}$

THREE apples that disappear from the store [-3 Apples] and are good, with a unit-profit of SEVEN cents-per-apple, result in

$$
=[-3] \times[+7] \text { Cents }
$$

a loss of TWENTY-ONE cents

$$
=-21 \text { Cents }
$$

THREE apples that disappear from the store [-3 Apples] and are bad, with a unit-loss of SEVEN cents-per-apple, result in

$[-3$ Apples $] \times\left[-7 \frac{\text { Cents }}{\text { Appte }}\right]$
$=[-3] \times[-7]$ Cents
a profit of TWENTY-ONE cents.
$=+21$ Cents

Multiplication as Area of a Rectangle

Finally, we look at multiplication as an external composition law, for instance 2 Foot $\times 3$ Foot.

We assume that we know how to "construct" a rectangle with width, say, TWO feet, and length, say, THREE feet.

The process for tiling this rectangle with one-foot-by-one-foot tiles, also known as squarefeet, is to lay two rows of three tiles:

which uses up SIX squarefeet.
The procedure to identify the specifying-phrase, 2 Feet $\times 3$ Feet, corresponds to the above process in that it is multiplication as "repeated addition" and we get

$$
\begin{aligned}
2 \text { Foot } \times 3 \text { Foot } & =2[3 \text { Foot } \times \text { Foot }] \\
& =[2 \times 3] \text { SquareFoot } \\
& =6 \text { SquareFoot }
\end{aligned}
$$

Just as in the case of dilation, we can extend this to decimal number-phrases, for instance 2.1 Foot $\times 3.2$ Foot, and since, again, the procedure follows the real life process, we give just a figure using the denominators and the corresponding computation.

2.1 Foot $\times 3.2$ Foot $=[2$ Foot $\& 1$ DeciFoot $] \times[3$ Foot $\& 2$ DeciFoot $]$

$$
\begin{aligned}
= & {[2 \text { Foot } \times 3 \text { Foot }] \&[2 \text { Foot } \times 2 \text { DeciFoot }] \&[1 \text { DeciFoot } \times 3 \text { Foot }] } \\
& \&[1 \text { DeciFoot } \times 2 \text { DeciFoot }] \\
= & 6 \text { Foot by Foot } \& 4 \text { Foot by DeciFoot } \& 3 \text { DeciFoot by Foot } \\
& \& 2 \text { DeciFoot by } \text { DeciFoot }
\end{aligned}
$$

and, if the tiles are without pattern so that DeciFoot by Foot $=$ Foot by DeciFoot

$$
\begin{aligned}
& =6 \text { Foot by Foot \& } 7 \text { Foot by DeciFoot \& } 2 \text { DeciFoot by DeciFoot } \\
& =6 \text { SquareFoot \& } 7 \text { DecISquareFoot \& } 6 \text { CENTISquareFoot } \\
& =6 \text { SquareFoot }+0.7 \text { SquareFoot }+0.06 \text { SquareFoot } \\
& =6.72 \text { SquareFoot }
\end{aligned}
$$

where we use

$=10$ DECISquareFoot $=100$ CENTISquareFoot

[^0]: ${ }^{1}$ Which, since Educolgists cannot be bothered with denominators, they just ignore.

[^1]: ${ }^{2}$ It is puzzling that, instead, Educologists should use tens, hundreds and tenths, thereby effectively obliterating, along with the distinction between numerators and denominators, any possibility of real understanding on the part of the students.
 ${ }^{3}$ This is by no means easy even though Educologists blissfully ignore the issue.

[^2]: ${ }^{4}$ Which Educologists seem, rather less than helpfully, to consider "self-evident".
 ${ }^{5}$ In keeping with our distinguishing between what is on the desk versus what we write on the board.
 ${ }^{6}$ Educologists will surely recognize the importance of the concept since, after all, "cancelling" denominators is central both to dimensional analysis and to linear algebra. More modestly, co-multiplication also arises with percentages:

