Mathematics For Learning
 With Inflammatory Notes for the Mortification of Educologists and the Vindication of "Just Plain Folks"

Abstract

Alain Schremmer The opinions expressed are those of the author and should not be construed as representing the position of AMATYC, its officers, or anyone else. [Editor's note: In the Spring 2004 issue of The AMATYC Review, Schremmer introduced his idea for an open-source serialized text: Mathematics For Learning. The Preface to the text appeared in the Spring 2004 issue with a new chapter in each subsequent issue of The AMATYC Review. This issue contains Chapter 6.]

6. Repeated Multiplications and Divisions

Given a number-phrase we investigate what is involved in repeated multiplications or repeated divisions by a given numerator ${ }^{1}$

A Problem With English

English can be confusing when we want to indicate "how many times" the operation is to be repeated.

EXAMPLE 1. When we tell someone

Divide 375 Dollars 3 times by 5
multiplication is not involved. It can also easily be confused with

Divide 375 Dollars by 3 times 5

A workaround would seem just to avoid using the word "by" but it is awkward and even misleading when we say it and downright dangerous when we write it.

EXAMPLE 2. To say

Multiply 7 Dollars by 2,3 times

[^0]can be correctly understood but requires one to make a pause after saying 2 as, otherwise, it will be understood to mean

Multiply 7 Dollars by 2 or 3 .

To write it can be correctly understood but requires one to pay attention to the comma between the 2 and the 3 as otherwise it will be understood to mean

Multiply 7 Dollars by 23

Templates

Perhaps surprisingly, writing specifying-phrases for repeated operations is not a simple matter.

1. Given a number-phrase, whose numerator we will refer to as the coefficient, and:

- given a numerator, called the base, by which the given number-phrase is to be repeatedly multiplied or repeatedly divided,
- given a numerator, called the plain exponent, to indicate how many multiplications or how many divisions we want done on the given number-phrase,
the simplest way to specify how many repeated multiplications or how many divisions we want done on the given number-phrase is to use a staggered template.

EXAMPLE 3. When we want the number-phrase +7 Dollars multiplied by 6 copies of -2 , we write the following staggered template:

The staggered template specifies what is to be done at each stage and therefore what the result will be.
2. Quite often, though, we will not want to get the result but just be able to use or to discuss the repeated operations and, in that case, the use of staggered templates is cumbersome. So, what we will do is to let the boxes "go without saying" which will allow us to write an in-line template.

EXAMPLE 4. We can

- Declare up front that the in-line template is in Dollars and then write:

$$
-208 \odot-2 \odot-2 \odot-2 \odot-2
$$

- Write the in-line template for the numerators within square brackets and then write the denominator Dollars

$$
[-208 \odot-2 \odot-2 \odot-2 \odot-2] \text { Dollars }
$$

The Order of Operations

The use of in-line templates for repeated operations, though, poses a problem: how do we know for sure in what order the recipient of an in-line template is going to do the operations?

1. When the operation being repeated is multiplication, it turns out that the order in which the operations are done does not matter

EXAMPLE 5. Given the in-line template in Dollars

$$
17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

the recipient might choose to compute it as

etc but, it does not matter as the result will always be 1088 .
However, proving in general that the order in which the multiplications are done does not matter takes some work because, as the number of copies gets large, the
number of ways in which the multiplications could be done gets even larger and yet, to be able to make a general statement, we would have to make sure that all of these ways have been accounted for. So, for the sake of time, in the case of repeated multiplications, we will take the following general statement for granted:

THEOREM 1: The order in which the multiplications are done does not matter.
2. In the case of repeated division, though, the order usually makes a huge difference.

EXAMPLE 6. Given the in-line template in Dollars

$$
448 \div 2 \div 2 \div 2 \div 2 \div 2 \div 2
$$

which, when done from left to right, gives 7 as the result, the recipient might choose to compute it as

1796
etc.
Thus, in the case of repeated divisions it is crucial to agree on the order in which to do them and so, in the absence of any instructions to that effect, we will use

DEFAULT RULE \# 1: The order in which the divisions are to be done is from left to right.

The Way to Power

Eventually, we will devise a very powerful language to deal both with repeated multiplications and repeated divisions but, before we can do that, we need to clear the way.

1. While, as we have seen, 1 does tend to "go without saying", what we can do when the coefficient in a repeated operation is 1 depends on whether the operation being repeated is multiplication or division.
(a) When it is multiplication that is being repeated, we can let the coefficient 1 go without saying. However, the number of multiplications is then one less than the number of copies.
(b) When it is division that is being repeated, we must write the coefficient 1 as, if we did not, we would be getting a different result ${ }^{2}$.

EXAMPLE 7. Given the in-line template in Dollars

$$
1 \div 2 \div 2 \div 2 \div 2 \div 2
$$

the 1 cannot go without saying because, while the given in-line template computes to $\frac{1}{32}$, if we don't write the coefficient 1 , we get an in-line template with coefficient 2 to be divided by 4 copies of 2 :

$$
2 \div 2 \div 2 \div 2 \div 2
$$

which computes to $\frac{1}{8}$.
2. Repeated divisions are related to repeated multiplications. Indeed, instead of dividing a coefficient by a number of copies of the base, we can i. multiply 1 repeatedly by the number of copies of the base or ii. divide the coefficient by the result of the repeated multiplication.

The advantage of the second way of computing in-line templates involving repeated divisions is that while we now have one more operation than we had divisions, the first multiplication, multiplying the coefficient 1 by the first copy of the base, is no work and, as we saw above, need in fact not even be written so that the number of operations requiring work is the same in both cases. But now all operations except one are multiplications which are a lot less work than divisions.

However, here again, proving in general that the results are always the same takes some work so that, for the sake of saving time, we will take for granted that:

THEOREM 2: A repeated division is the same as a single division of the coefficient by the result of 1 multiplied repeatedly by the same number of copies of the base ${ }^{3}$.
3. In order to specify the second way of computing, we can write either a bracket in-line template or a fraction-like template.

[^1]EXAMPLE 8. We can write an in-line template in Dollars as

$$
+448 \div[+1 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2]
$$

or as

$$
+448 \div[-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2]
$$

or as

$$
\frac{+448}{+1 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2}
$$

or as

$$
\frac{+448}{-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2 \otimes-2}
$$

Power Language

We are now ready to introduce a way of writing specifying-phrases that will work both for repeated multiplications and for repeated divisions.

1. The idea is to write a monomial specifying-phrase in which we just write:

- the coefficient
- the symbol \times as a separator
- the power which consists of the base with a signed exponent
- whose size indicates the number of copies of the base to be used,
- whose sign indicates whether the coefficient should be multiplied or divided by the copies.

We then read monomial specifying-phrases as
"Coefficient multiplied/divided by number of copies of the base"
EXAMPLE 9. Given the in-line template

$$
448 \div[2 \times 2 \times 2 \times 2 \times 2 \times 2]
$$

we write the monomial specifying-phrase,

$$
448 \times 2^{-6}
$$

which we read as

$$
448 \text { divided by } 6 \text { copies of } 2
$$

2. As it happens, though, there is no procedure for identifying monomial specifying-phrases other than the procedures corresponding to staggered templates. This is in sharp contrast with the case of repeated additions for which there is a much shorter procedure for getting the result of repeated additions that is based on
multiplication and with the case of repeated subtractions for which there is a much shorter procedure for getting the result based on division ${ }^{4}$.

Multiplying Monomial Specifying-Phrases

When we multiply a first monomial specifying-phrase by a second monomial specifying-phrase with the same base, the result turns out to be a monomial specifyingphrase with the common base. We can get the result either one of two ways ${ }^{5}$.

EXAMPLE 10. We can

- replace each monomial specifying-phrase by the corresponding in-line template, change the order of the multiplications and write the resulting monomial specifying-phrase:

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{-2}\right] } & =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \times \frac{11}{2 \times 2} \\
& =\frac{17 \times 11 \times \not 2 \times \not 2 \times 2 \times 2 \times 2}{\not 2 \times \not 2} \\
& =17 \times 11] \times 2^{+(5-2)} \\
& =187 \times 2^{+3}
\end{aligned}
$$

- multiply the coefficients and "oplus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+5}\right] \times\left[11 \times 2^{-2}\right] } & =[17 \times 11] \times 2^{+5 \oplus-2} \\
& =187 \times 2^{+3}
\end{aligned}
$$

Dividing Monomial Specifying-Phrases

When we divide a first monomial specifying-phrase by a second monomial specifying-phrase with the same base, the result turns out to be a monomial specifyingphrase with the common base. We can get the result either one of two ways.

EXAMPLE 11. We can

- replace each monomial specifying-phrase by the corresponding in-line template using fraction bars, "invert and multiply", change the order of the multiplications, cancel and write

[^2]the resulting monomial specifying-phrase:
\[

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \div \frac{11 \times 2 \times 2 \times 2}{1} \\
& =\frac{17 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{1} \times \frac{1}{11 \times 2 \times 2 \times 2} \\
& =\frac{17}{11} \times \frac{\not 2 \times \not 2 \times \not 2 \times 2 \times 2 \times 2 \times 2}{\not 2 \times \not 2 \times \not 2} \\
& =\frac{17}{11} \times 2^{+(7-3)} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$
\]

- divide the coefficients and "ominus" the signed exponents:

$$
\begin{aligned}
{\left[17 \times 2^{+7}\right] \div\left[11 \times 2^{+3}\right] } & =[17 \div 11] \times 2^{+7 \ominus+3} \\
& =\frac{17}{11} \times 2^{+7 \oplus-3} \\
& =\frac{17}{11} \times 2^{+4}
\end{aligned}
$$

[^0]: ${ }^{1}$ Educologists will note our departure from the usual treatment but conflating unary operators and binary operations is not exactly helpful. Also, i. the binary aspect has been omitted for the sake of brevity, but ii. some of the points made here would be unnecessary had the treatment of multiplication that appeared earlier on been a full one.

[^1]: ${ }^{2}$ This is more obvious with the use of fraction bars instead of \div.
 ${ }^{3}$ This is where the binary aspect becomes really useful.

[^2]: ${ }^{4}$ Educologists will justly regret that space limitations prevented here a sytematic development of the parallel between additive powers and multiplicative powers.
 ${ }^{5}$ Educologists of course let students "experience" how much work is saved by having them do it both ways for a while.

