Notes From The Mathematical Underground

Alain Schremmer.
The opinions expressed are those of the author, and should not be construed as representing the position of AMATYC, its officers, or anyone else.

In this Second Part of the last of $m y$ Notes From The Mathematical Underground ${ }^{\mathbf{1}}$ I will use matrix multiplication as another illustration of how the way we define things can affect how students understand and use them.

As I have insisted repeatedly, we should never use "lone" numbers but only expressions involving a numerator and a denominator, as in $3 \boldsymbol{\vee}$, with the result that, rather than additions, expressions such as $3+5$ are really combinations in which "+" means "AND".

Starting then from the fact that a combination is nothing more than a list, we will follow Sila (Student Interested in Linear Algebra) as, using the combination language, she develops ${ }^{2}$ a list language in a familiar situation that involves shopping lists (of objects) together with price lists (for these objects) ${ }^{3}$. To distinguish, we will write shopping lists horizontally and price lists vertically ${ }^{4}$.

Say Sila buys(5 apples, 8 bananas) at $\binom{45$ cents per apple }{12 cents per banana } in which cents per apple and cents per banana are denominators as well as apple and banana. Sila has of course no difficulty computing the value of her shopping list under the price list. She sets up in list language

$$
\text { (5 apples, } 8 \text { bananas) @ }\binom{45 \text { cents per apple }}{12 \text { cents per banana }}
$$

which she reads in combination language as

$$
5 \text { apples at } 45 \text { cents per apple AND } 8 \text { bananas at } 12 \text { cents per banana }
$$

Now she replaces the symbol "at" by the multiplication sign and the symbol "per" by a fraction bar:

[^0]$$
5 \text { apples } \bullet 45 \frac{\text { cents }}{\text { apple }} \text { AND } 8 \text { bananas } \bullet 12 \frac{\text { cents }}{\text { banana }}
$$

After "canceling" the denominators apple and banana, she now has a common denominator, cents, and can replace the combination symbol "AND" by the addition symbol "+" and compute

$$
5 \cdot 45 \text { cents }+8 \cdot 12 \text { cents }=225 \text { cents }+96 \text { cents }=321 \text { cents }
$$

Thus, in (slightly modified) list language,

$$
\text { (5 apples, } 8 \text { bananas) @ }\binom{45 \frac{\text { cents }}{\text { apple }}}{12 \frac{\text { cents }}{\text { banana }}}=321 \text { cents }
$$

Then, Sila wonders about a reverse problem: Other than (5 apples, 8 bananas), is there a shopping list, (x apples, y bananas), that would be worth 321 cents under the same price list $\left(\begin{array}{cc}45 & \frac{\text { cents }}{\text { apple }} \\ 12 & \frac{\text { cents }}{\text { banana }}\end{array}\right)$
larly, any price list $\binom{s \frac{\text { cents }}{\text { apple }}}{t \frac{\text { cents }}{\text { banana }}}$ under which the shopping list (5 apples, 8 bananas) would still be worth 321 cents must be a solution of the equation $5 s+8 t=321$. Etc, etc.

Sila now wants to exchange ${ }^{5}$ her fruits for vegetables at the rate of 1 apple for 3 yams and 7 zucchinis and 1 banana for 2 yams and 5 zucchinis. She rewrites this as the matrix

$$
\left(\begin{array}{cc}
3 \frac{\text { yams }}{\text { apple }} & 7 \frac{\text { zucchinis }}{\text { apple }} \\
2 \frac{\text { yams }}{\text { banana }} & 5 \frac{\text { zucchinis }}{\text { banana }}
\end{array}\right)
$$

Now she computes that, for her (5 apples, 8 bananas), she will get
(5 apples, 8 bananas) @ $\left(\begin{array}{cc}3 \frac{\text { yams }}{\text { apple }} & 7 \frac{\text { zucchinis }}{\text { apple }} \\ 2 \frac{\text { yams }}{\text { banana }} & 5 \frac{\text { zucchinis }}{\text { banana }}\end{array}\right)=$
$=\left(5\right.$ apples $\cdot 3 \frac{\text { yams }}{\text { apple }}+8$ bananas $\bullet 2 \frac{\text { yams }}{\text { banana }}, 5$ apples $\bullet 7 \frac{\text { zucchinis }}{\text { apple }}+8$ bananas $\left.\cdot 5 \frac{\text { zucchinis }}{\text { banana }}\right)$

[^1]$=(5 \cdot 3$ yams $+8 \cdot 2$ yams, $5 \cdot 7$ zucchinis $+8 \bullet 5$ zucchinis $)$
$=([5 \cdot 3+8 \cdot 2]$ yams, $[5 \cdot 7+8 \cdot 5]$ zucchinis $)$
$=(31$ yams, 75 zucchinis $)$

Sila finds that the identity matrix in the fruit space is $\left(\begin{array}{cc}1 \frac{\text { apples }}{\text { apple }} & 0 \frac{\text { bananas }}{\text { apple }} \\ 0 \frac{\text { apples }}{\text { banana }} & 1 \frac{\text { bananas }}{\text { banana }}\end{array}\right)$
and then that the inverse matrix is $\left(\begin{array}{cc}+5 \frac{\text { apples }}{\text { yam }} & -7 \frac{\text { bananas }}{\text { yam }} \\ -2 \frac{\text { apples }}{\text { zucchini }} & +3 \frac{\text { bananas }}{\text { zucchini }}\end{array}\right)$.
And, to make a long story short, looking at the dual situation, she eventually gets the very nicely symmetrical diagram

Thus, here just as in arithmetic, it is because we omit denominators that students cannot see the reason "behind" all that we "show and tell" them.

Comments, criticisms and rebuttals are very welcome and should be sent to:

Alain Schremmer
Mathematics Department
Community College of Philadelphia,
1700 Spring Garden Street
Philadelphia, PA 19130

Or e-mail Schremmer.Alain @verizon.net

[^0]: $\mathbf{1}^{\text {Again, I would hope that someone will continue to take a less than conventional look at what we }}$ claim we are doing versus what we are really achieving as demonstrated by, say, the Third International Math and Science Study (TIMSS). Those not in the know might look up http://nces.ed.gov/timss/
 $\mathbf{2}$ The actual development is of course much longer than space permits here.
 $\mathbf{3}$ Thus, from the very start, we involve the dual space.
 4 As it corresponds to $f(x)$, writing vectors as columns and covectors as rows is more common. But, as we shall see, writing $(x) f$ corresponds to natural English and also has the advantage of delaying the introduction of transposition.

[^1]: 5 Note the role played here, just as in arithmetic, by the notion of exchange.

