
Calculus Anyone?
As we all know, there is a calculus "crisis" and, as a result, a calculus "initiative". What the na-

ture of the crisis is supposed to be, though, is by no means obvious, at least to me. In fact, while I
attended the 1987 Calculus for a New Century conference in Washington, I didn't have the feeling
that the audience wholeheartedly agreed that there was a crisis at all. Of course, we all have
complaints. But the telltale here is the use of the plural. Your complaint is probably not my
complaint. So, do all these complaints add up to a crisis? Yes, I think so, but only if we see all these
complaints as symptoms of an illness. Then, we might have a chance to treat them.

In starting this column, I thought that we could examine the crisis and, eventually, arrive at least
at a diagnostic. Then, maybe, we can discuss the remedy. So, I invite everyone to come up with their
view of what the crisis is all about. This can range from a list of gripes, to use Steve Maurer's
expression, to outraged letters to the editor to full fledged articles. And since not all of us are willing
to write, I can usually be reached at (215)438 3820 in the evening, say until midnight. I shall try to
put what you said to paper. By the way, I propose that we dispense with expressions such as "in my
opinion", "I think that" etc. It goes without saying that this column is a column of opinions. Facts
are welcome but they are so boring!

I should of course state my own vested interest. It is very simple: I have arrived at a diagnostic
and I have the remedy. I just want to convince you. Seriously! Equally seriously, while I know that I
have an existence theorem, I know that I don't have a uniqueness theorem. However, since, even if
you don't write, I still shall, so that in this case the only things that will be written about will be my
views. If you don't like what you read, you better write it yourself.

In the meantime and while I have no competition for this space, here I go with my diagnostic. I
will argue that the root of all evil is in limits. I briefly adduce the following in support of my claim.

i. A lot of mathematics was written before limits even existed. I would say certainly most if
not all of first year calculus. Moreover, some mathematical results were never reproven in terms of
limits. This is the case, in particular, in classical differential geometry. As A. Robinson said, it just
didn't seem worth the effort. But then what this means is that limits are not necessary for us to be
convinced of the validity of a result.

ii. Up until at least the thirties, limits were not used in first year calculus and, at that time, most
of the students who studied calculus were probably science majors. Contrast this with the current
situation in which we teach such a higher grade calculus to ...

iii. There are no such things as limits. That they are not entities is evidenced by the fact that to
say that "x is a limit" makes no more sense than to say "x is equal" Both 'limit' and 'equal' are just
part of binary predicates. Given a function f, there is only a relation, __ is the limit of f as x
approaches __.

iv. In 1797, Lagrange published Theorie des fonctions analytiques in which he assumed that
all functions were analytic, that is were the limit of a power series, and proceeded to study them as
such. Of course, this wasn't really true but it certainly is true that all functions in first year
calculus are, if not analytic, at least infinitely differentiable. In fact, analyticity is not necessary and
all that is necessary is to notice that all functions in first year calculus have a Taylor expansion
everywhere. For instance,

f(x0 + h) = A0 +A1h +A2h2 + ... Anhn + Rn(h), with  Rn(h) = o[hn]
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If, in addition, you realize that we can always find the Taylor expansion from the definition of the
function, you find that you don't need limits at all. Thus, for instance, f(n )(x0) = n!An.

I hope to develop the above points in succeeding columns. For now, since , recently, I have
spent a lot of time on Lagrange's approach, I will take up iii. for a change.

THERE ARE NO LIMITS.

Depending on what problems it was meant to solve or, perhaps, on the spirit of the time,
Number Theory has been approached in either one of two ways. The Greeks considered that the
whole numbers were entities in their own right, giving a platonic view of the world, granted by the
gods, and, perhaps as a consequence, they believed that the whole numbers were the only possible
numerical entities. Notice by the way how, to this day, whole numbers are the only ones deemed to
be "natural". Indeed, even though he allowed for other numerical entities, Kronecker still said
something to the effect that God gave us the whole numbers while all others were created by man.

To return to the Greeks, when they eventually were faced with the need to represent points
between integral points, and rather than to invent fractions, i.e. numerical entities, they prefered to
invent proportionality, i.e. a relation. That is, instead of saying "2/3 of A" they said "That which is
to A as 2A is to 3A". Of course, they also invented ratios as equivalence classes of pairs of things
which were to one another as a given natural number is to another but they never accepted them as
numerical entities; they failed to invent rational numbers.  We would say today that they never went
to the quotient space.

But, later, through a desire to solve an ever larger number of equations, new numerical entities
were repeatedly introduced. For instance, rational numbers were invented to solve ax = b when b
was not a multiple of a, irrational numbers to solve x2 = a when a was not a square, negative
numbers to solve x + a = b when b was not larger than a. The process eventually came to an end,
the system was said to be complete and R was declared to represent the real world. However, each
time, this was done with a show of great reluctance and many oratorical precautions. In fact, and
perhaps because the Greeks had accepted rationality as a platonic representation of reality, so that
the word rational had come to be identified with that which makes sense, the rationals were
accepted as numbers when the religious imperative on numbers disappeared but the names given to
the numbers introduced subsequently remain quite significant of the resistance they elicited:
irrational and negative still aren't desirable qualities, negative numbers were first called absurd
numbers (at least by Descartes) and there was a lot of nonsense written about imaginary numbers..

In dealing with "evanescent" phenomena, both Newton and Leibniz had continued the numer-
ical tradition by introducing new entities, fluxions and infinitesimals respectively, in order to solve
ax = b when a was not non-zero. Just as, before anyone had had a clear idea of what they were,
imaginary numbers had first been a way to find the real root of a cubic, so were infinitesimals and
infinities used, just as successfully, as means towards ends which were often real numbers. Leibniz
was perfectly aware that his calculus implied the introduction of "ideal numbers". Here again, that
we call the Real Numbers real is significant but is really just a reflection of our preconceived notion
of what the fine structure of a line is. What is rational, real, ideal or, for that matter, hyperreal is
mostly a cultural prejudice.

But when, eventually, mathematicians started to need precise operational rules to manipulate
infinitesimals, they soon realized that they couldn't even produce a definition. Bolzano and, later,
Weierstrass then returned to the Greek approach: instead of continuing to use the new numbers
which, they had decided, made no sense, they invented a new relation, the limit relation, among the
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old numbers. For example, instead of saying that the value of 1/x is infinite when x is infinitesimal,
they prefered to say that 1/x is larger than any preassigned number M as soon as x is smaller than
some number δ. By a wonderful piece of apparent sophistry, this is all right because, since, as one
does not set x actually equal to 0, 1/x need not equal ∞ but the limit relation between 0 and ∞ holds
as soon as one has a Skolem function δ = δ (M), that  is of a function giving the necessary condition
on x (to be smaller than δ) in terms of the prespecified tolerance on 1/x (to be larger than ε).

Yet, the very success of infinitesimals should have been a cue not to give up on entities. Even
if it took almost three centuries, A. Robinson finally rehabilitated Leibniz's ideal numbers by
defining what came to be called Hyperreal Numbers which do for the calculus what rational
numbers did for algebra. An obvious question, though, is the completion issue but observe that the
completeness of the Reals is defined relatively to the Natural Numbers, a subset of the Reals, so that
the paradox is resolved by defining the completeness of the Hyperreals in terms of their own subset
of"natural" numbers, the Hypernatural Numbers.

Finally, note that history does not always repeat itself. The Dirac δ "function" and the
derivative of the Heaviside function made no sense as functions but were so indispensable that, in
Dirac's lifetime, they were given status by Laurent Schwartz as distributions.

Alain Schremmer.
Mathematics Department

Community College of Philadelphia


