
 Calculus anyone?
A sly column by A. Schremmer.

One of the difficulties in trying to disseminate
Lagrange's approach to the differential calculus is that
few mathematicians make the difference between lim-
ited expansions (also known as asymptotic ex-
pansions) and series expansions.

Consider first what we mean when we write 1
3  =

0.3333 ... . We may mean either that the difference
between 13  and 0.3333 is negligible for our purpose or

that 13  is the limit of the sequence 0.3, 0.33, 0.333, ...
where the sequence was to be understood implicitly.
The two are vastly different. The first is a relation be-
tween two numbers, 13  and 0.333, while the second is a

relation between a number, 1
3 , and a sequence of num-

bers, Sn =  ∑
i=0

i=n
3•10-i , namely that 13  is the limit of Sn as

n approaches infinity.

Similarly, when we write cosx = 1 – 
x2

2   + 
x4

4!  + ... ,
we may either mean that, when x is near 0, the differ-
ence between cosx and the polynomial function P2(x) =

1 – 
x2

2   + 
x4

4!   is small enough to be negligible for our
purpose, in which case P2(x) is what we call a limited
expansion of cosx, or we may mean that cosx is the
limit, when n approaches infinity, of the sequence of
polynomial functions,

P0(x) = 1,   P1(x) = 1 – 
x2

2   ,   P2(x) = 1 – 
x2

2    + – 
x4

4! ,

Pn(x) = ∑
i=0

i=n

(–1)i  x2i

2i!   

where the sequence was to be understood implicitly, in
which case we are dealing with a series expansion.

In order to avoid any ambiguity, we could write 13  =

0.3333 + R(10– 4) which we would read as saying that 13 
is equal to 0.3333 plus a "remainder" (whose order of
magnitude is less than 10– 4). Similarly, we write cosx =

1 –
x2

2   +–
x4

4!  + R2(h) which we read as saying that cosx

is equal to 1 – 
x2

2   + 
x4

4!   plus a "remainder" (which is
o[x4]). The confusion mentioned earlier arises because,
in current calculus textbooks, this limited expansion of
cosx invariably appears as, and only as, Taylor formula
with remainder in the middle of the section on Taylor ...

series. Limited expansions are used extensively in
ODE, Fluid Mechanics, Differential Topology, Number
Theory, etc.

Also, perhaps another reason why Lagrange's ap-
proach is so little known among calculus educators is
that Lagrange used the term analytic function by which
he meant functions capable of being approximated by
limited expansions1 . Another side to this involves what
is known as Peano derivatives and I will pursue it in
some future column.

I remarked in an earlier column that: i. There is no
algorithm to find limits and that: ii. Even sided limits
are not a good elementary tool for analyzing the local
behavior of a function when, after all, this is all the dif-
ferential calculus is about.

On the other hand, an engineer once told me:
"Between you and me, the real real numbers are the
(finite) decimal numbers". Similarly, to deal with a
function in Lagrange's approach, we simply substitute a
limited expansion for it.

The advantage of using limited expansions in place
of limits is that, at least for the functions encountered in
elementary calculus, there are very simple algorithms
for obtaining the expansions and that, in fact, limited
expansions of degree 0, 1 or 2, depending on what we
want to do with the function, are usually all we need in
order to obtain all we ever wanted to know about a
function, including sided limits! For more about
Lagrange's approach, see [5].

***
A while ago, I had promised to laud in detail W.

Freed's calculus book [2]. I will do this in a later col-
umn but, for now, I want to indicate very briefly how
hyperreal numbers can be looked at as being deter-
mined by extended decimal expansions. I learned that
from him and you should buy his book.

The Leibnizian idea of an infinitesimal number was
that of a number smaller than any real number and yet
different from zero. As with the introduction of any
new type of number, this was declared meaningless.

Now, to find out "what a tangent line is when it is
not the limit of a secant" [1], we look at the graph with
a magnifier. Non-standard analysis consists in building
the idea of magnification into the axes, that is, into the
number system. All we do is to make an infinite
magnification of the real line. A line being continuous,
what we see after magnification, finite or infinite, is still
a line. But any point you see has to correspond to an
infinitesimal number since, having been multiplied by
an infinite number, any finite point (except 0) has now
gone to infinity, that is out of sight. Thus 0 is both a
real number and an infinitesimal but, u n d e r
magnification, it is surrounded only by infinitesimals.
For the hyperreals to be a group under addition, in-

                                                
1  This is A. Robinson's reading of Lagrange but, I must say, it is not

universally agreed upon.



finitesimals must similarly surround any other real
number.

Since real numbers can be written as decimals, so
should infinitesimals. Since 0 can be written as 0.000...,
(see above) and since a small real number is going to
be of the form 0.0...0d... where d is a non zero digit
written after a finite number of zeros, to create an
infinitesimal we just write 0.0...    d... where d is a non
zero digit written after an infinite number of zeros!
Now all you have to do is to check that this is
compatible with addition (how do you add a real num-
ber, say 0.333... , to an infinitesimal, say 0.000...        
  1...  ?) and do the right thing to make it work under
multiplication. (Hint: while all infinitesimals are small,
some are smaller than others. For instance, just as the
square of a small real number is smaller by an order of
magnitude than the small real number, the square of an
infinitesimal is an order of magnitude smaller than the
infinitesimal.) The hyperreals include the reals, the
infinitesimals and the infinities which are reciprocals of
infinitesimals. Note that a rectangle whose width is in-
finitesimal and whose length is correspondingly infinite
has area 1.To round off a hyperreal means to get the
real number around which the hyperreal was sitting.
We do this by dropping the decimals after  ...  

Unless you (and your students) are adept at differ-
ential forms, you probably have trouble distinguishing
between ∆x and dx. Here, ∆x is a (small) real number
while dx is an infinitesimal, that is dx rounds off to 0!

Given a function f, what does f(x) mean when x is
hyperreal? Essentially, we have to extend the real-val-
ued function f of real variable to a corresponding hy-
perreal-valued function of hyperreal variable but the
distinction is really only a formal one.

To conclude this impossibly brief summary, a
function is defined to be continuous iff, when you
round off f(x+dx) (which is a hyper real since dx is in-
finitesimal), you obtain f(x). For example, to show that
f(x) = x2 is continuous at any x, we compute:
f(x+dx) = (x+dx)2 = x2 + 2xdx + dx2 ≈ x2 + 0 + 0

= x2 = f(x) .
The derivative is defined as the rounded off value of
f(x+dx) – f(x)

dx    provided this rounds off to the same
real for every infinitesimal dx.

So, once again, why do we inflict limits on our
students?  After all, all we need to use are the real real
numbers, namely the hyperreal numbers!

***
I said before that I was trying to refrain from argu-

ing with other authors in this Newsletter. Nevertheless,
as I read The Concept of Function in Research Clips of
the Winter issue of this Newsletter, my argumentative
nature took over but, instead of writing to the Editor, I
decided to use my own space.

The second paragraph bemoans the fact that "given
a particular value for one variable [...], students view
functions as the rule that allows them to determine the

value of another variable". I do not see what is wrong
with that. [I don't either.-ed] In fact, I will discuss this
aspect of a function at some future time. If you don't
want to wait, see [3] and [4].

The third paragraph deplores that "students are
strongly 'attracted to linearity'". Again, what is wrong
with that? Given most application problems, I mean real
ones, don't we necessarily begin by linearizing it? So
instead of crying, why not, as the committee
responsible for this gem failed to do, capitalize on this
non fatal attraction and use it to make the point made in
[1] that the tangent is the graph of the affine approxi-
mation and that the reason we use it instead of the
function itself is precisely that it is "linear"? In any
case, why pick on the students? Whose fault is it?

The fourth paragraph is the one that initially at-
tracted my attention (i.e., incensed me). It is scandalized
that "students agreed that two functions with identical
formulas but different specified domains were the
same function." I can see Prof. Meany telling his/her
student: "Gotcha". What I want to know is what does
Prof. Meany do for his/her students to come indeed to
the inescapable conclusion that the difference has
merit? (Answer: S/he gives the students the definition
and, by Bourbaki, this better be enough.) Besides, when
we say "restrict the function f to the interval I and
graph it", doesn't the pronoun 'it' refer to THE function
f? And if you want to invert sinx, then instead of talking
about domain and range, just say that, if sinx is not
globally invertible (which few functions are anyway), it
is locally invertible almost everywhere. What's the
Inverse Function Theorem for otherwise?

I agree with most of the fifth paragraph, namely that
the students "have difficulty interpreting the function as
a whole scheme." But I leave it to you, as an exercise,
to find out how many howlers are implied in the
concluding sentence: "This may be related to the
difficulty that calculus students have in looking at
secant lines 'approaching' the tangent line to a curve
at a point, or determining the behavior of a function
over an interval".
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