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Nowadays, about half of the college student
population is in two-year colleges, and as they
enter, the overwhelming majority of these students
are totally unprepared for whatever college-level
courses they have to take. Unfortunately, the belief
that all that “unprepared students” need is to learn
“mathematical facts” and acquire computational
skills, together with the concomitant belief that, to
that end, better pedagogy is all that is needed has
caused a complete atomization of the contents and
thus complete reliance on memorization. Also, it
is unrealistic to expect that even two semesters of
Developmental Mathematics can remedy so many
lost years. It is thus rather unsurprising that during
the near forty years of its existence, Developmental
Mathematics has never worked.1

The premise for what is being proposed here is,
as physicist Hestenes, of Geometric Algebra fame,
wrote in his Oersted Medal lecture, that “[That ]
course content is taken [by many] as given […]
ignores the possibility of improving pedagogy by re-
constructing course contents.” The aim is to call for
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1At least when measured in terms of subsequent success
instead of throughput. For instance, at my institution less
than one quarter of one percent (0.24%) of the students start-
ing on the route Arithmetic—Basic Algebra—Intermediate
Algebra—Precalculus I—Precalculus II—Calculus I ever
complete Calculus I.
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mathematicians to engage in such reconstructions
and to show that it can be interesting.

What follows is just one—very sparse—example
of how a reconstruction of the contents of Devel-
opmental Arithmetic and Algebra, together with a
corresponding reconstruction of the contents of
Precalculus and Differential Calculus, could lead
to a three-semester, 5-4-4 sequence realistically
accessible to developmental students. In total
opposition to what is to be found in all currently
available commercial texts, the idea is merely to
use systematically a few powerful concepts with
one thing flowing smoothly into the next.

Arithmetic
We start with the construction of a symbolic system
for representing on paper collections of real-world
items. We use number phrases such as 3apples,
consisting of a numerator to represent the number
of items and a denominator to represent the kind
of items. The point here is twofold: (i) This is
something completely self-contained that can be
dealt with to the complete satisfaction of the
students, and (ii) this sets the stage for future
distinctions such as between 3

7 +
2
7 , which is equal

to 5
7 ; and 3

5 +
2
7 , which is a (linear) combination (aka

vector);2 and as between 3x7 + 2x7, which is equal
to 5x7; and 3x5 + 2x7, which is a combination.

In fact, we immediately use combinations to con-
struct the Decimal Numeral System: 42.75Dollars
is introduced as shorthand for the combina-
tion 4 DekaDollars+2Dollars+7 DeciDollars+
5 CentiDollars.

2+ being read here as “and”.
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A further stage is to discuss operations which
we see the old way, that is, as unary. Here again,
this has two purposes: (i) to stick to the real world,
where, for instance, we attach a collection to a
collection, and (ii) to turn the concept of unary
operation into that of a function.

The discussion of reverse problems leads natu-
rally to the introduction of signed numbers in the
case of addition and to decimal numbers in the
case of multiplication. We thus arrive at D, the set
of signed decimal numbers.

However, if multiplication is introduced as
dilation, we also look at it as “co-multiplication”, as
in −3����apples � −5 cents

���apple , which, given that nobody
has ever objected to the fact that getting rid of bad
apples is a plus, immediately gives +15 cents.

We introduce fractions as code for division as
in 1

3 = 0+ [. . . ] = 0.3+ [. . . ] = 0.33+ [. . . ], where

[…] is read “something too small to matter here”.3

Eventually, quarter is defined as “of which it takes
4 to exchange for 1dollar”, from which the rest
follows naturally, e.g., 7

4 dollar is equivalent to
the combination 1dollar + 3quarters. Then, if
dimes can be exchanged at the rate of 2 nickels

dime and

quarters at 5 nickels
quarter , then 3dimes − 2quarters

can be exchanged for

(+3dimes,−2quarters) @

 +2 nickels
dime

+5 nickels
quarter


= −4nickels,

with nickels in the underlying field. In other words,
we get 3

10 −
2
4 = −

4
20 .

Algebra
We now deal with the mechanics of solving reverse
problems. After the relation symbols=,≠,>,<,Û,Ú
have been introduced, we introduce “(in)equations”
as open sentences sifting a solution subset out of
a data set. We discuss the differences between the
case of data sets consisting of whole numbers and
that of data sets consisting of decimal numbers.
Hence to specify a solution subset, we use the
notion of an inequation problem, i.e., of a data
set together with an inequation. We then spend a
considerable amount of time dealing successively,
mostly in the case of decimal data sets, with
basic problems (e.g., x Ú −352.94), translation
problems (e.g., x⊕−37.183 > −352.94), dilation
problems (e.g., x�−23.1327 ≠ −822.08), and affine
problems, using exclusively the standard approach:
(i) Find the boundary points by solving the associate
equation. (ii) Test the boundary points against the
given inequation. (iii) In each one of the intervals
determined by the boundary points, test a point

3[. . . ] can thus be seen as an undifferentiated precursor of
Landau’s o[hn].

against the inequation and use the Pasch Theorem,
which says that “whatever is true of the test point
is true of all points in the interval.” We then spend
time with double problems, i.e., problems involving
two inequations bound by one of three connectors:
both, either one or both, either one but not
both. We start with double basic problems and
work our way up to double affine problems.4

Finally, with an unfortunate hiatus, we move to
the notion of power with monomial functions; i.e.,
instead of multiplying the coefficient a by a single
copy of the input x, as with dilation functions, we
either

• multiply a by n copies of the input x:

x aMonomial+n----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ aMonomial+n(x)

= a · x · x · · · · x · x︸ ︷︷ ︸
n copies of x

aka ax+n

or
• divide a by n copies of the input x:

x aMonomial−n----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ aMonomial−n(x)

= a
x · x · · · · x · x︸ ︷︷ ︸

n copies of x

aka ax−n.

In other words, x±n is just code to be read as
“multiplied (resp. divided) by n copies of x” and
generalizes the code 10n that we used with decimal
numbers and initially read as “1 followed/preceded
by n zeros”.

Computing with monomials, we find that:
1. From the multiplicative viewpoint, the code

lets us write 3x+2 · 4x+3 = 3 · x · x · 4 · x · x ·
x = 3 · 4 · x · x · x · x · x = 12x+5. Similarly, we

have 3x+2 · 4x−3 = 3 · x · x · 4
x·x·x = 3 · 4 · �x·�x

�x·�x·x
=

12x−1. Eventually we discover that “o-plussing
(resp. o-minussing) the exponents” does the job
automatically for the multiplication (resp. division)
of monomials.

2. From the additive viewpoint, x±n behaves
like a denominator, e.g., 5x−4 + 2x−4 = 7x−4,
but 5x+3 + 2x−4 is a combination with Lau-
rent polynomials generalizing decimal numbers:
3x2 + 4x1 + 5x0 + 6x−1 + 7x−2

∣∣
x←10 = 345.67.

We end with “the four operations” for Laurent
polynomials. When adding and subtracting, the
controlling fact is that x±n behaves just like a
denominator. Multiplication is easily dealt with by
reading the code and, eventually, by using ⊕. After
that we make a small detour to get (x0 + h)n =
xn0 + nxn−1

0 h + n(n−1)
2 xn−2

0 h2 + [. . . ] (usually not
much further). The most important operation for
us will be division, using [. . . ] to stop it, as in

−12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2

= +4x+ 3+ 8x−1 + [. . . ]

4Initially, students have a terrible time with even double
basic problems.
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and

−12+ 23h− h2 − 2h3

−3+ 2h
= +4− 5h− 3h2 + [. . . ].

Conclusion
I have reasons to believe that the contents sketched
above: (i) can be absorbed by developmental
students in a 5-hour course and (ii) can prepare
developmental students for a two-semester (4-4)
integrated alternative to the conventional (3-3-4)
Precalculus I–Precalculus 2–Calculus 1 sequence
that I developed under a 1988 NSF calculus grant:

• I am currently using part of the materials
I developed for arithmetic along with the
materials on inequations and on Laurent
polynomial functions in a 3-hour devel-
opmental algebra course. The arithmetic
materials which lead up to it should be
doable with an additional 2 hours.

• The NSF sequence was based on Lagrange’s
approach, in which thenth derivative of f at
x0 is defined (modulo n!) as the coefficient
of xn in the polynomial approximation
of f (x0 + h). As such, it does not require
anything more than an Arithmetic-Algebra
course along the lines sketched above.

So, given that
• The Office of Institutional Research at my

institution found that “Of those attempting
the first course in each sequence, 12.5%
finished the [conventional three-semester,
10-hour] sequence while 48.3% finished
the [integrated two-semester, 8-hour] se-
quence.”5

• Having passed the Arithmetic-Algebra
course and thus having already learned to
take advantage of “mathematical compres-
sion”, as well as having acquired precisely
the necessary prerequisites, these formerly
“unprepared students” ought now to hit
the ground running in the first semester
of the integrated alternative sequence and
thus perform there at least as well as the
students who entered the NSF sequence.

it would seem that, in contrast with the num-
ber given at the outset, 0.24 percent, such a
three-semester (5-4-4) sequence should work for
anywhere from about 5 percent to 20 percent of
incoming “unprepared students”.6

5The passing rates in Calculus 2 were the same, but this
was not really significant because of the low numbers of the
students involved.
6The percentage would essentially depend on the extent to
which the institution’s placement test would be able to ascer-
tain, instead of the students’ “level of preparation”, which is
demonstrably meaningless in any case, their likely degree
of commitment.
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