Chapter 1

Accounting For

Basic Collections Of

Money On A Counter

In this chapter we will be dealing with objects sitting on a counter/desk/table/etc and we will represent these objects on a (black)board/notebook/etc. We will then design procedures to be carried on the board to arrive at a representation of the result of what we did on the counter.

But, if the distinction between what sits on the counter and what we write on the board is quite clear in the classroom, it is not as easy to make in a book and here we will have to resort to various devices.

• Inasmuch as possible, we shall use pictures to stand for objects on the counter but, as this is not always possible, we shall also use their usual name but with a particular typeface so as to distinguish them from what we will write to represent them on the board.

For instance, we will use dollar as an alternate for to stand for a dollar-bill sitting on the counter while we will write Dollar to represent it on the board.

• Similarly, we shall use ONE, TWO, . . ., TEN, ELEVEN, etc, to stand for the numbers of objects sitting on the counter, with the firm understanding that, on the board, we can write only 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• We shall use the symbol ♠ to signal that we are in the semantic mode, that is, working on the counter and the symbol ♦ to signal that we are in the syntactic mode, that is, writing on the board.
1.1 Representing Basic Collections with (Counting) Number-Phrases

1. We begin with the issue of representing on the board money sitting on a counter. (Note by the way that banks used to be called “counting houses”.) For instance, given dollars and dimes on the counter, we use the words Dollars and Dimes as denominators, that is as names/symbols/denominations/etc to represent them on the board.

2. The first breakthrough in the development of arithmetic was the realization that objects of different kinds have to be accounted for separately because, when all the objects are of the same kind, we can then refer to them collectively, that is as a collection. For instance, we shall refer to dollar, dollar, dollar, dollar, dollar, dollar, dollar on the counter as a collection of dollars. On the other hand, according to this agreement, dollar, dollar, dime, dime, dime, dime, dime will not be a collection. What would it be a collection of?

What this does is to allow us to represent a collection on the counter by writing on the board a (counting) number-phrase, that is a phrase consisting of:

- a numerator to indicate how many objects there are in the collection, which we do for the moment by writing on the board a slash, /, for each object in the collection on the counter, and,
- a denominator to indicate the kind of objects the collection is made of.

For instance,

We will say that the number of objects in a collection is that which is represented by the numerator in the number-phrase that represents the
collection on the board. Thus, while the denominator represents the kind of objects in a collection, the numerator represents the number of objects in a collection.

Observe that, even though a number-phrase is much more economical a way to represent on the board a collection of objects on the counter than writing one denominator for each object, there is no loss of information. Essentially, what we have done was merely to separate quantity from quality but, as it will turn out, this is a very powerful idea.

In particular, given, say, dollar, dollar, dollar on the counter, we can ask two very different questions:

- “What is on the counter?” whose answer on the board is the number-phrase /// Dollars
- “How many dollars are on the counter?” whose answer on the board is the numerator ///.

Note. We will need to make a distinction somewhat analogous to our use in English of “one dime” versus “a dime”. We will distinguish between a collection consisting of one dime, which we represent on the board by the number-phrase / Dime, and the object that a dime is, which we represent on the board by the denominator Dime. While this will surely appear as beyond nitpicking, not making the distinction would turn the development of board procedures into a nightmare.

3. The second breakthrough in the development of arithmetic occurred when Indian scribes introduced as numerators the digits 1, 2, 3, . . . , 9 to be used instead of /, //, ///, . . . , ////////// so that we now write, say, 3 Dollars instead of //// Dollars.

a. Once we have memorized the succession 1, 2, 3, . . . , 9, what this does is to give us a procedure to find the numerator of the (counting) number-phrase that represents a given collection of objects on the board: we count the collection, that is we point in turn at each object in the collection, while reciting the succession of digits. The numerator we write on the board is the last digit recited in the count.

For instance,
basic collection
default rule

b. At this point, we can count only up to 9 Dollars because we cannot recite TEN as we have no symbol to represent TEN on the board. So, by a basic collection, we shall mean a collection with fewer than TEN objects which we can therefore count with just the above digits. At some fundamental level, basic collections are thus the only ones we can really represent! Reaching "TEN" will be the signal for "bundling" as we shall see in Section ??.

Note. There is nothing sacred about ten: it is simply how many fingers ("digit" is just a fancy word for finger) are on our two hands and we could have used just about any number of digits instead of ten. For example, deep down, computers use a machine language based on two digits, 0 and 1, because any electronic device is either off or on. At intermediate levels, computer software may use eight (0, 1, 2, 3, 4, 5, 6, 7) or sixteen digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f). The Babylonians used sixty digits, a historical remnant of which is the fact that there are sixty seconds to a minute and sixty minutes to an hour. The point here is that all that we will do with ten could easily be done with any number of digits.

c. A small complication is that the numerator 1 often “goes without saying” which has the unfortunate effect of obliterating the difference between denominator and number-phrase. This is often expressed as a default rule:

When no numerator is given, the numerator 1 is intended and goes without saying.

Note. Unfortunately, this default rule is often abbreviated as “when there is no numerator, the numerator is 1” which is dangerous because, when there is no numerator, it is tempting to think that there is no object either! To be on the safe side, we will avoid letting the numerator 1 go “without saying”.

d. Finally, we note that we have not yet introduced the digit 0. This is only because, so far, we have had no need for it. In fact, historically, the digit 0 was a much later invention. It will be introduced in Section 1.5.
1.2. EQUALITIES AND INEQUALITIES

Note. Since we refer to, say, dollar, dollar, dollar, dollar, dollar, dollar, dollar as a collection of dollars, it is tempting to “improve” a bit and write “a collection of 7 dollars” but we should resist the temptation because dollars are objects that sit on the counter while 7 is something we write on the board and we don’t want to mix what is written on the board with what sits on the counter. On the other hand, we can speak of a collection of seven dollars.

1.2 Comparing Collections: Equalities and Inequalities

We now want to compare collections—involving the same kind of objects. (We will compare collections involving different kinds of objects in Section ??.)

1. We begin with the comparison of two collections on the counter and with the board procedure for getting the result of the comparison. We will deal with the issue of how to represent this result on the board in sub-section 2. below.

♠ On the counter, what we do is to match one-to-one the objects in the two collections; the particular relationship that stands between the two collections will depend on which of the two collections the leftover objects are in.

❖ On the board, we count each one of the two collections and then we count from the numerator of the first number-phrase to the numerator of the second number-phrase, that is, starting after the numerator of the first number-phrase, we count to the numerator of the second number-phrase.

Either way, we then have three possibilities:

a. In the first case, that is

♠ When the leftover objects are in the second collection, we will say that the first collection is less numerous than the second collection.

❖ To count from the first numerator to the second one, starting with the digit after the first numerator, we must count forward, that is, we must call the digits that succeed it in the succession 1, 2, 3, 4, 5, 6, 7, 8, 9 and end with the second numerator.

For instance, $4, 5, 6, 7 \rightarrow$ is a forward count that starts after 3 and ends with 7.

For instance,
On the counter.

Jack has

We count Jack’s collection:
1, 2, 3

Jill has

We count Jill’s collection:
1, 2, 3, 4, 5, 6, 7

We match Jack’s collection one-to-one with Jill’s collection:

Jack’s collection is less numerous than Jill’s collection

We must count forward.

On the board.

We count Jack’s collection:
1, 2, 3

We count from Jack’s collection to Jill’s collection:
4, 5, 6, 7

b. In the second case, that is

When the leftover objects are in the first collection, we will say that the first collection is more numerous than the second collection.

To count from the first numerator to the second one, starting with the digit before the first numerator, we must count backward, that is, we must call the digits that precede it in the succession 1, 2, 3, 4, 5, 6, 7, 8, 9 and end with the second numerator. For instance, $\frac{3}{4}$ is a backward count that starts before 5 and ends with 3.

Note. Thus, the precession 9, 8, 7, 6, 5, 4, 3, 2, 1 should be memorized as well as the succession 1, 2, 3, 4, 5, 6, 7, 8, 9.

For instance,
1.2. EQUALITIES AND INEQUALITIES

We count Jack’s collection:
1, 2, 3, 4, 5

We count Jill’s collection:
1, 2, 3

Jack has

Jill has

We match Jack’s collection one-to-one with Jill’s collection:

Jack’s collection is more numerous than Jill’s collection.

We must count backward.

c. In the third case, that is

♠ When there are no leftover objects, we will say that the first collection is as numerous as the second collection.

❖ The two numerators are the same and we must count neither forward nor backward.

For instance,

Jack has

Jill has

We match Jack’s collection one-to-one with Jill’s collection:

Jack’s collection is equal to Jill’s collection.

We must count neither forward nor backward.

2. In order to represent on the board the result of comparing two collections, we first need to expand our mathematical language beyond number-
phrases.

a. Given a relationship between two collections, we need a verb that represents the relationship between the two collections. Then we can write a sentence involving the two number-phrases that represent the collections and the verb that represents the relationship between the two collections:

- We will use the verb < to represent the relationship is less numerous than and we will read it is smaller than. For instance, for the first of the above three examples, we will write the sentence 3 Dollars < 7 Dollars which we will read “THREE dollars is smaller than FIVE dollars”.
- We will use the verb > to represent the relationship is more numerous than and we will read it is larger than. For instance, for the second of the above three examples, we will write the sentence 5 Dollars > 3 Dollars which we will read “FIVE dollars is larger than THREE dollars”.
- We will use the verb = to represent the relationship is as numerous as and we will read it is equal to. For instance, for the third of the above three examples, we will write the sentence 3 Dollars = 3 Dollars which we will read “THREE dollars is equal to THREE dollars”.

In other words,

<table>
<thead>
<tr>
<th>When we must count forward</th>
<th>we write</th>
<th>which is read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>← , · · · →</td>
<td><</td>
<td>“is smaller than”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When we must count backward</th>
<th>we write</th>
<th>which is read as</th>
</tr>
</thead>
<tbody>
<tr>
<td>← , · · · →</td>
<td>></td>
<td>“is larger than”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When we must not count either way</th>
<th>we write</th>
<th>which is read</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>=</td>
<td>“is equal to”</td>
</tr>
</tbody>
</table>

Note. Beware that the symbols < and > go in directions opposite to that of the arrowheads when we count from the first numerator to the second numerator. (If need be, one can think of < as : • : with • being “smaller” than : and of > as : • : with : being “larger” than •.)

b. Sentences involving the verbs > or < are called strict inequalities while sentences involving the verb = are called equalities. For example,

3 Dollars < 7 Dollars and 8 Dollars > 2 Dollars are strict inequalities

3 Dollars = 3 Dollars is an equality

c. In English, when we say that we allow “up to” 5 Dollars, we mean that we allow 1 Dollar, 2 Dollars, 3 Dollars, 4 Dollars but that we do not allow the endpoint itself, 5 Dollars. If we do want also to allow the endpoint, 5 Dollars, we say “up to and including” 5 Dollars.
In mathematics we shall also need to make this distinction, that is, to allow or not to allow the endpoint, and, when we do allow it, we will say that the inequality is a bounded inequality:

- We will use the verb \leq to represent the relationship *is less numerous than or as numerous as* and we will read it *less than or equal to*.
- We will use the verb \geq to represent the relationship *is more numerous than or as numerous as* and we will read it *more than or equal to*.

d. Inasmuch as the sentences that we wrote above represented actual relationships between collections on the counter, they were true but there is of course nothing to prevent us from writing sentences that are false in the sense that there is no way that we could come up with situations that these sentences would represent. For example, the sentences

\[
5 \text{ Dollars} = 3 \text{ Dollars} \quad \text{and} \quad 5 \text{ Dollars} < 3 \text{ Dollars},
\]

are false because there is no way that we could realize them on the counter, that is come up with actual collections with these relationships. Observe, by the way, that the sentence

\[
5 \text{ Dollars} \leq 3 \text{ Dollars}
\]

is true.

e. However, while occasionally useful, it is usually not very convenient to write sentences that are false because then we must not forget to write that they are false when we write them and we may miss that it says somewhere that they are false when we read them. So, inasmuch as possible, we shall write only sentences that are true and we will use the default rule:

When no indication of truth or falsehood is given, mathematical sentences will be understood to be true and this will go without saying.

When a sentence is false, rather than writing it and say that it is false, what we shall usually do is to write *its negation*—which is true and therefore which “goes without saying”. We can do this either in either one of two manners:

- We can place the false sentence within the symbol $\neg[\phantom{\text{false}}]$,
- We can just slash the verb which is what we shall usually do.

For instance, instead of writing that

the sentence $5 \text{ Dollars} = 3 \text{ Dollars}$ is false

we can either write the (true) sentence

\[
\neg[5 \text{ Dollars} = 3 \text{ Dollars}]
\]

or the (true) sentence

\[
\neg[5 \text{ Dollars} = 3 \text{ Dollars}]
\]
(linguistic) duality
(linguistic) symmetry
opposite
dual

5 Dollars ≠ 3 Dollars

3. The (linguistic) **duality** that exists between < and > must not be confused with (linguistic) **symmetry**, a concept which we tend to be more familiar with.

a. Examples of linguistic **symmetry** include pairs of sentences—which may be true or false—such as the following:

- Jack is a child of Jill versus Jill is a child of Jack
- Jill beats Jack at poker versus Jack beats Jill at poker
- Jack loves Jill versus Jill loves Jack
- 9 Dimes > 2 Dimes versus 2 Dimes > 9 Dimes

In each example, the two sentences represent **opposite** relationships between the two people/collections because, even though the verbs are the same, the two people/collections are mentioned in **opposite** order. Observe that just because one of the two sentences is true (or false) does not, by itself, automatically force the other to be either true or false and that whether or not it does depends on the nature of the relationship.

b. Examples of linguistic **duality** include:

- Jack is a child of Jill versus Jill is a parent of Jack
- Jill beats Jack at poker versus Jack is beaten by Jill at poker
- Jack loves Jill versus Jill is loved by Jack
- 9 Dimes > 2 Dimes versus 2 Dimes < 9 Dimes

In each example, the two sentences represent the **same** relationship between the two people/collections because, even though the people/collections are mentioned in **opposite** order, the two verbs are **dual** of each other which “undoes” the effect of the order so that only the **emphasis** is different. Observe that here, as a result, if one of the two sentences is true (or false) this automatically forces the other to be true (or false) and this regardless of the nature of the relationship.

c. The following are examples of simultaneous (linguistic) **symmetry** and (linguistic) **duality** because the verbs are the same and the order does not matter.

- Jack is a sibling of Jill versus Jill is a sibling of Jack
- 2 Nickels = 1 Dime versus 1 Dime = 2 Nickels

Observe that, here again, as soon as one sentence is true (or false), by itself this automatically forces the other to be true (or false) and that it does not depend on the nature of the relationship.
1.3 Specifying Collections: Equations and “Inequations”

In real life, we often have to specify things we want by stating some requirement(s) that these things must satisfy.

Here, we will specify collection(s) by the requirement that they stand in a given relationship with a given collection, namely one or the other of the following,

- is more numerous than the given collection,
- is less numerous than the given collection,
- is as numerous as the given collection.

For instance, say that

- Jack has three dollars,
- Jill has seven dollars,
- Dick has three dollars,
- Jane has four dollars.

and that we specify the collection(s) that satisfy the requirement that they be more numerous than Jack’s collection.

1. We could of course proceed as we did in Section 1.2:

- On the counter, matching Jack’s collection one-to-one with each one of the collections of Jill, Dick and Jane shows that this specifies the collections of Jill and Jane.

- On the board, counting from Jack’s collection each one of the collections of Jill, Dick and Jane specifies the same collections.

This approach, though, is somewhat short of ideal if only because it would become very time-consuming with large numbers of collections to compare. So, what we want is to develop a board procedure that is more efficient in that the time it requires will not go up appreciably as the number of collections and of objects in the collections goes up.

2. Before we do that, though, we need a way to phrase requirements that lends itself to procedural manipulations.

a. Essentially, what we will do is to introduce the mathematical version of something common in everyday life, namely forms such as

was President of the United States.

which, when we fill it it with some data, say,

Kissinger

produces a sentence, namely
Kissinger was President of the United States.
which happens to be false while, when we fill it with the data
Bill Clinton
it produces the sentence
Bill Clinton was President of the United States.
which happens to be true.

b. In the case of the above example,
♠ On the counter, we want the collections of dollars that satisfy the requirement that they be more numerous than three dollars.
❖ On the board, we want the solutions of the form
\[\text{Dollars} > 3 \text{ Dollars} \]
Thus, from what we did above, we have that
- the data 7 produces the sentence \[\text{7 Dollars} > 3 \text{ Dollars} \] which is true,
- the data 4 produces the sentence \[\text{4 Dollars} > 3 \text{ Dollars} \] which is true,
- the data 3 produces the sentence \[\text{3 Dollars} > 3 \text{ Dollars} \] which is false.
so that 7, 4 are solutions of the form \[\text{Dollars} > 3 \text{ Dollars} \] while 3 is a non-solution.
c. Boxes, though, would soon turn out to be impossibly difficult to use and, instead, we will use unspecified numerators, such as for instance the letter \(x \), as in
\[x \text{ Dollars} \]
and, instead of the form \[\text{Dollars} > 3 \text{ Dollars} \] we shall write
\[x \text{ Dollars} > 3 \text{ Dollars} \]
We shall call:
- equations those forms whose verb is =,
- strict inequations those forms whose verb is either < or >,
- bounded inequations those forms whose verb is either \(\leq \) or \(\geq \).
d. Instead of filling the box with the data, say, 3, we replace \(x \) by 3 and the instruction to do so will be
\[x \text{ Dollars} \bigg|_{\text{where } x:=3} \]
in which the symbol :=, borrowed from a computer language called Pascal, is read as “is to be replaced by”. Thus
\[x \text{ Dollars} \bigg|_{\text{where } x:=3} \]
1.3. **EQUATIONS AND “INEQUATIONS”**

is a **specifying-phrase** in that it **specifies**

3 Dollars

The following sentence

\[x \text{ Dollars} \mid_{\text{where } x := 3} = 3 \text{ Dollars} \]

is therefore “trivially” **true**; it is an example of a type of sentence called **identity** because it **identifies** the numerator specified by the **specifying-phrase**.

We also have

- \(x \text{ Dollars} \mid_{\text{where } x := 7} > 3 \text{ Dollars} \),
- \(x \text{ Dollars} \mid_{\text{where } x := 4} > 3 \text{ Dollars} \),
- \(x \text{ Dollars} \mid_{\text{where } x := 3} \not> 3 \text{ Dollars} \).

3. We now turn to the simplest possible instance of a more **general** problem which is that we shall now want all the collections, if any, that stand in a given relationship with a given collection.

For example,

- **♠** Say **Jack** has **five dollars** on the **counter**. We then want to find all collections of **dollars** that satisfy a given one of the following three **requirements**:

 i. **is less numerous** than **Jack**’s collection,

 ii. **is more numerous** than **Jack**’s collection,

 iii. **is as numerous** as **Jack**’s collection.

(In other words, we are looking here at **three** distinct problems at once.)

- **❖** On the **board**, we are looking for the **solution set** of the corresponding **inequation/equation**:

 i. \(x \text{ Dollars} < 5 \text{ Dollars} \)

 ii. \(x \text{ Dollars} > 5 \text{ Dollars} \)

 iii. \(x \text{ Dollars} = 5 \text{ Dollars} \)

We now proceed to do just so.

Regardless of which one of the three requirements we are trying to satisfy, we begin by considering the **equation**

\[x \text{ Dollars} = 5 \text{ Dollars} \]

whose **solution set** contains of course one, and only one, numerator: 5.

Then,

- **a.** If it was the **equation** we were trying to solve, we are of course done.
b. If we were trying to solve either one of the inequalities

\[x \text{ Dollars} < 5 \text{ Dollars} \quad \text{or} \quad x \text{ Dollars} > 5 \text{ Dollars}, \]

it remains to determine which side of the break-even point the solution set of the inequality is. (The break-even point is the solution of their associated equation, \(x \text{ Dollars} = 5 \text{ Dollars} \), that is, of the equation obtained from the inequality by replacing the verb, < or >, by the verb =.)

That the solution set must be a whole side of the break-even point is because if the solution set was only part of a whole side, then there would have to be both a solution and a non-solution on the same side of the break-even point and then there would have to be another break-even point in-between the two. But that cannot be since a break-even point is a solution of the associated equation \(x \text{ Dollars} = 5 \text{ Dollars} \) and we just saw that it has one and only one solution, namely 5.

So, on each side of the break-even point, all we need to do is to pick one numerator and test it against the wanted requirement, that is to ask whether this test-point is a solution or a non-solution: Then, every numerator on the same side of the break-even point as the test-point will be the same.

For instance, say we are looking at the inequality

\[x \text{ Dollars} > 5 \text{ Dollars} \]

The associated equation is

\[x \text{ Dollars} = 5 \text{ Dollars} \]

so that the break-even point of the inequality is 5. Then, on each side of 5, we pick a test-point. Say we pick 3 and 7. Since to count from 3 to 5 we have to count forward, 3 is not a solution and all numerators on the same side of 5 as 3 will not be solutions either. Since to count from 7 to 5 we have to count backward, 7 is a solution and all numerators on the same side of 5 as 7 will also be solutions so that the solution set of the inequality

\[x \text{ Dollars} > 5 \text{ Dollars} \]

is 6, 7, 8,

Note. It is customary, though, to write solutions sets in-between curly brackets as in \{6, 7, 8, . . . \} and we shall follow the custom.

Observe that the time we spent with the above procedure does not depend anymore on the number of collections we are dealing with.
Observe that, here, the break-even point is also an endpoint in that all the numerators on the one side of the break-even point are solutions and all the numerators on the other side of the break-even point are not solutions. This, though, will not be always the case and we will encounter break-even points that will turn out not to be endpoints.

1.4 Aggregating To A Collection. Addition.

Comparing collections is static in that nothing gets created and we now turn to operations on collections which are dynamic in that:

i. Starting from a given initial situation,

ii. We perform some action on the initial situation,

iii. Which results in some terminal situation.

Given an operation, we will be considering different types of problems that can be associated with the operation. In the simplest type, which we shall call direct problems, given an initial situation and an action, we want to find the terminal situation. (We call this a direct problem because it “goes in the same direction” as the operation.)

In this section, we consider direct problems associated with aggregation, an operation in which the initial situation involves a collection of objects, the action is to aggregate another collection of objects (of the same kind) and the terminal situation then involves the aggregate collection, namely the collection obtained by collecting all the objects in the two collections into one single collection.

For instance, a direct problem might be

♠ Aggregating four dollars to three dollars:

Performing the action of collecting all the objects in the two collections
gives the collection in the terminal situation.

❖ On the board,

i. In order to state the problem we use the symbol + to denote addition, the procedure that will give us the numerator of the number-phrase that represents the aggregate collection, and we write

\[3 \text{ Dollars} + 4 \text{ Dollars} \rightarrow 3 \text{ Dollars} + 4 \text{ Dollars} \]

where \(3 \text{ Dollars} + 4 \text{ Dollars} \) is the specifying-phrase that represent on the board the aggregate collection before we count it. We shall call it a specifying-phrase because, while it is not a number-phrase, it does specify a number-phrase namely that which will be the result of the addition.

More succintly, but less transparently, we shall usually write only the specifying phrase

\[3 \text{ Dollars} + 4 \text{ Dollars} \]

ii. In order to identify the collection specified by the specifying-phrase, we count the initial collection and then forward count the collection being aggregated, that is, starting after the count of the initial collection, we call the digits that succeed it in the succession 1, 2, 3, 4, 5, 6, 7, 8, 9 while pointing at the objects in the collection being aggregated. For instance, \(4.5.6.7 \) is a forward count that starts after 3 and ends with 7. The numerator of the number-phrase that represents the aggregate collection is the end of the forward count.

iii. In order to represent the solution of the direct problem, we write a sentence which we will call an identifying sentence because it identifies the number-phrase that was specified by the specifying-phrase:

\[3 \text{ Dollars} + 4 \text{ Dollars} \rightarrow 3 \text{ Dollars} + 4 \text{ Dollars} = 7 \text{ Dollars} \]

or, more succintly,

\[3 \text{ Dollars} + 4 \text{ Dollars} = 7 \text{ Dollars} \]

Note. A specifying-phrase such as \(3 \text{ Dollars} + 4 \text{ Dollars} \) is of course not to be confused with a sentence such as \(3 \text{ Dollars} < 4 \text{ Dollars} \).

Altogether then,
1.5. **SUBTRACTION**

<table>
<thead>
<tr>
<th>♠ On the counter.</th>
<th>♦ On the board.</th>
<th>general statement reverse problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>We have</td>
<td>We write the specifying phrase(^1)</td>
<td></td>
</tr>
<tr>
<td>3 Dollars + 4 Dollars</td>
<td>3 Dollars + 4 Dollars = 7 Dollars</td>
<td></td>
</tr>
</tbody>
</table>

We count the 1st collection: 1, 2, 3

to which we aggregate

We count the 2nd collection *forward* starting after 3: 4, 5, 6, 7

The *aggregate collection* is: The *numerator* of the result is 7.

So, we have the general statement:

When we aggregate on the counter, we add on the board by counting forward.

1.5 **Removing From A Collection; Subtraction.**

(A Reverse Problem.)

We saw in Section 1.4 that, given an *operation*, a *direct* problem consists in performing a given action on a given initial situation and thus getting to some terminal situation—whatever that may turn out to be. In this section we consider a rather different kind of problem coming out of the fact that we are usually not ready to accept whatever terminal situation may happen to come up but, rather, that we usually have a *goal* in mind, namely a *specific* terminal situation that we *want*.

Generally speaking, we shall call *reverse problem* any problem involving a *wanted* terminal situation but there are two *types* of reverse problem depending on what else is *given* aside from the *wanted* terminal situation.

- If it is also the *initial situation* that is given, then what we must find is what *action* on this initial situation will get us the *wanted* terminal situation.

\(^1\)Educologists will surely appreciate this being “question oriented”.
situation.
• If it is also the action that is given, then what we must find is for what
 initial situation will this action get us the wanted terminal situation.
In either case we call this a reverse problem because, since it starts from
a wanted terminal situation, it “goes in the opposite direction” from the
actual operation.

1. A special instance of a reverse problem arises when we want to undo
the result of an action, that is, when we want to “return” from the terminal
situation to the initial situation.
For instance, we might want to undo the aggregation of a collection to an
initial collection.

The reverse problem associated with the “undo aggregate” operation then
is to find what action on the original terminal situation will get us back to
the original initial situation:

♠ On the counter, we must remove from the original terminal collection
the collection that had been aggregated to the original initial collection.

• On the board, we count the terminal collection and then we count back-
 ward from the numerator of the terminal collection the collection that
1.5. SUBTRACTION

had been aggregated. (This makes sense since, in the original operation, we obtained the numerator of the terminal collection by counting forward from the numerator of the initial collection the collection being aggregated.)

We shall say that we subtract the numerator of the collection being aggregated—in the original operation—from the numerator of the terminal collection and we use the symbol — to write, for instance,

\[
7 \text{ Dollars} - 4 \text{ Dollars} \rightarrow 7 \text{ Dollars} - 4 \text{ Dollars}
\]

where \(7 \text{ Dollars} - 4 \text{ Dollars}\) is the specifying-phrase that represent on the board the leftover collection before we count it, namely that which will be the result of the subtraction.

In other words,

<table>
<thead>
<tr>
<th>♠ On the counter.</th>
<th>♦ On the board.</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the terminal collection in the original operation, we remove the collection that had been aggregated.</td>
<td>We write the specifying phrase (7 \text{ Dollars} - 4 \text{ Dollars}).</td>
</tr>
</tbody>
</table>

We count the terminal collection: \(1, 2, 3, 4, 5, 6, 7\)

The leftover collection is the initial collection. The numerator of the initial collection is 3.

We write the sentence \(7 \text{ Dollars} - 4 \text{ Dollars} = 3 \text{ Dollars}\).

2. We now turn to a reverse problem that is more general in that, given any initial collection and any wanted terminal collection, we shall now want to find what collection (if possible) we have to aggregate to the given initial collection to get the wanted terminal collection.
Here, though, because the *wanted* terminal collection need not have resulted from the aggregation of a collection, but can now be *any* collection, the reverse problem, as we shall see, may or may not have a *solution*. There are three cases.

a. The *wanted* terminal collection is *more numerous than* the *given* initial collection:

To find the collection to be aggregated, we proceed essentially as when we wanted to undo aggregation

♠ On the *counter*, we *remove* the *initial* collection from the wanted *terminal* collection.

❖ On the *board*, we *subtract* the numerator of the *initial* collection from the numerator of the wanted *terminal* collection, that is, we count the *initial* collection *backward* from the numerator of the wanted *terminal* collection.

partial undo

b. The wanted terminal collection is *as numerous as* the initial collection.

♠ There is *just* enough in the *wanted* terminal situation to remove the given first collection but, rather than to say that there *is* no *leftover* collection, we shall say that the leftover collection is *empty*.

❖ We subtract the *initial* numerator from the *terminal* numerator, that is, after we have counted the *wanted* terminal collection we count the
initial collection \emph{backward} but here we must introduce a new digit, \(0\), to end the backward count. The digit 0 is thus the numerator in the number-phrase that represents any \emph{empty} collection.

\textit{Note.} As a matter of historical fact, 0 was invented much later than the other digits and \emph{not} for this purpose. We shall see the historical purpose in Section ??

c. The wanted terminal collection is \emph{less numerous than} the initial collection.

\begin{itemize}
 \item There is \emph{not} enough in the \emph{wanted} terminal situation to remove the given first collection. The reverse problem has no solution.
 \item On the board, we cannot \textit{subtract} the \emph{initial} numerator from the \emph{terminal} numerator because we cannot count \emph{backward} more than we counted in the first place!

 Thus, say, specifying-phrases such as \(3 \text{ Dollars} - 5 \text{ Dollars}\) make no sense whatsoever.
\end{itemize}

So, we have the \textbf{general statement}:

\textit{When we remove on the counter, we subtract on the board by counting backward.}

3. We can now look at more complicated problems in which we would be looking for the \emph{solution set} of one of the following

\begin{itemize}
 \item \(3 \text{ Dollars} + x \text{ Dollars} < 7 \text{ Dollars}\) or \(3 \text{ Dollars} + x \text{ Dollars} \leq 7 \text{ Dollars}\)
 \item \(3 \text{ Dollars} + x \text{ Dollars} > 7 \text{ Dollars}\) or \(3 \text{ Dollars} + x \text{ Dollars} \geq 7 \text{ Dollars}\)
 \item \(3 \text{ Dollars} + x \text{ Dollars} = 7 \text{ Dollars}\)
\end{itemize}

For instance, say the \emph{initial} situation is that \textit{Jack} has \textbf{three dollars} that he will donate to \textit{Jill} but that the \emph{wanted} terminal situation is that \textit{Jill} should have a collection \emph{more numerous than seven dollars}. The question thus is what collection should be aggregated to \textit{Jack}'s collection.

\begin{itemize}
 \item On the counter, removing the \textbf{three dollars} in \textit{Jack}'s collection from \textbf{seven dollars}, we find that \textbf{four dollars} are leftover. So, if we \textit{aggregate four dollars} to \textit{Jack}'s collection, then the aggregated collection will be \emph{as numerous as \textit{Jill}'s collection and aggregating a collection more numerous than four dollars} to \textit{Jack}'s collection will make \textit{Jill}'s collection \emph{more numerous than seven dollars}.
 \item On the board
 \begin{itemize}
 \item \textit{Jack}'s collection is represented by \textbf{3 Dollars} and \textit{Jill}'s collection is represented by \textbf{7 Dollars} and thus we are trying to find the solution(s), if any, of the \emph{inequation}
 \[
 3 \text{ Dollars} + x \text{ Dollars} > 7 \text{ Dollars}
 \]
 \end{itemize}
\end{itemize}
To obtain the break-even point, that is the solution of the associated equation,

\[3 \text{ Dollars} + x \text{ Dollars} = 7 \text{ Dollars}\]

we must identify

\[7 \text{ Dollars} - 3 \text{ Dollars}\]

that is we must count from 3 to 7:

\[3 \rightarrow 4, 5, 6, 7 \rightarrow 7\]

which is a forward count of 4. Thus the break-even point is \(7 \text{ Dollars} - 3 \text{ Dollars} = 4 \text{ Dollars}\).

– We pick a test-point on each side of the break-even point, say 2 Dollars and 5 Dollars.

By counting from 3, we get:

\[3 \text{ Dollars} + 2 \text{ Dollars} \ngeq 7 \text{ Dollars}\]

and

\[3 \text{ Dollars} + 5 \text{ Dollars} > 7 \text{ Dollars}\]

So the solution set of \(3 \text{ Dollars} + x \text{ Dollars} > 7 \text{ Dollars}\) is \(\{5, 6, 7, \ldots\}\).

1.6 Combinations.

Situations in the real world are rarely that simple that they only involve one single kind of objects. As it turns out, though, only a small but far-reaching adjustment needs to be made to what we have done so far.

1. When the objects are not all of the same kind, that is when we do not have a collection and therefore we cannot represent them by a (counting) number-phrase.

For instance, say we have *dime, dime, nickel, nickel, nickel, nickel, nickel*, on the counter. Of course, we could write *7 Coins* but then we would be losing information, for instance, about how much *money* there is. Moreover, what could we write to represent, say, *dollar, dollar, dime, dime, dime, dime, nickel, nickel, nickel*?

In the latter case, for instance, and in accordance with the “second breakthrough in the development of arithmetic” (Section 1.1), we begin by separating the objects into a bunch of collections:

- the collection *dollar, dollar*, which we can represent by the (counting) number-phrase *2 Dollars*
1.6. COMBINATIONS

- the collection dime, dime dime, dime, which we can represent by the (counting) number-phrase 4 Dimes
- the collection nickel, nickel, nickel, which we can represent by the (counting) number-phrases 3 Nickels

Then, we represent the bunch on the board by writing 2 Dollars & 4 Dimes & 3 Nickels where & means “and”. We will call this a combination of Dollars, Dimes and Nickels. Thus combinations represent on the board bunches of collections on the counter.

Combinations are a very powerful concept that comes up again and again and that, in fact, is the subject of a whole part of mathematics called Linear Algebra.

Note. Here again, it is usual to write, say, 2 Dollars & Dime but while we see of course that Dollars is the denominator in a number-phrase whose numerator is 2, we have to remember that Dime is not a denominator but really stands for a number-phrase whose numerator is 1 and whose denominator is Dime so that 2 Dollars & Dime stands for 2 Dollars & 1 Dime. We will always write, say, 2 Dollars & 1 Dime rather than 2 Dollars & Dime.

2. In the absence of any additional information, we cannot compare bunches of collections. We shall see in Section ?? what kind of information permits what kind of comparison.

3. When two collections consist of different kinds of objects, we cannot aggregate them since the result would not be a collection but a bunch of two collections.

However, we can attach bunches of collections and the result is still just another bunch represented by a combination. For instance,

\[
2 \text{ Dollars} \& 3 \text{ Nickels} + 4 \text{ Dollars} \& 5 \text{ Dimes} = \text{ Dollar, Dollar, Nickel, Nickel, Dollar, Dollar, Dollar, Dollar, Dime, Dime, Dime, Dime, Dime,}
\]

\[
= 6 \text{ Dollars} \& 5 \text{ Dimes} \& 3 \text{ Nickels}
\]

4. Neither, when two collections consist of different kinds of objects, can we cannot remove one from the other.

Occasionally, we can detach one bunch from another and the result being usually a bunch. For instance,
7 Dollars & 5 Nickels & 9 Dimes − 4 Dollars & 1 Dime
 = 7 Dollars − 4 Dollars & 5 Nickels & 9 Dimes − 1 Dime
 = 3 Dollars & 5 Nickels & 8 Dimes

However, most of the time we cannot as, for instance, in

7 Dollars & 5 Nickels − 4 Dollars & 3 Dimes