
Rational function

Chapter 15

Preview & Algebra Reviews

Rational Degree, 442 – (x0 + h)n when n > 3, 446 – Division in
Descending Exponents, 452 – Default Rules for Division, 457 –
Comparison With Arithmetic, 460 – Division in Ascending Order Of
Exponents, 461 – Graphic Difficulties, 462.

Rational functions are functions whose global input-output rule is of
the form

x
RAT−−−−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)

where POLYNum(x) and POLYDen(x) stand for two positive-exponent poly-
nomial expressions.
EXAMPLE 1. The function whose global input-output rule is

x
TAB−−−−−−−−→ TAB(x) = −3x2 + 4x− 7

−5x4 − 8

is a rational function in which:
• POLYNum(x) is −3x2 + 4x− 7
• POLYDen(x) is −5x4 − 8

1. This definition of a rational function actually encompasses more func-
tions than might at first appear and we will now look at functions whose
global input-output rule would not seem to qualify them as rational func-
tions but which are in fact rational functions.

a. Occasionally, either one or both of the two polynomial expressions
POLYNum(x) and POLYDen(x) may happen to be factored.
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EXAMPLE 2. The function whose global input-output rule is

x
MAB−−−−−−−−−→MAB(x) = −3x2 + 4x− 7

(−5x4 − 8)2

is in fact a rational function because

(−5x4 − 8)2 = 25x8 + 80x4 + 64

so that

MAB(x) = −3x2 + 4x− 7
(−5x4 − 8)2

= −3x2 + 4x− 7
25x8 + 80x4 + 64

b. A function which outputs a rational expression plus a polynomial
expression is in fact a rational function just like a “mixed number” is in fact
a fraction.
EXAMPLE 3. The function whose global input-output rule is

x
MAT−−−−−−−−−→MAT (x) = 7x2 − 2

−5x+ 3 − 2x3 + 4

is in fact a rational function because

−2x3 + 4 = (−2x3 + 4) · 1

= (−2x3 + 4) · −5x+ 3
−5x+ 3

= (−2x3 + 4) · (−5x+ 3)
−5x+ 3

= +10x4 − 6x3 − 20x+ 12
−5x+ 3

so that

MAT (x) = +7x2 − 2
−5x+ 3 − 2x3 + 4

= +7x2 − 2
−5x+ 3 + +10x4 − 6x3 − 20x+ 12

−5x+ 3

= +10x4 − 6x3 + 7x2 − 20x+ 10
−5x+ 3

c. The requirement that POLYNum(x) and POLYDen(x) be positive-
exponent polynomial expressions is merely intended to normalize things and
is not crucial as global input-output rules that involve negative exponents can
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easily be changed into input-output rules involving only positive-exponent
exponents.
EXAMPLE 4. The function whose global input-output rule is

x
RAB−−−−−−−−→ RAB(x) = +3x2 − 2x−3

−5x+ 3

is in fact a rational function because

+3x2 − 2x−3

−5x+ 3 = +3x2 − 2x−3

−5x+ 3 · 1

= +3x2 − 2x−3

−5x+ 3 · x
+3

x+3

= (+3x2 − 2x−3) · (x+3)
(−5x+ 3) · (x+3)

= +3x5 − 2
−5x4 + 3x3

so that

RAB(x) = +3x5 − 2
−5x4 + 3x3

2. Rational functions are important for a number of reasons but, es-
sentially, these reasons all derive from the fact that positive-exponent poly-
nomial functions are, in fact, too simple because, since positive-exponent
polynomial functions have no ∞-height inputs, positive-exponent polyno-
mial functions are essentially regular positive-exponent power functions with
possibly a few bounded fluctuations thrown in.
By contrast, the graphs of rational functions will come in an almost be-
wildering variety of shapes, essentially because of the possible existence of
∞-height inputs and thus rational functions will turn out to have much more
varied and interesting behaviors.
EXAMPLE 5. Rational functions are extremely important in imaging because rational
functions can have infinite-height inputs and can therefore have bounded inputs with
infinite slope. The reason this is important is that, given a function that outputs a
given color, programs recognize the boundary of objects of that color by looking for
where the slope is very high, that is where the color changes abruptly.

3. Rational functions are to polynomial functions very much what frac-
tions are to whole numbers. And just like fractions are approximated by
decimal numbers, rational functions will be approximated by (Laurent) poly-
nomial functions.
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rational degree
Type “Do > 1”
Type “Do < 0”
Type “Do = 0”
Type “Do = 1”’

15.1 Rational Degree

Because the upper degree of polynomial functions is what we used to sort
polynomial functions into different types, we now try to extend the idea of
upper degree to the case of rational functions in the hope that this will also
help us sort rational functions into different types.

Given a rational function whose global input-output rule is

x
RAT−−−−−−−−→ RAT (x) = POLYNum(x)

POLYDen(x)

the rational degree of this rational function is the upper degree of POLYNum(x)
minus the upper degree of POLYDen(x):

Rat.Deg. of POLYNum(x)
POLYDen(x)

= UppDeg. of POLYNum(x)−UppDeg. of POLYDen(x)

Thus, the rational degree of a rational function can well be negative.
NOTE. The rational degree is to rational function very much what the size is to
arithmetic fractions in “school arithmetic” which distinguishes fractions according to
the size of the numerator compared to the size of the denominator even though, by
now, the distinctions are only an inconsequential remnant of history..

What happened is that, historically, the earliest arithmetic fractions were “unit
fractions” , that is reciprocals of whole numbers such as one half, one third, one quarter,
etc. Later came “Egyptian fractions”, that is combinations of (distinct) unit fractions,
such as one third and one fifth and one eleventh, etc. A much later development were
the “proper fractions”, also called "vulgar fractions", such as two thirds, three fifths etc.
Later still, came “improper fractions” such as five thirds, seven halves, etc. And finally
“mixed numbers”, such as three and two sevenths. Today, none of these distinctions
matters inasmuch as we treat all fractions in the same manner.

However, while these “school arithmetic” distinctions are based on the size of the
numerator versus the size of the denominator and make no real differences in the way
we handle arithmetic fractions, in the case of rational functions, the above distinction
based on the upper degree of the numerator versus the upper degree of the denominator
will make a difference—even though no major one—in the way we will handle rational
functions of different types.

In fact, by analogy with power functions and for a reason that will appear
shortly, we will separate rational functions into the following four types:

Type “Do > 1” : Rational functions whose rational degree is > 1.
Type “Do < 0” : Rational functions whose rational degree is < 0.
Type “Do = 0” : Rational functions whose rational degree is = 0.
Type “Do = 1”’ : Rational functions whose rational degree is = 1.

Again by analogy with what we did with power functions, we will say that
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regular rational function
exceptional rational
function

• Rational functions of type “>1” and rational functions of type “<0”,
that is rational functions whose rational degree is either > 1 or < 0, are
regular rational functions,

• Rational functions of type “= 0” and rational functions of type “= 1”,
that is rational functions whose rational degree is either = 0 or = 1, are
exceptional rational functions.

and we will deal separately with regular rational functions and exceptional
rational functions in the last two chapters.
EXAMPLE 6. Find the rational degree of the function DOUGH whose global input-
output rule is

x
DOUGH−−−−−−−→ DOUGH(x) = +1x4 − 6x3 + 8x2 + 6x− 9

x2 − 5x+ 6
Since the rational degree is given by

Rat.Deg. of POLYNum(x)
POLYDen(x)

= UppDeg. of POLYNum(x)− UppDeg. of POLYDen(x)

and since, here,
• POLYNum(x) = +1x4 − 6x3 + 8x2 + 6x− 9
• POLYDen(x) = +1x2 − 5x+ 6
we get from the definition of the upper degree of a polynomial that:

UppDeg. of + 1x4 − 6x3 + 8x2 + 6x− 9 = Exponent of Highest Term
= Exponent of + 1x4

= 4
UppDeg. of + 1x2 − 5x+ 6 = Exponent of Highest Term

= Exponent of + 1x2

= 2

so that the rational degree of the rational function DOUGH is:

Rat.Deg. of +1x4 − 6x3 + 8x2 + 6x− 9
+1x2 − 5x+ 6 = Exponent of + 1x4 − Exponent of + 1x2

= 4− 2
= 2

so that DOUGH is an example of a rational function of degree > 1 and therefore of
a regular rational function.
EXAMPLE 7. Find the rational degree of the function MEGH whose global input-
output rule is

x
MEGH−−−−−−→MEGH(x) = x2 − 5x+ 6

+1x4 − 6x3 + 8x2 + 6x− 9
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Since the rational degree is given by

Rat.Deg. of POLYNum(x)
POLYDen(x)

= UppDeg. of POLYNum(x)− UppDeg. of POLYDen(x)

and since, here,
• POLYNum(x) = +1x2 − 5x+ 6
• POLYDen(x) = +1x4 − 6x3 + 8x2 + 6x− 9
we get from the definition of the upper degree of a polynomial that:

UppDeg. of + 1x2 − 5x+ 6 = Exponent of Highest Term
= Exponent of + 1x2

= 2
UppDeg. of + 1x4 − 6x3 + 8x2 + 6x− 9 = Exponent of Highest Term

= Exponent of + 1x4

= 4

so that the rational degree of the rational function MEGH is:

Rat.Deg. of +1x2 − 5x+ 6
+1x4 − 6x3 + 8x2 + 6x− 9 = Exponent of + 1x2 − Exponent of + 1x4

= 2− 4
= −2

so that MEGH is an example of a rational function of degree < 0 and therefore of a
regular rational function.
EXAMPLE 8. Find the rational degree of the function LEIGH whose global input-
output rule is

x
LEIGH−−−−−−→ LEIGH(x) = −17x5 − x4 − 5x3 − 23x+ 4

+8x5 − x3 + 4x2 + 13x− 2

Since the rational degree is given by

Rat.Deg. of POLYNum(x)
POLYDen(x)

= UppDeg. of POLYNum(x)− UppDeg. of POLYDen(x)

and since, here,
• POLYNum(x) = −17x5 − x4 − 5x3 − 23x+ 4
• POLYDen(x) = +8x5 − x3 + 4x2 + 13x− 2
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we get from the definition of the upper degree of a polynomial that:
UppDeg. of − 17x5 − x4 − 5x3 − 23x+ 4 = Exponent of Highest Term

= Exponent of − 17x5

= 5
UppDeg. of + 8x5 − x3 + 4x2 + 13x− 2 = Exponent of Highest Term

= Exponent of + 8x5

= 5

so that the rational degree of the rational function LEIGH is:

Rat.Deg. of −17x5 − x4 − 5x3 − 23x+ 4
+8x5 − x3 + 4x2 + 13x− 2 = Exponent of + 1x2 − Exponent of + 1x4

= 5− 5
= 0

so that LEIGH is an example of a rational function of rational degree = 0 and therefore
of an exceptional rational function.
EXAMPLE 9. Find the rational degree of the function ROUGH whose global input-
output rule is

x
ROUGH−−−−−−−→ ROUGH(x) = −17x6 − x5 − 5x4 − 2x2 + 3x+ 4

+8x5 − x3 + 4x2 + 13x− 2
Since the rational degree is given by

UppDeg. of POLYNum(x)
POLYDen(x)

= UppDeg. of POLYNum(x)− UppDeg. of POLYDen(x)

and since, here,
• POLYNum(x) = −17x6 − x5 − 5x4 − 2x2 + 3x+ 4
• POLYDen(x) = +8x5 − x3 + 4x2 + 13x− 2
we get from the definition of the upper degree of a polynomial that:

UppDeg. of − 17x6 − x5 − 5x4 − 2x2 + 3x+ 4 = Exponent of Highest Term
= Exponent of − 17x6

= 6
UppDeg. of + 8x5 − x3 + 4x2 + 13x− 2 = Exponent of Highest Term

= Exponent of + 8x5

= 5

so that so that the rational degree of the rational function ROUGH is:

Rat.Deg. of −17x6 − x5 − 5x4 − 2x2 + 3x+ 4
+8x5 − x3 + 4x2 + 13x− 2 = Exponent of + 1x2 − Exponent of + 1x4

= 6− 5
= 1
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pattern so that ROUGH is an example of a rational function of rational degree = 1 and
therefore of an exceptional rational function.

15.2 Addition Formulas: (x0 + h)n when n > 3
While we did not investigate polynomial functions of degree higher than 3
we will investigate rational functions that involve power functions of degree
higher than 3 and therefore we need to investigate Addition Formulas for
exponents higher than 3.

1. We already saw two addition formulas:
i. The addition formula for exponent 2 as given in Chapter 10 by THE-
OREM 32 (Addition Formula For Squares):

(x0 + h)2 = x2
0 + 2x0h+ h2

ii. The addition formula for exponent 3 as given in Chapter 12 by THE-
OREM 40 (Addition Formula For Cubes):

(x0 + h)3 = x3
0 + 3x2

0h+ 3x0h
2 + h3

which we established both by repeated multiplication and by enlarging the
sides of a square and of a cube of sides x0 by a small amount h.

2. In the case of exponents higher than 3, though,
• Repeated-multiplication is going to get rapidly more and more painful

as the exponent goes up,
• We cannot draw pictures in dimentsions higher than 3.
So, in order to find a general procedure for constructing the addition formulas
for (x0 + h)3 when the exponent n is higher than 3, we will first try to look
for a pattern in each one of the above two addition formulas without letting
anything “go without saying” and see what particular procedure would give
each one of them.
a. When the exponent is 3, we have:

(x0 + h)3 = x3
0 + 3x2

0h+ 3x0h
2 + h3

that is, writing in all that “goes without saying”,

= 1x+3
0 h

0 + 3x+2
0 h

+1 + 3x+1
0 h

+2 + 1x0
0h

+3

that is, replacing the short hand by the long hand

= 1 • x0 • x0 • x0
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+ 3 • x0 • x0 • h
+ 3 • x0 • h • h
+ 1 • h • h • h

So, looking separately at the powers and at the coefficients in the addition
formula for (x0 + h)3:
• The procedure for finding the powers would seem to be:

i. We make a row of 3 copies of x0 with multiplication signs in-
between:

x0 • x0 • x0
ii. We tack on 3 copies of the row we wrote in step i.

x0 • x0 • x0
x0 • x0 • x0
x0 • x0 • x0
x0 • x0 • x0

iii. Starting with the first of the 3 rows that we tacked-on in step
ii. and going down, we replace in each row, starting from the right, one
more copy of x0 by a copy of h than in the preceding row:

x0 • x0 • x0
x0 • x0 • h
x0 • h • h
h • h • h

• The procedure for finding the coefficients
1 3 3 1

is certainly not obvious and we leave it alone for the time being.
b. When the exponent is 2, we have

(x0 + h)2 = x2
0 + 2x0h+ h2

that is, writing in all that “goes without saying”,

= 1x2
0h

0 + 2x1
0h

1 + 1x0
0h

2

that is, replacing the short hand by the long hand

= 1 • x0 • x0

+ 2 • x0 • h
+ 1 • h • h

So, looking separately at the powers and at the coefficients in the addition
formula for (x0 + h)2:
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• The procedure for finding the powers would seem to be the same as for
the previous addition formula:

i. We make a row of 2 copies of x0 with multiplication signs in-
between:

x0 • x0
ii. We tack on 2 copies of the row we wrote in step i.

x0 • x0
x0 • x0
x0 • x0

iii. Starting with the first of the 2 rows that we tacked-on in step
ii. and going down, we replace in each row, starting from the right, one
more copy of x0 by a copy of h than in the preceding row:

x0 • x0
x0 • h
h • h

• The procedure for finding the coefficients
1 2 1

is certainly not obvious and we leave it alone for the time being.
c. Finally, for the sake of completion, we look at what happens when the
exponent is 1. We have

(x0 + h)1 = x0 + h

that is, writing in all that “goes without saying”,

= 1x1
0h

0 + 1x0
0h

1

that is, replacing the short hand by the long hand

= 1 • x0

+ 1 • h

So, looking separately at the powers and at the coefficients in the “addition
formula” for (x0 + h)1:
• The procedure for finding the powers would seem to be the same as for

the previous addition formulas:
i. We make a row of 1 copy of x0 with no room for multiplication

signs in-between:
x0

ii. We tack on 1 copy of the row we wrote in step i.
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PASCAL TRIANGLE
parent-entries

x0
x0

iii. Starting with the first–and only– row that we wrote in step ii.,
we replace in that row, the one copy of x0 by a copy of h:

x0
h

• The procedure for finding the coefficients
1 1

is certainly not obvious and we leave it alone for the time being.
3. Putting everything together, the general procedure for constructing

the addition formula for (x0 + h)n would seem to be,
• The procedure for finding the powers seems to be in all cases:

i. We make a row of n copies of x0 with multiplication signs in-
between:

ii. We tack on n copies of the row we got in step i.
iii. Starting with the first of the n rows that we wrote in step ii. and

going down, we replace in each row, starting from the right, one more
copy of x0 by a copy of h than in the preceding row:

• So far, the procedures for the coefficients were not obvious but when we
write them starting with exponent 1 and ending with exponent 3

n← 1 1 1
n← 2 1 2 1
n← 3 1 3 3 1

we can see that we can get each entry in what is called the PASCAL
TRIANGLE by adding its two parent-entries, that is the two entries
just above it.
EXAMPLE 10. The next line in the PASCAL TRIANGLE for n← 4 would be:

n← 3 1 3 3 1
↘ ↙ ↘ ↙ ↘ ↙

n← 4 1 4 6 4 1
We thus have two procedures, one for getting the powers and the other for
getting the coefficients and all that remains is to put them together.
EXAMPLE 11. In order to construct the addition formula for (x0 + h)5, we proceed
as follows:

i. We make a row of 5 copies of x0 with multiplication signs in-between:
x0 • x0 • x0 • x0 • x0

ii. We tack on 5 copies of the row we wrote in step i.
x0 • x0 • x0 • x0 • x0
x0 • x0 • x0 • x0 • x0
x0 • x0 • x0 • x0 • x0
x0 • x0 • x0 • x0 • x0
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x0 • x0 • x0 • x0 • x0

x0 • x0 • x0 • x0 • x0
iii. Starting with the first of the 5 rows that we tacked-on in step ii. and going

down, we replace in each row, starting from the right, one more copy of x0 by a copy
of h than in the preceding row:

x0 • x0 • x0 • x0 • x0
x0 • x0 • x0 • x0 • h
x0 • x0 • x0 • h • h
x0 • h • h • h • h
x0 • h • h • h • h
h • h • h • h • h

iv. We get the coefficients from the PASCAL TRIANGLE:
4. Proving that all this is indeed the case would involve more work than

we are willing to do here and so we will take the following for granted:
THEOREM 1 (BINOMIAL THEOREM). The addition formula for
a binomial of degree n is:

(x0 + h)n = 1
1x
n
0h

0

+ n1x
n−1
0 h+1

+ n(n− 1)
1 · 2 xn−2

0 h+2

+ n(n− 1)(n− 2)
1 · 2 · 3 xn−3

0 h+3

+ . . .

+ n(n− 1)(n− 2) · · · (1)
1 · 2 · 3 · · ·n x0

0h
n

where it is interesting to note that, no matter what n,

n(n− 1)(n− 2) · · · (1)
1 · 2 · 3 · · ·n = 1

because it corresponds to the fact that the rows in the PASCAL TRIAN-
GLE are symmetrical.

5. According to the BINOMIAL THEOREM, when n = 0 we should
have

(x0 + h)0 = x0
0h

0
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slanted rowand since the coefficient 1 goes without saying:

= 1x0
0h

0 = 1

This is of course as it should be but what this says is that the “zeroth”
line in the PASCAL TRIANGLE is 1 so that the “complete” PASCAL
TRIANGLE is:

n← 0 1

n← 1 1 1

n← 2 1 2 1

n← 3 1 3 3 1

n← 4 1 4 6 4 1

n← 5 1 5 10 10 5 1

n← 6 1 6 15 20 15 6 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Usually, though, we do not need the complete addition formulas but

only the first three or, at worst, the first four terms and so using the PAS-
CAL TRIANGLE as we did above would turn out to be a huge waste of
energy.
The key to a more economical way of using the PASCAL TRIANGLE is
to look at the slanted rows and notice that:
• The numbers in the first slanted row are all 1 and they are the coefficients

of the h0 powers in the addition formulas for (x0+h)1, (x0+h)2, (x0+h)3,
(x0 + h)4, (x0 + h)5, (x0 + h)6, etc, which corresponds to the fact that
the coefficient of the h0 power in xn0 is 1 no matter what n.

• The numbers in the second slanted row are 1, 2, 3, 4, 5, 6, . . . and they are
the coefficients of the h+1 powers in the addition formulas for (x0 + h)1,
(x0 + h)2, (x0 + h)3, (x0 + h)4, (x0 + h)5, (x0 + h)6, etc, which shows
that the coefficient of the h+1 power in xn0 is n no matter what n.

• We check that the third slanted row, 1, 3, 6, 10, 15, . . . are the coefficients
of the h+2 powers in the addition formulas for (x0 + h)1, (x0 + h)2,
(x0 + h)3, (x0 + h)4, (x0 + h)5, (x0 + h)6, etc, and we observe that
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cycles
step

the coefficient of the h+2 power in xn0 is the half-product of the two

coefficients to its left and therefore equal to n(n− 1)
2 no matter what n.

EXAMPLE 12. Instead of getting the coefficient of h+2 in the addition formula
for (x0 + h)5 as the sum of its two “parents”, 4 and 6:

n← 4 1 4 6 4 1
↘ ↙

n← 5 1 5 10 10 5 1

we can get the coefficient of h+2 in the addition formula for (x0 + h)5 as the
half-product of the two numbers to its left, 5 and 4:

n← 4 1 4 6 4 1
↘

n← 5 1 5 −→ 10 10 5 1
As a result, we only need, and can construct only, the first two slanted rows
of the PASCAL TRIANGLE.
EXAMPLE 13. In the addition formula for exponent 5, we get the first three coeffi-
cients just by constructing only the first two slanted rows:

n← 0 1
↙ ↘

n← 1 1 1
↙ ↘ ↙

n← 2 1 2
↙ ↘ ↙

n← 3 1 3
↙ ↘ ↙

n← 4 1 4
↙ ↘ ↙ ↘

n← 5 1 5 −→ 10
where 10 is the half-product of the second entry in the last two horizontal rows.

15.3 Division in Descending Exponents

Since decimal numbers are combinations of powers of ten, it should not be
surprising that the procedure for dividing decimal numbers should also work
for polynomials which are combinations of powers of x.

The procedure consists of successive cycles, one for each monomial in
the quotient. During each of these cycles, we go through four steps:

Step I. We find each monomial of the quotient by dividing the first
monomial in the divisor into the first monomial of the previous partial
remainder or, if there is not yet a partial remainder, from the dividend.
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Step II. We find the partial product by multiplying the full divisor by
the monomial of the quotient we found in Step I.

Step III. We find the partial remainder by subtracting the partial prod-
uct we found in Step II from the previous partial remainder or, if there is
not yet a partial remainder, from the dividend.

Step IV. We decide if we want to:
• stop the division,
or
• continue the division and go through another cycle.

EXAMPLE 14. In order to compute −12x3 + 11x2 − 17x+ 1
−3x2 + 5− 2 , we set up the division

of −3x2 + 5− 2 “into” −12x3 + 11x2 − 17x+ 1

−3x2 +5x −2
)
−12x3 +11x2 −17x +1

and we proceed as follows:
CYCLE 1. Step I. We find the first monomial in the quotient by dividing the first

monomial in the divisor, −3x2 , into the first monomial of the dividend, −12x3 ,

which give us −12x3

−3x2 = +4x as first term in the quotient:

−3x2 +5x −2
+4x)
−12x3 +11x2 −17x +1

Step II. We find the first partial product by multiplying the full divisor by the first
monomial in the quotient:

−3x2 +5x −2
+4x)
−12x3 +11x2 −17x +1

First partial product: −12x3 +20x2 −8x
Step III. We find the first partial remainder by subtracting the first partial product
from the full dividend:

−3x2 +5x −2
+4x)
−12x3 +11x2 −17x +1

	 −12x3 +20x2 −8x
But to subtract the first partial product means to add the opposite of the first partial
product to the full dividend:

−3x2 +5x −2
+4x)
−12x3 +11x2 −17x +1

⊕ +12x3 −20x2 +8x
First remainder: +0x3 −9x2 −9x +1

Step IV. We decide if we want to stop or continue the division.
• If we decide to stop the division,

– the quotient of the division is +4x .
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– the remainder of the division is −9x2 − 8x+ 1
If we don’t care about the remainder, we write:

−12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2 = +4x+ [...]

where we write + [...] as a reminder that −12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2 is not

exactly equal to +4x since there was a remainder.
• If we decide to continue the division, we begin a new cycle

CYCLE 2. Step I. We find the second monomial in the quotient by dividing the first
monomial in the divisor, −3x2 , into the first monomial in the first partial remainder,

−9x2 , which gives us −9x2

−3x2 = +3 for the second term of the quotient:

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
Step II. We find the second partial product by multiplying the full divisor by the
second monomial in the quotient:

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
Second partial product: −9x2 +15x −6

Step III. We find the second partial remainder by subtracting the second partial product
from the first partial remainder:

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
	 −9x2 +15x −6

But to subtract the second partial product means to add the opposite of the second partial
product to the first partial remainder:

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
⊕ +9x2 −15x +6

Second remainder: +0x2 −24x +7
Step IV. We decide if we want to stop or continue the division.

• If we decide to stop the division,
– the quotient of the division is +4x+ 3 .
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– the remainder of the division is −24x+ 7
If we don’t care about the remainder, we write:

−12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2 = +4x+ 3 + [...]

where we write + [...] as a reminder that −12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2 is not

exactly equal to +4x+ 3 since there was a remainder.
• If we decide to continue the division, we begin a new cycle

CYCLE 3. Step I. We find the third monomial in the quotient by dividing the first
monomial in the divisor, −3x2 , into the first monomial in the second partial re-

mainder, −24x that is −24x
−3x2 = +8x−1

−3x2 +5x −2
+4x +3 +8x−1)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
+9x2 −15x +6

−24x +7
Step II. We find the third partial product by multiplying the full divisor by the
third monomial in the quotient:

−3x2 +5x −2
+4x +3 +8x−1)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
+9x2 −15x +6

−24x +7
Third partial product: −24x +40 −16x−1

Step III. We find the third partial remainder by subtracting the third partial product
from the first partial remainder:

−3x2 +5x −2
+4x +3 +8x−1)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
+9x2 −15x +6

−24x +7
	 −24x +40 −16x−1

But to subtract the second partial product means to add the opposite of the second partial
product to the first partial remainder:
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−3x2 +5x −2
+4x +3 +8x−1)
−12x3 +11x2 −17x +1
−12x3 +20x2 −8x

−9x2 −9x +1
+9x2 −15x +6

−24x +7
⊕ +24x −40 +16x−1

Third remainder: 0x −33 +16x−1

Step IV. We decide if we want to stop or continue the division.
• If we decide to stop the division,

– the quotient of the division is +4x+ 3 + 8x−1 .
– the remainder of the division is −33 + 16x−1

If we don’t care about the remainder, we write:
−12x3 + 11x2 − 17x+ 1

−3x2 + 5x− 2 = +4x+ 3 + 8x−1 + [...]

where we write + [...] as a reminder that −12x3 + 11x2 − 17x+ 1
−3x2 + 5x− 2 is not

exactly equal to +4x+ 3 + 8x−1 since there was a remainder.
• If we decide to continue the division, we begin a new cycle
Just as, in arithmetic, we need not stop a division when the quotient

reaches a monomial with exponent 0 because we can always divide a mono-
mial into another and we can have negative exponents. In fact, again just
as in arithmetic, there are cases where we absolutely need to go beyond the
exponent 0 and use negative exponents. (See Epilogue.)
EXAMPLE 15. In order to divide −12x3 + 11x2 − 17x+ 4 by −3x2 + 5x− 2 down
to a x−2 monomial, we write (in the anglo-saxon tradition):

−3x2 +5x −2
+4x +3 +8x−1 +10x−2)
−12x3 +11x2 −17x +4
+12x3 −20x2 +8x

−9x2 −9x
+9x2 −15x +6

−24x +10
+24x −40 +16x−1

−30 −16x−1

+30 −50x−1 +20x−2

−66x−1 +20x−2

The quotient is

+4x+ 3 + 8x−1 + 10x−2

and the remainder is
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−66x−1 + 20x−1

15.4 Default Rules for Division

Since mathematicians are lazy,
• mathematicians do not write the + sign in front of the coefficients of

leading monomials,
• mathematicians do not write monomials with 0 coefficient,
and, most dangerously,
• mathematicians want to write only one stage in Step III but there are

two traditions concerning what then to write, as a result, in Step II:
– In the latin tradition, in Step II, we write the partial product, that

is what we get it from the multiplication, and so in Step III, when it
comes to subtracting, we visualize the opposite of the partial product
we wrote in Step II and we oplus what we visualize. The advantage
is that each line is exactly what we get from the previous operation.
EXAMPLE 16.

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −16x +1
−12x3 +20x2 −8x

−9x2 −8x +1
– In the anglo-saxon tradition, we anticipate the subtraction to be done

in Step III and in Step II we write the opposite of the partial product
so in Step III we oplus what we wrote in Step II.
EXAMPLE 17.

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −16x +1
+12x3 −20x2 +8x

−9x2 −8x +1
From now on we will of course follow the anglo-saxon tradition.

EXAMPLE 18. In order to compute 6x3 + 13x2 + 13x+ 7
2x+ 1 , we divide 2x+1 into

6x3 + 13x2 + 13x+ 7:
CYCLE 1. Step I. We find the first monomial in the quotient by short division:

3x2

2x+ 1
)

6x3 + 13x2 + 13x+ 7

Step II. We get the first opposite product by writing the opposite of the result
of the full multiplication
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3x2

2x+ 1
)

6x3 + 13x2 + 13x+ 7
− 6x3 − 3x2

Step III. We get the first remainder by oplussing the first opposite product
3x2

2x+ 1
)

6x3 + 13x2 + 13x+ 7
− 6x3 − 3x2

10x2 + 13x
Step IV. We decide if we want to stop or continue the division

– If we decide to stop the division,
∗ the quotient of the division is +3x+2 .
∗ the remainder of the division is +10x+2 + 13x
If we don’t care about the remainder, we write:

6x3 + 13x2 + 13x+ 7
2x+ 1 = +3x+2 + (...)

where we write + (...) as a reminder that 6x3 + 13x2 + 13x+ 7
2x+ 1 is not

exactly equal to +3x+2 since there was a remainder.
– If we decide to continue the division, we begin a new cycle

CYCLE 2. Step I. We find the second monomial in the quotient by short division:
3x2 + 5x

2x+ 1
)

6x3 + 13x2 + 13x+ 7
− 6x3 − 3x2

10x2 + 13x

Step II. We get the second opposite product by writing the opposite of the
result of the full multiplication

3x2 + 5x
2x+ 1

)
6x3 + 13x2 + 13x+ 7

− 6x3 − 3x2

10x2 + 13x
− 10x2 − 5x

Step III. We get the second remainder by oplussing the fir second st opposite
product
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3x2 + 5x
2x+ 1

)
6x3 + 13x2 + 13x+ 7

− 6x3 − 3x2

10x2 + 13x
− 10x2 − 5x

8x+ 7
Step IV. We decide if we want to stop or continue the division

– If we decide to stop the division,
∗ the quotient of the division is +3x+2 + 5x .
∗ the remainder of the division is +8x+ 7
If we don’t care about the remainder, we write:

6x3 + 13x2 + 13x+ 7
2x+ 1 = +3x+2 + 5x+ (...)

where we write + (...) as a reminder that 6x3 + 13x2 + 13x+ 7
2x+ 1 is not

exactly equal to +3x+2 + 5x since there was a remainder.
– If we decide to continue the division, we begin a new cycle

CYCLE 3. Step I. We find the third monomial in the quotient by short division:
3x2 + 5x + 4

2x+ 1
)

6x3 + 13x2 + 13x+ 7
− 6x3 − 3x2

10x2 + 13x
− 10x2 − 5x

8x+ 7

Step II. We get the third opposite product by writing the opposite of the result
of the full multiplication

3x2 + 5x + 4
2x+ 1

)
6x3 + 13x2 + 13x+ 7

− 6x3 − 3x2

10x2 + 13x
− 10x2 − 5x

8x+ 7
− 8x − 4

Step III. We get the third remainder by oplussing the third opposite product
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3x2 + 5x + 4
2x+ 1

)
6x3 + 13x2 + 13x+ 7

− 6x3 − 3x2

10x2 + 13x
− 10x2 − 5x

8x+ 7
− 8x − 4

3
Step IV. We decide if we want to stop or continue the division

– If we decide to stop the division,
∗ the quotient of the division is +3x+2 + 5x+ 4 .
∗ the remainder of the division is +3
If we don’t care about the remainder, we write:

6x3 + 13x2 + 13x+ 7
2x+ 1 = +3x+2 + 5x+ 4 + (...)

where we write + (...) as a reminder that 6x3 + 13x2 + 13x+ 7
2x+ 1 is not

exactly equal to +3x+2 + 5x+ 4 since there was a remainder.
– If we decide to continue the division, we begin a new cycle

• When writing the partial remainders, we do not write the monomials
beyond those that result from subtracting the partial product.
EXAMPLE 19.

−3x2 +5x −2
+4x +3)
−12x3 +11x2 −16x +1

First opposite partial product: +12x3 −20x2 +8x
First remainder: −9x2 −8x i

Second opposite partial product: +9x2 −15x +6
Second remainder: −23x +7

The danger here is that, when we do the next subtraction, we may sub-
tract from 0 rather than from the monomial that was left unwritten in
the partial remainder.

15.5 Comparison With Arithmetic

The procedure to divide polynomials is in fact a lot simpler than the proce-
dure for dividing in arithmetic:
• There is never any “carryover”
• The first term of each partial remainder always has coefficient 0
• There are no Trials in Step I because, when we divide the first monomial

in the divisor into the first monomial of a partial remainder, we always
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get a coefficient for the corresponding monomial in the quotient and the
worst that can happen is that this coefficient is a fraction.

15.6 Division in Ascending Order Of Exponents

Fortunately, the procedure is exactly the same as in the case of division in
descending order of exponents and so we will just look at an example.

EXAMPLE 20. In order to compute −12 + 23h− h2 − 2h3

−3 + 2h , we divide −3 + 2h into
−12 + 23h− h2 − 2h3:

−3 +2h
+4 −5h −3h2)
−12 +23h −h2 −2h3

First opposite partial product: +12 −8h
First remainder: +15h −h2 −2h3

Second opposite partial product: −15h +10h2

Second remainder: +9h2 −2h3

Third opposite partial product: −9h2 +6h3

Third remainder: +4h3

• If we decide to stop the division,
– the quotient of the division is +4− 5h− 3h2 .
– the remainder of the division is +4h3 . Observe that if we replace the un-

specified numerator h by, say, 0.2, then the remainder is equal to 4 • 0.23 =
4 • 0.008 = 0.032 which is indeed small.

If we don’t care about the remainder, we write:
−12 + 23h− h2 − 2h3

−3 + 2h = +4− 5h− 3h2 + [...]

where we write + [...] as a reminder that −12 + 23h− h2 − 2h3

−3 + 2h is not exactly
equal to +4− 5h− 3h2 since there was a remainder.

• If we were to decide to continue the division, we would begin a new cycle

EXAMPLE 21. In order to divide 2x3 +5x2−6 by 3x−1 we write (in the anglo-saxon
tradition):
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2
3x

2 + 17
9 x + 17

27
3x− 1

)
2x3 + 5x2 − 6
− 2x3 + 2

3x
2

17
3 x

2

− 17
3 x

2 + 17
9 x

17
9 x − 6

− 17
9 x + 17

27
− 145

27

The quotient is

+ 2
3x

2 + 17
9 x+ 17

27

The remainder is

− 145
27

15.7 Graphic Difficulties
Finally, when there is one or more ∞-height bounded input(s), beginners
often encounter difficulties when trying to interpolate smoothly the outlying
graph of a rational function.

The difficulties are caused by the fact that, when we draw the local
graph near ∞ and the local graphs near the ∞-height inputs from the local
input-output rules, we are only concerned with drawing the local graphs
themselves from the local input-output rules. In particular, when we draw
the local graph near ∞ and the local graphs near the ∞-height inputs,
we want to bend them enough to show the concavity but we often end up
bending them too much to interpolate them.

But then, what often happens as a result is that, when we want to
interpolate, the local graphs may not line up well enough for us to interpolate
them (smoothly).
EXAMPLE 22. Given the rational function whose outlying graph was drawn as

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞
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so as to show the concavity. Here is what can happens when we attempt to interpolate

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

Of course, this is absolutely impossible since, according to this global graph, there
would be inputs, such as x0, with more than one output, y1, y2, . . . :

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

x0

y1

y3

y2

But if we unbend the local graphs just a bit as in

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

we have no trouble interpolating:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞
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The way to avoid this difficulty is not to wait until we have to interpolate
but to catch any problem as we draw the local graphs by mentally extending
the local graphs slightly into the transitions.
EXAMPLE 23. Given the rational function whose outlying graph was drawn as

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

so as to show the concavity, we can already see by extending the local graphs just a little
bit into the transitions that this will cause a lot of trouble when we try to interpolate
the local graph:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

So, here, we bend the local graph near ∞ a little bit more and we unbend the local
graphs near the ∞-height inputs a little bit:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

We check again by extending the local graphs just a little bit into the transitions:
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Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞

and indeed now we have no trouble interpolating:

Input
Ruler

Output
Ruler

+∞

+∞

–∞

–∞


