Rational function

Chapter 15

Preview & Algebra Reviews

Rational Degree, 442 — (zo + h)™ when n > 3, 446 — Division in
Descending Exponents, 452 — Default Rules for Division, 457 —
Comparison With Arithmetic, 460 — Division in Ascending Order Of
Exponents, 461 — Graphic Difficulties, 462.

Rational functions are functions whose global input-output rule is of
the form

_ POLYnynm(z)
~ POLYpen(x)

g —2AT RAT (x)

where POLYNym () and POLYpe,(z) stand for two positive-exponent poly-
nomial expressions.
EXAMPLE 1. The function whose global input-output rule is

_ 2.2 _
. TAB TAB(z) = 3x°+4x —7
—5z4 -8

is a rational function in which:
» POLYNum(z)is =322 + 4z — 7
= POLYpen(z)is —5x* — 8

1. This definition of a rational function actually encompasses more func-
tions than might at first appear and we will now look at functions whose
global input-output rule would not seem to qualify them as rational func-
tions but which are in fact rational functions.

a. Occasionally, either one or both of the two polynomial expressions
POLYNum(z) and POLYpe,(x) may happen to be factored.
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EXAMPLE 2. The function whose global input-output rule is

MAB —3x% +4x -7
MAB =
@) = i —sp

is in fact a rational function because
(—=5x* — 8)% = 252% 4 802" + 64
so that

322 44x -7
32244 -7
2528 + 80x% + 64

MAB(z) =

b. A function which outputs a rational expression plus a polynomial
expression is in fact a rational function just like a “mixed number” is in fact
a fraction.

EXAMPLE 3. The function whose global input-output rule is
MAT Tx? —2

T

is in fact a rational function because

223 44 = (—22>+4)-1

—bxr+3
= (=273 4+4). 2%
(Z22744) =3
(=22 +4) - (=bx +3)
o —5z+3
_ +102% — 623 — 20 + 12
N —5x+3
so that
Tx2—2
MAT(z) = 7i5€:+3 24344
_ +722 -2  4+10x* — 623 — 20z + 12
T 5z +3 —5x + 3
_ +102* — 62® + T2? — 20z + 10
o —52+3

c. The requirement that POLYNym(x) and POLYpen(2) be positive-
exponent polynomial expressions is merely intended to normalize things and
is not crucial as global input-output rules that involve negative exponents can
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easily be changed into input-output rules involving only positive-exponent
exponents.

EXAMPLE 4. The function whose global input-output rule is

3z — 2273
o —TAB | RAB(p) = 2T 2T
—bxr+3
is in fact a rational function because
+32% — 2273 +3z? — 2277
~5x+3  —bx+3
3z — 2073 gt
—5z+3 z+3

(+322 —2273) - (a3)
(=5z +3) - (z13)
o +3x° — 2
- —5xd 4 323

so that

+3z5 -2
RAB(v) = =i

2. Rational functions are important for a number of reasons but, es-
sentially, these reasons all derive from the fact that positive-exponent poly-
nomial functions are, in fact, too simple because, since positive-exponent
polynomial functions have no oo-height inputs, positive-exponent polyno-
mial functions are essentially regular positive-exponent power functions with
possibly a few bounded fluctuations thrown in.

By contrast, the graphs of rational functions will come in an almost be-
wildering variety of shapes, essentially because of the possible existence of
oo-height inputs and thus rational functions will turn out to have much more
varied and interesting behaviors.

EXAMPLE 5. Rational functions are extremely important in imaging because rational
functions can have infinite-height inputs and can therefore have bounded inputs with
infinite slope. The reason this is important is that, given a function that outputs a
given color, programs recognize the boundary of objects of that color by looking for
where the slope is very high, that is where the color changes abruptly.

3. Rational functions are to polynomial functions very much what frac-
tions are to whole numbers. And just like fractions are approximated by
decimal numbers, rational functions will be approximated by (Laurent) poly-
nomial functions.
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rational degree 15.1 Rational Degree

Type “D° > 1”7

Type ::DZ < 0: Because the upper degree of polynomial functions is what we used to sort
Type "D° =0 polynomial functions into different types, we now try to extend the idea of
Type “DO — 1777

upper degree to the case of rational functions in the hope that this will also
help us sort rational functions into different types.
Given a rational function whose global input-output rule is

RAT _ POLYNum(x)
r ———— RAT (z) = POLY pon ()

the rational degree of this rational function is the upper degree of POLY Nym ()
minus the upper degree of POLYpey(x):

POLY Num(2)

.Deg. of
Rat.Deg. o POLY pon ()

= UppDeg. of POLYNym(x) — UppDeg. of POLYpen(x)

Thus, the rational degree of a rational function can well be negative.

NOTE. The rational degree is to rational function very much what the size is to
arithmetic fractions in “school arithmetic” which distinguishes fractions according to
the size of the numerator compared to the size of the denominator even though, by
now, the distinctions are only an inconsequential remnant of history..

What happened is that, historically, the earliest arithmetic fractions were “unit
fractions” , that is reciprocals of whole numbers such as one half, one third, one quarter,
etc. Later came "Egyptian fractions”, that is combinations of (distinct) unit fractions,
such as one third and one fifth and one eleventh, etc. A much later development were
the “proper fractions”, also called "vulgar fractions", such as two thirds, three fifths etc.
Later still, came “improper fractions” such as five thirds, seven halves, etc. And finally
“mixed numbers”, such as three and two sevenths. Today, none of these distinctions
matters inasmuch as we treat all fractions in the same manner.

However, while these “school arithmetic” distinctions are based on the size of the
numerator versus the size of the denominator and make no real differences in the way
we handle arithmetic fractions, in the case of rational functions, the above distinction
based on the upper degree of the numerator versus the upper degree of the denominator
will make a difference—even though no major one—in the way we will handle rational
functions of different types.

In fact, by analogy with power functions and for a reason that will appear
shortly, we will separate rational functions into the following four types:

Type “D® > 1” : Rational functions whose rational degree is > 1.
Type “D° < 0” : Rational functions whose rational degree is < 0.
Type “D° = 0” : Rational functions whose rational degree is = 0.
Type “D°® = 17’ : Rational functions whose rational degree is = 1.

Again by analogy with what we did with power functions, we will say that
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o Rational functions of type “>1” and rational functions of type “<0”, regulznj rationa% function
that is rational functions whose rational degree is either > 1 or < 0, are e’;%%%ttl%%al rational
regular rational functions,

o Rational functions of type “= 0” and rational functions of type “= 17,
that is rational functions whose rational degree is either = 0 or = 1, are
exceptional rational functions.

and we will deal separately with regular rational functions and exceptional

rational functions in the last two chapters.

EXAMPLE 6. Find the rational degree of the function DOUGH whose global input-

output rule is

_ +1z* — 62° + 822 + 62— 9

DOUGH
POYSH , DOUGH (z) = TR TG

Since the rational degree is given by

POLYNum(z)

POLYDen(J?) = UppDeg of POLYNum(x) - UPPDeg of POLYDen(.’E)

Rat.Deg. of

and since, here,
» POLYNum(z) = +12* — 623 + 822 + 62 — 9
» POLYpen(z) = +12% — 52 + 6
we get from the definition of the upper degree of a polynomial that:
UppDeg. of + 1z* — 623 + 82 4+ 62 — 9 = Exponent of Highest Term
= Exponent of + 1z*
=4
UppDeg. of + 1z? — 5z + 6 = Exponent of Highest Term
= Exponent of + 1z
=2

so that the rational degree of the rational function DOUGH is:

+1z* — 623 + 822 + 62 —9

T122 — 52 +6 = Exponent of + 1z* — Exponent of + 122

Rat.Deg. of
=4-2
=2

so that DOUGH is an example of a rational function of degree > 1 and therefore of

a regular rational function.

EXAMPLE 7. Find the rational degree of the function M EGH whose global input-
output rule is

2
MEGH = -5+ 6
MEGH =
- S P iy I e
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Since the rational degree is given by

POLY yum (2)

Rat.Deg. of POLYpon(2)

= UppDeg. of POLYNym(x) — UppDeg. of POLYpeyn ()

and since, here,

» POLYNym(z) =+12% — 52+ 6
» POLYpen(x) = +12* — 62° + 822 + 62 — 9
we get from the definition of the upper degree of a polynomial that:

UppDeg. of + 122 — 5z + 6 = Exponent of Highest Term
= Exponent of + 1z
=2
UppDeg. of + 1z* — 622 4 822 + 62 — 9 = Exponent of Highest Term
= Exponent of + 1z
=4

so that the rational degree of the rational function M EGH is:

+122 =52+ 6

6 182 1609 Exponent of + 1z? — Exponent of + 1z*

Rat.Deg. of
& +

=24
=-2

so that M EGH is an example of a rational function of degree < 0 and therefore of a
regular rational function.

EXAMPLE 8. Find the rational degree of the function LEIGH whose global input-
output rule is

LEIGH —172° —z* — 523 — 23z + 4
——— LEIGH =
(z) +8x% — a3 + 422 4+ 132 — 2

Since the rational degree is given by

POLY yum (2)

Rat.Deg. of —ort Num L)
A O B O LY en (@)

= UppDeg. of POLYNym(x) — UppDeg. of POLYpen(x)

and since, here,

» POLYNym(7) = —172° — 2* — 52% — 232 + 4
» POLYpen(v) = +82° — 23 + 42% + 132 — 2
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we get from the definition of the upper degree of a polynomial that:
UppDeg. of — 172 — 2% — 523 — 23z 4+ 4 = Exponent of Highest Term
= Exponent of — 1725
=5
UppDeg. of + 825 — 2% + 422 + 132 — 2 = Exponent of Highest Term
= Exponent of + 8z°
=5
so that the rational degree of the rational function LEIGH is:
—1725 — 2% — 523 — 232 + 4

Rat.Deg. of 8 — 2% 1A 130 2 = Exponent of + 122 — Exponent of + 1z*
=5-5
=0

so that LEIGH is an example of a rational function of rational degree = 0 and therefore
of an exceptional rational function.

EXAMPLE 9. Find the rational degree of the function ROUGH whose global input-
output rule is

ROUGH 1728 —2® —52* — 222 + 3+ 4
—— ROUGH =
(2) +8x% — a3 + 422 4+ 132 — 2

Since the rational degree is given by

POLYNym ()
POLYpen(x)
and since, here,

» POLYynum(z) = —172% — 2® — 52* — 222 + 32 + 4

» POLYpen(z) = +82° — 2% + 42 + 132 — 2

we get from the definition of the upper degree of a polynomial that:

UppDeg. of = UppDeg. of POLY Nym(2z) — UppDeg. of POLYpe, ()

UppDeg. of —172% — 2% — 52* — 222 + 32 + 4 = Exponent of Highest Term
= Exponent of — 1725
=6
UppDeg. of + 8z° — 23 + 422 4+ 132 — 2 = Exponent of Highest Term

= Exponent of + 8z°
=5

so that so that the rational degree of the rational function ROUGH is:

—1728 — 25 — 52t — 222 + 3w + 4

+8x% — 23 4 422 + 13z — 2

Rat.Deg. of = Exponent of + 122 — Exponent of + 1z*

=6-5
=1
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so that ROUGH is an example of a rational function of rational degree = 1 and
therefore of an exceptional rational function.

15.2 Addition Formulas: (z¢+ h)” when n > 3

While we did not investigate polynomial functions of degree higher than 3
we will investigate rational functions that involve power functions of degree
higher than 3 and therefore we need to investigate Addition Formulas for
exponents higher than 3.

1. We already saw two addition formulas:
i. The addition formula for exponent 2 as given in Chapter 10 by THE-
OREM 32 (Addition Formula For Squares):

(2o + ) = 23 + 2x0h + h?

ii. The addition formula for exponent 3 as given in Chapter 12 by THE-
OREM 40 (Addition Formula For Cubes):

(zo + k) = 23 + 3x3h + 3zoh® + B®

which we established both by repeated multiplication and by enlarging the
sides of a square and of a cube of sides zy by a small amount h.
2. In the case of exponents higher than 3, though,
e Repeated-multiplication is going to get rapidly more and more painful
as the exponent goes up,
e We cannot draw pictures in dimentsions higher than 3.
So, in order to find a general procedure for constructing the addition formulas
for (zg + h)? when the exponent n is higher than 3, we will first try to look
for a pattern in each one of the above two addition formulas without letting
anything “go without saying” and see what particular procedure would give
each one of them.
a. When the exponent is 3, we have:

(zo + h)® = a3 + 3x3h + 3xoh® + h®
that is, writing in all that “goes without saying”,
= 1zd?h° + 3z At + 3o AT + 1afRT?
that is, replacing the short hand by the long hand

= lexgexyex
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+3exgexyeh
+3exgeheh
+1leheheh

So, looking separately at the powers and at the coefficients in the addition
formula for (z¢ + h)3:
e The procedure for finding the powers would seem to be:
i. We make a row of 3 copies of zy with multiplication signs in-
between:
To®XTo®XI)
ii. We tack on 3 copies of the row we wrote in step i.
To®XTo® I
To®XTo® X
To®TLo®XI)
To®To® X
iii. Starting with the first of the 3 rows that we tacked-on in step
ii. and going down, we replace in each row, starting from the right, one
more copy of xg by a copy of h than in the preceding row:
To®Xo®XI)
Toe®Xpe h
zoe® h eh
heheh
e The procedure for finding the coefficients
1 3 3 1
is certainly not obvious and we leave it alone for the time being.
b. When the exponent is 2, we have

(zo + h)? = a3 + 2x0h + h?
that is, writing in all that “goes without saying”,
= 123h° + 2z{ht + 12002
that is, replacing the short hand by the long hand

= 1ox00x0
+2ex90h
+1leheh

So, looking separately at the powers and at the coefficients in the addition
formula for (zo + h)*:
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e The procedure for finding the powers would seem to be the same as for
the previous addition formula:
i. We make a row of 2 copies of zg with multiplication signs in-

between:
T ® X
ii. We tack on 2 copies of the row we wrote in step i.
T ® X
o ® X
o ® o

iii. Starting with the first of the 2 rows that we tacked-on in step
ii. and going down, we replace in each row, starting from the right, one
more copy of xg by a copy of h than in the preceding row:

To ® X

Toe® h

h e h
e The procedure for finding the coefficients
1 2 1

is certainly not obvious and we leave it alone for the time being.
c. Finally, for the sake of completion, we look at what happens when the
exponent is 1. We have

(zo+h) =x0+h
that is, writing in all that “goes without saying”,
= 1z{h° 4 12n!
that is, replacing the short hand by the long hand

= 101‘0
+1leh

So, looking separately at the powers and at the coefficients in the “addition
formula” for (zg + h)':
e The procedure for finding the powers would seem to be the same as for
the previous addition formulas:
i. We make a row of 1 copy of g with no room for multiplication
signs in-between:
T
ii. We tack on 1 copy of the row we wrote in step i.
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PASCAL TRIANGLE

o
parent-entries

To

iii. Starting with the first—and only— row that we wrote in step ii.,
we replace in that row, the one copy of zg by a copy of h:

T
h
e The procedure for finding the coefficients
1 1
is certainly not obvious and we leave it alone for the time being.
3. Putting everything together, the general procedure for constructing
the addition formula for (xg + h)"™ would seem to be,
e The procedure for finding the powers seems to be in all cases:

i. We make a row of n copies of xg with multiplication signs in-
between:

ii. We tack on n copies of the row we got in step i.

iii. Starting with the first of the n rows that we wrote in step ii. and
going down, we replace in each row, starting from the right, one more
copy of xg by a copy of h than in the preceding row:

e So far, the procedures for the coefficients were not obvious but when we
write them starting with exponent 1 and ending with exponent 3

n«—1 1 1
n «— 2 1 2 1
n<«— 3 1 3 3 1

we can see that we can get each entry in what is called the PASCAL
TRIANGLE by adding its two parent-entries, that is the two entries
just above it.

EXAMPLE 10. The next line in the PASCAL TRIANGLE for n «— 4 would be:
n+«—3 1 3 3 1

NSNS S
n«—4 1 4 6 4 1
We thus have two procedures, one for getting the powers and the other for
getting the coefficients and all that remains is to put them together.

EXAMPLE 11. In order to construct the addition formula for (zg + h)®, we proceed
as follows:
i. We make a row of 5 copies of xg with multiplication signs in-between:
To®@XLpop®Xy®ry® I
ii. We tack on 5 copies of the row we wrote in step i.
To®To®Xy®Ty® XL
To®Top®Xy®Ty® T
To®To®Xy®To® XL
To®To®Xy®To® XL
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To®To®Ly®X)® X
To®x)®ToeLy® X
iii. Starting with the first of the 5 rows that we tacked-on in step ii. and going
down, we replace in each row, starting from the right, one more copy of xy by a copy

of h than in the preceding row:
To ® Lo ® T e Ty e Ly

Toexrpexpexrge h
Toexgexpye heh
Toehe heheh
zo® heheheh
heheheheh
iv. We get the coefficients from the PASCAL TRIANGLE:
4. Proving that all this is indeed the case would involve more work than
we are willing to do here and so we will take the following for granted:

THEOREM 1 (BINOMIAL THEOREM). The addition formula for

a binomial of degree n is:

1
(xo +h)" = Imgho
4 Dpn-1pH

%0
n(:& _;l)xg—%“
n n(n 112) (7”;— 2)958’31#3
+ ...
L R TR

where it is interesting to note that, no matter what n,

n(n—l)(n—2)-~(1):1
1-2:3---n

because it corresponds to the fact that the rows in the PASCAL TRIAN-

GLE are symmetrical.
5. According to the BINOMIAL THEOREM, when n = 0 we should

have

(zo + h)? = 2)h°
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and since the coefficient 1 goes without saying: slanted row
=120n° =1
This is of course as it should be but what this says is that the “zeroth”

line in the PASCAL TRIANGLE is 1 so that the “complete” PASCAL
TRIANGLE is:

n«—0 1

n«— 1 1 1

n « 2 1 2 1

n«— 3 1 3 3 1

n«—4 1 4 6 4 1

n <5 1 ) 10 10 ) 1

n <« 6 1 6 15 20 15 6 1

6. Usually, though, we do not need the complete addition formulas but
only the first three or, at worst, the first four terms and so using the PAS-
CAL TRIANGLE as we did above would turn out to be a huge waste of
energy.

The key to a more economical way of using the PASCAL TRIANGLE is
to look at the slanted rows and notice that:

e The numbers in the first slanted row are all 1 and they are the coefficients
of the h? powers in the addition formulas for (xo+h)!, (zo+h)?, (zo+h)3,
(w0 + h)*, (zo + h)5, (w0 + h)®, etc, which corresponds to the fact that
the coefficient of the h® power in x¥ is 1 no matter what n.

e The numbers in the second slanted row are 1,2,3,4,5,6, ... and they are
the coefficients of the ™! powers in the addition formulas for (x¢ + h)*,
(zo + h)?, (xo + h)3, (zo + k)L, (w0 + h)®, (zo + h)5, ete, which shows
that the coefficient of the h™! power in z}} is n no matter what n.

¢ We check that the third slanted row, 1, 3,6, 10,15, ... are the coefficients
of the h™2 powers in the addition formulas for (x¢ + h)!, (2o + h)?,
(zo + )3, (x0 + h)*, (zo + h)5, (w0 + h)®, etc, and we observe that
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the coefficient of the h™2 power in xy is the half-product of the two

n(n —1)
2

EXAMPLE 12. Instead of getting the coefficient of 272 in the addition formula
for (zo + h)° as the sum of its two “parents”, 4 and 6:

n <« 4 1 4 6 4 1

NS
n 5 1 5 10 10 5 1

coefficients to its left and therefore equal to no matter what n.

we can get the coefficient of A2 in the addition formula for (zo + h)® as the
half-product of the two numbers to its left, 5 and 4:
n+«—4 1 4 6 4 1

N
n+«>5 1 5 — 10 10 5 1

As a result, we only need, and can construct only, the first two slanted rows
of the PASCAL TRIANGLE.

EXAMPLE 13. In the addition formula for exponent 5, we get the first three coeffi-
cients just by constructing only the first two slanted rows:

n<+—0 1
VRN
n«—1 1 1
s N\ S
n«— 2 1 2
S N S
n«— 3 1 3
7 NS
n+«—4 1 4
SN N

where 10 is the half-product of the second entry in the last two horizontal rows.

15.3 Division in Descending Exponents

Since decimal numbers are combinations of powers of TEN, it should not be
surprising that the procedure for dividing decimal numbers should also work
for polynomials which are combinations of powers of x.

The procedure consists of successive cycles, one for each monomial in
the quotient. During each of these cycles, we go through four steps:

Step I. We find each monomial of the quotient by dividing the first
monomial in the divisor into the first monomial of the previous partial
remainder or, if there is not yet a partial remainder, from the dividend.
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Step II. We find the partial product by multiplying the full divisor by
the monomial of the quotient we found in Step I.

Step III. We find the partial remainder by subtracting the partial prod-
uct we found in Step II from the previous partial remainder or, if there is
not yet a partial remainder, from the dividend.

Step IV. We decide if we want to:

o stop the division,
or
e continue the division and go through another cycle.

—1223 + 1122 — 17 1
EXAMPLE 14. In order to compute v T
—31% +5—2

of =322 +5—2 "into" —12z2% + 1122 — 17z + 1

, we set up the division

—32% +5x -2 ) —12z%  +1127 17Tz 41

and we proceed as follows:
CYCLE 1. Step |. We find the first monomial in the quotient by dividing the first

monomial in the divisor, —3x2 , into the first monomial of the dividend, —12x*

19,3
which give us a2 = +4x as first term in the quotient:
—3x
+4z
—3z% +5x -2 ) —124° +112% =17z +1

Step Il. We find the first partial product by multiplying the full divisor by the first
monomial in the quotient:

+4x
=322 +5x —2 ) —122° 4112?17z +1
First partial product: —1223 +2022 —8x

Step Ill. We find the first partial remainder by subtracting the first partial product
from the full dividend:

+4x
—32? +5r -2 ) —122%  +11z? 1Tz +1
S) —1223 +202? —8x

But to subtract the first partial product means to add the opposite of the first partial
product to the full dividend:

+4x
—322 45z —2 ) —1223 +1122 —17x +1
®  +1228 —20z2 +8z
First remainder: +023 —9z2 —9z +1

Step IV. We decide if we want to stop or continue the division.
= If we decide to stop the division,
— the quotient of the division is +4x .
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— the remainder of the division is —9z2 — 8z + 1
If we don't care about the remainder, we write:

—1222% + 1122 — 17z + 1
322 + 51— 2 = 55 5 oo

. . —1223 + 1122 — 17z + 1
where we write 4+ [...] as a reminder that
—322 + 5z — 2

is not
exactly equal to +4x since there was a remainder.

= If we decide to continue the division, we begin a new cycle
CYCLE 2. Step I. We find the second monomial in the quotient by dividing the first

monomial in the divisor, —3x?2 , into the first monomial in the first partial remainder,
L —9x? .
—922 , which gives us 32 = +3 for the second term of the quotient:

-3z

+4x +3
—3z? 45z -2 ) —122° 4117 17z +1
—1223 +2022 —8x
—9z2 -9z +1
Step Il. We find the second partial product by multiplying the full divisor by the
second monomial in the quotient:
+4x +3
=3z +5x —2 ) —122° 4117 17z +1
—1223 +2022 —8x
—922 —9zx +1
Second partial product: —9z2 +15x —6
Step Il1l. We find the second partial remainder by subtracting the second partial product
from the first partial remainder:
+4x +3
—3z% 45z -2 ) —122°  +1la®  —1Tz 41
—1223 +2022 —8x
—92.2 —9z +1
o —9x2 +15x —6

But to subtract the second partial product means to add the opposite of the second partial
product to the first partial remainder:

+4x +3
=3z 45z —2 ) —122°  +1la®  —1Tx 41
—1223 +2022 —8x
—927 -9z +1
® 4922 —15x +6
Second remainder: +022 —24x +7

Step IV. We decide if we want to stop or continue the division.
= |If we decide to stop the division,

— the quotient of the division is +4xz + 3 .
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— the remainder of the division is —24x + 7
If we don't care about the remainder, we write:
—1223 + 1122 — 17z + 1

—322 452 —2

=+4x+3+[..]

—1223 + 1122 — 17z + 1

—322 + 5z — 2
exactly equal to +4x + 3 since there was a remainder.
= |f we decide to continue the division, we begin a new cycle

CYCLE 3. Step I. We find the third monomial in the quotient by dividing the first
monomial in the divisor, —3x? , into the first monomial in the second partial re-

where we write + [...] as a reminder that

is not

—24
mainder, —24x that is L P
—3z2

+4x +3 +8z~1

=3z +5x -2 ) —122% 4112 17z +1
—1223 +2022 —8x
—92? —9r  +1
+922 —152 +6
—24x +7

Step Il. We find the third partial product by multiplying the full divisor by the
third monomial in the quotient:

+4x +3 +8z~1

=322 +5x —2 ) —122° 4117 17z +1
—1223 +2022 —8x
—9z2 —9z +1
+922 —15x +6
—24x +7
Third partial product: —24x 440 —162~1

Step Ill. We find the third partial remainder by subtracting the third partial product
from the first partial remainder:

+4x +3 +8z~1

—32% 45z =2 ) —122° 4112  —17z  +1
—1223 +2022 —8z
—92? —9x +1
+9x2 —15x +6
—24x +7
o —24z  +40  —16z7!

But to subtract the second partial product means to add the opposite of the second partial

product to the first partial remainder:
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+4zx +3 +8z~1

-3z 45z -2 ) —122°  +1la? 17z +1
—1223 +2022 —8x
—9z22 —9z +1
+922 —15z +6
—24zx +7
@ +24x  —40 +16z~1
Third remainder: 0x —33 +162~ 1

Step IV. We decide if we want to stop or continue the division.
= |f we decide to stop the division,
— the quotient of the division is +4x +3 + 8z~ ! .
— the remainder of the division is —33 + 162!
If we don't care about the remainder, we write:
—1223% + 1122 — 17z + 1

=14 =1 .
Y — +4z + 3+ 8z +[..]

_ _ —122% + 1122 — 172 + 1
where we write + [...] as a reminder that is not
—322 4+ 5z — 2
exactly equal to +4z + 3 + 8z~ ! since there was a remainder.
= If we decide to continue the division, we begin a new cycle
Just as, in arithmetic, we need not stop a division when the quotient

reaches a monomial with exponent 0 because we can always divide a mono-
mial into another and we can have negative exponents. In fact, again just
as in arithmetic, there are cases where we absolutely need to go beyond the
exponent 0 and use negative exponents. (See Epilogue.)
EXAMPLE 15. In order to divide —1223 + 1122 — 172 + 4 by —322 4+ 52 — 2 down
to a =2 monomial, we write (in the anglo-saxon tradition):

+4zr 43 +8z~! +10x7?

-3z 45z —2 ) —122°  +11a?  —17Tz  +4
+122°  —202? +8z
—9x2 —9x
+922 —15x +6
—24x 410
+24z  —40 +16z7!
-30 —16x7 1

+30 —50z"! 42022
—66z~T 20z~ 2

The quotient is

A4z +3+ 8z~ + 10z~ 2

and the remainder is
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—662~1 + 202!

15.4 Default Rules for Division

Since mathematicians are lazy,

o mathematicians do not write the + sign in front of the coeflicients of
leading monomials,

¢ mathematicians do not write monomials with 0 coefficient,

and, most dangerously,

o mathematicians want to write only one stage in Step III but there are
two traditions concerning what then to write, as a result, in Step II:

— In the latin tradition, in Step II, we write the partial product, that
is what we get it from the multiplication, and so in Step III, when it
comes to subtracting, we visualize the opposite of the partial product
we wrote in Step II and we oplus what we wvisualize. The advantage
is that each line is exactly what we get from the previous operation.

EXAMPLE 16.
+4x +3
—3z% 452 =2 ) —122°  +11a?  —16z  +1
—1223 42022 —8x

—922 —8x +1
— In the anglo-sazon tradition, we anticipate the subtraction to be done
in Step III and in Step II we write the opposite of the partial product
so in Step III we oplus what we wrote in Step II.

EXAMPLE 17.
+4x +3
—322 +5z —2 ) —1223 +1122 —162 +1
+1223 —20z2 +8x

—9z2 —8x +1
From now on we will of course follow the anglo-sazon tradition.

623 4+ 1322 + 13 7
EXAMPLE 18. In order to compute o e , we divide 22+ 1 into

2z +1
623 + 1322 + 132 + 7:
CYCLE 1. Step I. We find the first monomial in the quotient by short division:
3z

20 +1) 62+ 1322 + 13z +7

Step Il. We get the first opposite product by writing the opposite of the result
of the full multiplication
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322
20 41) 62+ 132% + 13z +7
— 62% — 322

Step Ill. We get the first remainder by oplussing the first opposite product

32
20 41) 62+ 132% + 13z +7
— 623 — 322
1022 + 13z

Step IV. We decide if we want to stop or continue the division
— If we decide to stop the division,

* the quotient of the division is +3z12 .

* the remainder of the division is +10z12 + 13z

If we don't care about the remainder, we write:
623 + 1322 + 13z + 7

= +3z12
2¢ + 1 T 4 ()

. . 623 + 1322 + 132+ 7 .
where we write 4+ (...) as a reminder that et 1 is not
x

exactly equal to +3z72 since there was a remainder.
— If we decide to continue the division, we begin a new cycle
CYCLE 2. Step l. We find the second monomial in the quotient by short division:

3z? +5x
2x + 1) 623 + 1322 + 132 + 7
— 6x° — 322
1022 + 13z

Step Il. We get the second opposite product by writing the opposite of the
result of the full multiplication

3x2 +5x
20+1) 62°+ 1322 + 13z + 7
— 623 — 322
1022 4 13z
— 1022 —b5x

Step Ill. We get the second remainder by oplussing the fir second st opposite
product
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3z +5x
20 4+1) 62+ 1327 + 13z +7
—62% — 322
1022 4 13z
— 1022 — 5z
8xr 47

Step IV. We decide if we want to stop or continue the division
— If we decide to stop the division,

* the quotient of the division is +32%2 + 52 .
* the remainder of the division is +8x + 7
If we don't care about the remainder, we write:
623 + 1322 + 13z + 7
2 + 1

=+3z2 + 52+ (...)

. ) 623 + 1322 + 132+ 7 .
where we write + (...) as a reminder that e 1 is not
x

exactly equal to +3x2 + 5z since there was a remainder.
— If we decide to continue the division, we begin a new cycle
CYCLE 3. Step I. We find the third monomial in the quotient by short division:

322 +5r+4
2x + 1) 623 4+ 1322 + 132+ 7
— 623 — 322
1022 + 132
—10z% —b5z
8+ 7

Step Il. We get the third opposite product by writing the opposite of the result
of the full multiplication
322 +5x+4
204+1) 62°+ 132> + 132 +7
—62% — 322
1022 4 13z
— 1022 — 5z

8xr+7
—8r —4

Step IIl. We get the third remainder by oplussing the third opposite product
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322 +5z+4
20 41) 62+ 132% + 13z +7
—62% — 322
1022 4 132
— 1022 -5z
8xr + 7
—8r —4
3

Step IV. We decide if we want to stop or continue the division
— If we decide to stop the division,

* the quotient of the division is +3xz12 + 5z +4 .
x the remainder of the division is +3
If we don't care about the remainder, we write:
6% + 1322 + 132 + 7
2z + 1

=43z +5x+4+(...)

. _ 62° + 1322 + 132 + 7
where we write + (...) as a reminder that 2ot 1 is not
x

exactly equal to +3212 4 5z + 4 since there was a remainder.
— If we decide to continue the division, we begin a new cycle

e When writing the partial remainders, we do not write the monomials
beyond those that result from subtracting the partial product.
EXAMPLE 19.

+4x +3
—32% 45z —2 ) —122°  +11z*  —16z  +1
First opposite partial product: +1223 —2022 +8z
First remainder: —9z2 —8z
Second opposite partial product: +922 —15z +6
Second remainder: —23x +7

The danger here is that, when we do the next subtraction, we may sub-
tract from O rather than from the monomial that was left unwritten in
the partial remainder.

15.5 Comparison With Arithmetic

The procedure to divide polynomials is in fact a lot simpler than the proce-

dure for dividing in ARITHMETIC:

e There is never any “carryover”

e The first term of each partial remainder always has coefficient 0

e There are no Trials in Step I because, when we divide the first monomial
in the divisor into the first monomial of a partial remainder, we always
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get a coefficient for the corresponding monomial in the quotient and the
worst that can happen is that this coefficient is a fraction.

15.6 Division in Ascending Order Of Exponents

Fortunately, the procedure is exactly the same as in the case of division in
descending order of exponents and so we will just look at an example.

—12 +23h — h? — 2h3
EXAMPLE 20. In order to compute + , we divide —3 4+ 2h into

-3+ 2h
—12 + 23h — h? — 2h3:

+4 —5h —3h2

-3+2h ) —12  +23h  —h* = —2h3
First opposite partial product: +12 —8h
First remainder: +15h —h? —2h3
Second opposite partial product: —15h  +10h?

Second remainder: +9h? —2h3
Third opposite partial product: —9h? +6h3
Third remainder: +4h3

= If we decide to stop the division,

— the quotient of the division is +4 — 5h — 3h2 .
— the remainder of the division is +4h3 . Observe that if we replace the un-
specified numerator h by, say, 0.2, then the remainder is equal to 4 ¢ 0.23 =

4 ¢ 0.008 = 0.032 which is indeed small.
If we don't care about the remainder, we write:
—12 4+ 23h — h2 — 2h3
-3+ 2h

= +4—5h —3h2 +[..]

—12 +23h — h? — 2h3

-3+ 2h
equal to +4 — 5h — 3h? since there was a remainder.

= |If we were to decide to continue the division, we would begin a new cycle

where we write 4+ [...] as a reminder that

is not exactly

EXAMPLE 21. In order to divide 22 + 522 — 6 by 3z — 1 we write (in the anglo-saxon
tradition):
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2.2 4 17 17
307+ 9T + 5%

3:571) 2z3  + 5z? —6
— 253 4 2,2
=

fﬁz2+ﬁx

%x —6

I, 1t

45

27

The quotient is
300+ Fo B
The remainder is

_ 145
27

15.7 Graphic Difficulties

Finally, when there is one or more oo-height bounded input(s), beginners
often encounter difficulties when trying to interpolate smoothly the outlying
graph of a rational function.

The difficulties are caused by the fact that, when we draw the local
graph near oo and the local graphs near the co-height inputs from the local
input-output rules, we are only concerned with drawing the local graphs
themselves from the local input-output rules. In particular, when we draw
the local graph near oo and the local graphs near the oo-height inputs,
we want to bend them enough to show the concavity but we often end up
bending them too much to interpolate them.

But then, what often happens as a result is that, when we want to
interpolate, the local graphs may not line up well enough for us to interpolate
them (smoothly).

EXAMPLE 22. Given the rational function whose outlying graph was drawn as

Output
Ru/eg\ N !
+00 / ! / !
T LI
I I
I I
I I
I I
! / !/
—0 | |
! ! < /nput
Eal
—0 Lo e
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so as to show the concavity. Here is what can happens when we attempt to interpolate

Outout
Rule, T '
i
! L/
-
A
!
| (A
! / ! /
—© L.
o S /nput
S +oo, Ruler

Of course, this is absolutely impossible since, according to this global graph, there

would be inputs, such as x(, with more than one output, y1, yo, ...:

Outout
Rule ' '
S|
T T
V3 | |
Y2 PAL
aE
1 i i
! / ! /
—o0 i
Lo o Inout
—o X0 +Oo,ﬁ’z//e/
But if we unbend the local graphs just a bit as in
Output
Rules ' '
A b
1
I I
I I
I I
I I
!l !l
—o0 [
[ . /nout
_o +Oo,ﬁu/e/
we have no trouble interpolating:
Output
Ruler i :
JrooA I! ,'
L Ly R
I I
I I
I I
I I
!l !l
—o0 [
! ! < /nput
o +oo’/?u/e/
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The way to avoid this difficulty is not to wait until we have to interpolate
but to catch any problem as we draw the local graphs by mentally extending
the local graphs slightly into the transitions.

EXAMPLE 23. Given the rational function whose outlying graph was drawn as

Output
Rule; ' '
+o0 /! / !
T T
I I
—_— 1=
I I
I I
¥
—0 | |
! ! >//7put
0 4o e

so as to show the concavity, we can already see by extending the local graphs just a little
bit into the transitions that this will cause a lot of trouble when we try to interpolate
the local graph:

Output
Rule; ' '
+o0 / ! / !
T T
I I
—_—1 i1 ==
I I
I I
!/ !
—00 1 |
>//7pu1‘
—» 4o e

So, here, we bend the local graph near oo a little bit more and we unbend the local
graphs near the oco-height inputs a little bit:

Output
Rule, F TR
T T
I I
SO D B
I I
I I
![.-": !I.-":
—o0 [
! ! >//7pu1‘
—0 4o e

We check again by extending the local graphs just a little bit into the transitions:
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Outout
Rules ' '
+o0 I! ,!
T T
hl
— o1 =
.
1|
!’ !,
—o0 [
[ < /nout
—o0 +CX),RU/e/
and indeed now we have no trouble interpolating:
Output
Rule ' q
+00 I! ,!
T T
i
— 1 =
.
T
!l !l
—o0 [
! ! . /nout
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