III-1. Given the function \(ROCCO \) specified by the global input-output rule
\[
x \xrightarrow{ROCCO} ROCCO(x) = \frac{x^2 + 4}{x^2 - 4}
\]
find the approximate local input-output rule of \(ROCCO \) near \(\infty \) for concavity-sign.

III-2. Given the function \(RILAH \) specified by the global input-output rule
\[
x \xrightarrow{RILAH} RILAH(x) = \frac{-4x + 1}{+12x^4 - x^3 + 6}
\]
find the Height sign of \(RILAH \) near \(\infty \).

III-3. Given the function \(ROLLO \) specified by the global input-output rule
\[
x \xrightarrow{ROLLO} ROLLO(x) = \frac{x + 1}{x^3 - 1}
\]
find Slope sign of \(ROLLO \) near \(\infty \).

III-4. Given the function \(REDUX \) whose global input-output rule is
\[
x \xrightarrow{REDUX} REDUX(x) = \frac{x - 1}{x^3 - 8}
\]
find the local graph of \(REDUX \) near \(\infty \).

III-5. Given the function \(ROAR \) specified by the global input-output rule
\[
x \xrightarrow{ROAR} ROAR(x) = \frac{x^2 + 1}{x^2 - 1}
\]
find the local graph of \(ROAR \) near \(\infty \).

III-6. Given the function \(RATON \) specified by the global input-output rule
\[
x \xrightarrow{RATON} RATON(x) = \frac{x - 1}{x^3 - 8}
\]
find the approximate input-output local rule for graph near +2.

III-7. Given the function \(RORY \) specified by the global input-output rule
\[
x \xrightarrow{RORY} RORY(x) = \frac{-x^2}{x^2 - 4}
\]
find the local graph of \(RORY \) near +2.

III-8. Given the function \(RAMOS \) specified by the global input-output rule
\[
x \xrightarrow{RAMOS} RAMOS(x) = \frac{x^2 - 5}{(x - 1)^2}
\]
find the Concavity-sign of \(RAMOS \) near +1.
III-9. Given the function $REILL$ specified by the global input-output rule
\[x \xrightarrow{REILL} REILL(x) = \frac{x^3 - 10}{x^3 - 8} \]
fnd the Slope sign of $REILL$ near $+2$.

III-10. Given the function $RURAL$ specified by the global input-output rule
\[x \xrightarrow{RURAL} RURAL(x) = \frac{x^2 - 5}{(x - 1)^2} \]
fnd the Height sign of $RURAL$ near $+1$.

III-11. Given the function $RADON$ whose global input-output rule is
\[x \xrightarrow{RADON} RADON(x) = \frac{x - 1}{x^3 - 8} \]
fnd the approximate local input-output rule near $+1$ for graph.

III-12. Given the function $REMY$ specified by the global input-output rule
\[x \xrightarrow{REMY} REMY(x) = \frac{-x^2 + 9}{x^2 - 6} \]
fnd the local graph near $+3$.

III-13. Given the function $RAYON$ whose global rule is
\[x \xrightarrow{RAYON} RAYON(x) = \frac{x - 15}{x^3 - 8} \]
fnd the approximate local input-output rule near $+1$ for graph.

III-14. Given the function $RARA$ specified by the global input-output rule
\[x \xrightarrow{RARA} RARA(x) = \frac{x^3 - 4}{x^2 - 4} \]
fnd the local graph of $RARA$ near $+1$.

III-15. Given the function $RHEA$ specified by the global input-output rule
\[x \xrightarrow{RHEA} RHEA(x) = \frac{(x - 2)(x - 1)}{x^2 - 9} \]
fnd the ∞-height inputs of $RHEA$.

III-16. Given the function $JEAN$ whose global input-output rule is
\[x \xrightarrow{JEAN} JEAN(x) = \frac{x^3 + 8}{x} \]
what is the answer to the Essential Question?

III-17. Given the function $RHUMA$ specified by the global input-output rule
\[x \xrightarrow{RHUMA} RHUMA(x) = \frac{(x - 2)(x - 1)}{x^2 - 9} \]
locate the 0-height input(s) if any.
III-18. Given the function $RETA$ specified by the global input-output rule
\[
x \xrightarrow{RETA} RETA(x) = \frac{x - 1}{x^3 - 8}
\]
how many Concavity-sign change inputs does $RETA$ have?

III-19. Given the function $REBA$ specified by the global input-output rule
\[
x \xrightarrow{REBA} REBA(x) = \frac{x^2 - 4}{x}
\]
how many Height-sign change inputs does $REBA$ have?

III-20. Given the function $RHINO$ specified by the global input-output rule
\[
x \xrightarrow{RHINO} RHINO(x) = \frac{x^2}{x^2 - 4}
\]
for which input(s), if any, is the output of $RHINO$ positive?