10-1. Given the function $DAIK$ specified by the global input-output rule

$$x \xrightarrow{DAIK} DAIKI(x) = \frac{4}{3}x + 6$$

find Slope $DAIK$, that is the slope of all local graphs of $DAIK$.

10-2. Let f be the affine function specified by the initial conditions:

$$\begin{align*}
\text{AND} & \quad \text{Height } f \mid_{-8} = +6 \\
& \quad \text{Slope } f \mid_{-2} = +\frac{3}{4}
\end{align*}$$

find the global input-output rule that specifies f.

10-3. Let f be the affine function specified by the boundary conditions:

$$\begin{align*}
\text{AND} & \quad f(x) \mid_{x \leftarrow +2} = +1 \\
& \quad f(x) \mid_{x \leftarrow +5} = -8
\end{align*}$$

find Slope f, that is the slope of the global graph that specifies f.

10-4. Let $A_{a,b}$ be the affine function $A_{a,b}$ specified by the fact that:

$$\begin{align*}
\text{AND} & \quad A_{a,b}(+4) = +3 \\
& \quad A_{a,b}(-6) = +8
\end{align*}$$

find the global input-output rule of $A_{a,b}$.
10-5. Let f be the function affine function specified by the boundary conditions:

\[
\text{AND } \begin{cases}
\text{Height } f \mid_{+5} = +10 \\
\text{Height } f \mid_{-5} = +4
\end{cases}
\]

find the global input-output rule that specifies f.

10-6. Let f be the function function specified by the global rule:

\[
x \xrightarrow{f} f(x) = \frac{3}{2}x - 3
\]

find its global graph.

10-7. Let f be the function specified by the global quantitative graph

![Global Quantitative Graph](image)

find the global input-output rule that specifies f.

10-8. Let f be the function specified by the global input-output rule

\[
x \xrightarrow{f} f(x) = -5.6x - 16.8
\]

find the input(s), if any, for which the function f returns positive outputs.