13-1. Let \(f \) be the function specified by the global input-output rule
\[
x \mapsto f(x) = +26x^3 - 45.52x^2 - 179.54x - 15.82
\]
Determine:

\(i. \) The local input-output rule of \(f \) near \(\infty \)
\(ii. \) The local graph of \(f \) near \(\infty \)
\(iii. \) The Height-sign of \(f \) near \(\infty \)
\(iv. \) The Slope-sign of \(f \) near \(\infty \)
\(v. \) The Concavity-sign of \(f \) near \(\infty \)

13-2. Let \(f \) be the function specified by the global input-output rule
\[
x \mapsto f(x) = -4x^3 + 3x^2 - 2x + 1
\]
Determine:

\(i. \) The local input-output rule of \(f \) near \(-2\)
\(ii. \) The local graph of \(f \) near \(-2\)
\(iii. \) The Height-sign of \(f \) near \(-2\)
\(iv. \) The Slope-sign of \(f \) near \(-2\)
\(v. \) The Concavity-sign of \(f \) near \(-2\)
13-3. Let f be the function specified by the global input-output rule:

$$x \xrightarrow{f} f(x) = x^3 - 3x^2 - 9x + 7$$

Determine:

i. The local input-output rule of f near $+3$

ii. The local graph of f near $+3$

iii. The Height-sign of f near $+3$

iv. The Slope-sign of f near $+3$

v. The Concavity-sign of f near $+3$

13-4. Let f be the function specified by the global input-output rule:

$$x \xrightarrow{f} f(x) = x^3 + 6x^2 + x - 5$$

Determine:

i. The local input-output rule of f near -2

ii. The local graph of f near -2

iii. The Height-sign of f near -2

iv. The Slope-sign of f near -2

v. The Concavity-sign of f near $+3$