5-1. Let the function f be specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -123.73x^6 \]
and given inputs that are $-$large, what is the sign-size of the outputs?

5-2. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -324.08^{-7} \]
and given inputs that are $+$large, what is the sign-size of the outputs?

5-3. Given the function HAT that is specified by the global input-output rule
\[x \xrightarrow{HAT} HAT(x) = -295.29x^6 \]
and given inputs that are $+$small, what is the sign-size of the outputs?

5-4. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -671.67x^{-4} \]
and given inputs that are $-$small, find the sign-size of the outputs of f.

5-5. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +945.77x^4 \]
and given inputs that are \(-large\), find the \textit{place} of the corresponding local graph.

\textbf{5-6.} Let \(f\) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +71.65x^{-4} \]
and given inputs that are \(-large\), find the \textit{place} of the local graph of \(f\).

\textbf{5-7.} Let \(f\) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -82.47x^{+7} \]
and given inputs that are \(+small\), find the \textit{place} of the local graph.

\textbf{5-8.} Let \(f\) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +82.47x^{-7} \]
and given inputs that are \(+small\), find the \textit{place} of the corresponding local graph.

\textbf{5-9.} Let \(f\) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -52.18x^{+5} \]
what is its Local graph \(f\) near \(+\infty\)
5-10. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = -215.56x^{-7}
\]
find the local graph of \(f \) near \(-\infty\).

5-11. Given the function \(MAT \) that is specified by the global input-output rule
\[
x \xrightarrow{MAT} MAT(x) = -42.89x^3
\]
find the local graph of \(MAT \) near \(\infty \).

5-12. Given the function \(QAT \) that is specified by the global input-output rule
\[
x \xrightarrow{QAT} QAT(x) = -49.17x^{-6}
\]
find the local graph of \(QAT \) near \(\infty \).

5-13. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = -876.54x^5
\]
what is Local graph \(f \) near \(0^- \).

5-14. Given the function \(KUT \) that is specified by the global input-output rule
\[
x \xrightarrow{KUT} KUT(x) = -34.04x^{-5}
\]
find the local graph of \(KUT \) near \(0^- \).
5-15. Given the function QOT that is specified by the global input-output rule
\[x \xrightarrow{QOT} QOT(x) = -824.54x^4 \]
find the local graph of QOT near 0?

5-16. Given the function $KNOT$ that is specified by the global input-output rule
\[x \xrightarrow{KNOT} KNOT(x) = +9877.23x^{-3} \]
find the local graph of $KNOT$ near 0?

5-17. Given the function f specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +468.72x^4 \]
what is Height-sign $f \mid_{\text{near } \infty}$

5-18. Let MIA be the function specified by global input-output rule
\[x \xrightarrow{MIA} MIA(x) = +212.84^{-4} \]
find Height-sign $MIA \mid_{\text{near } \infty}$

5-19. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -548.22^{+9} \]
what is Height-sign $f \mid_{\text{near } 0}$
5-20. Let f be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = -84.29x^{-9}
\]
what is Height-sign $f \mid_{\text{near } 0}$

5-21. Let f be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = +654.45x^{+6}
\]
what is Slope-sign $f \mid_{\text{near } \infty}$

5-22. Let f be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = -54.45x^{-2}
\]
what is Slope-sign $f \mid_{\text{near } \infty}$

5-23. Let f be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = -125.54x^{+7}
\]
what is Slope-sign $f \mid_{\text{near } 0}$

5-24. Let f be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = +543.12x^{-7}
\]
what is Slope-sign $f \mid_{\text{near } 0}$
5-25. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +564.55x^5 \]
what is Concavity-sign $f \mid_{\text{near } \infty}$

5-26. Given the function TIA specified by the global input-output rule
\[x \xrightarrow{TIA} TIA(x) = -18.81x^{-5} \]
find Concavity-sign $TIA \mid_{\text{near } \infty}$.

5-27. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -654.73x^2 \]
what is Concavity-sign $f \mid_{\text{near } 0}$

5-28. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +22.07x^{-2} \]
what is Concavity-sign $f \mid_{\text{near } 0}$