7-1. Given the function MAB specified by the global input-output rule
\[x \xrightarrow[MAB]{\ } MAB(x) = (+80.04)x^0 \]
find the local graph of f near ∞.

7-2. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f}{ } f(x) = (-38.29)x^0 \]
what is Local graph $f \mid_{\text{near } 0}$

7-3. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f}{ } f(x) = (-83.29)x^1 \]
what is Local graph $f \mid_{\text{near } \infty}$

7-4. Given the function MEB specified by global Input-Output rule
\[x \xrightarrow[MEB]{\ } MEB(x) = (+29.73)x^1 \]
what is Local graph $MEB \mid_{\text{near } 0}$

7-5. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f}{ } f(x) = (-10.63)x^{-1} \]
what is Local graph $f |_{\text{near } \infty}$

7-6. Let f be the function specified by the global input-output rule
$$x \xrightarrow{f} f(x) = (+42.72)x^{-1}$$
what is Local graph $f |_{\text{near } 0}$

7-7. Let f be the function specified by the global input-output rule
$$x \xrightarrow{f} f(x) = (-89.77)x^0$$
what is Height-sign $f |_{\text{near } \infty}$

7-8. Let f be the function specified by the global input-output rule
$$x \xrightarrow{f} f(x) = (+66.48)x^0$$
what is Height-sign $f |_{\text{near } 0}$

7-9. Let f be the function specified by the global input-output rule
$$x \xrightarrow{f} f(x) = (+15.94)x^0$$
what is Slope-sign $f |_{\text{near } \infty}$
7-10. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = (-63.41)x^0
\]
what is Slope-sign \(f \mid_{\text{near } 0} \)

7-11. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = (-64.81)x^0
\]
what is Concavity-sign \(f \mid_{\text{near } \infty} \)

7-12. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = (+18.75)x^0
\]
what is Concavity-sign \(f \mid_{\text{near } 0} \)

7-13. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = (-64.78)x^0
\]
what is Height-sign \(f \mid_{\text{near } \infty} \)

7-14. Let \(f \) be the function specified by the global input-output rule
\[
x \xrightarrow{f} f(x) = (+66.48)x^1
\]
what is Height-sign \(f \mid_{\text{near } 0} \)
7-15. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (-32.78)x + 1 \]
what is Slope-sign $f|_{\text{near } \infty}$

7-16. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (-19.44)x + 1 \]
what is Height-sign $f|_{\text{near } 0}$

7-17. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+66.48)x + 1 \]
what is Concavity-sign $f|_{\text{near } \infty}$

7-18. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+66.48)x + 1 \]
what is Concavity-sign $f|_{\text{near } 0}$

7-19. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+79.12)x^{-1} \]
what is Height-sign $f|_{\text{near } \infty}$
7-20. Let \(f \) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+66.48)x^0 \]
what is Height-sign \(f \mid_{\text{near } 0} \)

7-21. Let \(f \) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+66.48)x^{-1} \]
what is Slope-sign \(f \mid_{\text{near } \infty} \)

7-22. Let \(f \) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+66.48)x^{-1} \]
what is Slope-sign \(f \mid_{\text{near } 0} \)

7-23. Let \(f \) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (+39.12)x^{-1} \]
what is Height-sign \(f \mid_{\text{near } \infty} \)

7-24. Let \(f \) be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = (-65.12)x^{-1} \]
what is Concavity-sign \(f \mid_{\text{near } 0} \)
7-25. Given the power function f whose local graph near 0 is

what is necessarily true of the global input-output rule of f?

7-26. Given the power function f whose local graph near 0 is

what is necessarily true of the global input-output rule of f?

7-27. Given the power function f whose local graph near 0 is

what is necessarily true of the global input-output rule of f?

7-28. Given the power function f whose local graph near 0 is
what is necessarily true of the global input-output rule of \(f \)?

7-29. Given that a *power* function \(f \) is such that Height-size \(f \big|_{0} \) = \((large, large)\),
what is necessarily true of the global input-output rule of \(f \)?

7-30. Given that a *power* function \(f \) is such that Height-size \(f \big|_{\infty} \) = \((small, small)\),
what is necessarily true of the global input-output rule of \(f \)?

7-31. Given that a *power* function \(f \) is such that Height-sign \(f \big|_{0} \) = \((-,-)\),
what is necessarily true of the global input-output rule of \(f \)?

7-32. Given that a *power* function \(f \) is such that Height-sign \(f \big|_{0} \) = \((-,+),\)
what is necessarily true of the global input-output rule of \(f \)?

7-33. Given that a *power* function \(f \) is such that Height-sign \(f \big|_{\infty} \) = \((-,+),\)
what is necessarily true of the global input-output rule of \(f \)?
7-34. Given that a power function \(f \) is such that \(\text{Height-sign}f|_{\text{near } \infty} = (-, +) \), what is necessarily true of the global input-output rule of \(f \)?

7-35. Given that a power function \(f \) is such that \(\text{Slope-sign}f|_{\text{near } \infty} = (\backslash, /) \), what is necessarily true of the global input-output rule of \(f \)?

7-36. Given that a power function \(f \) is such that \(\text{Slope-sign}f|_{\text{near } 0} = (\backslash, \backslash) \), what is necessarily true of the global input-output rule of \(f \)?

7-37. Given that a power function \(f \) is such that \(\text{Slope-sign}f|_{\text{near } \infty} = (/, /) \), what is necessarily true of the global input-output rule of \(f \)?

7-38. Given that a power function \(f \) is such that \(\text{Slope-sign}f|_{\text{near } 0} = (/, \backslash) \), what is necessarily true of the global input-output rule of \(f \)?