6-1. Let \(f \) be the function specified by the global input-output rule
\[x \overset{f}{\longrightarrow} f(x) = +23.92x^5 \]
find the essential global graph of \(f \).

6-2. Let \(f \) be the function specified by the global input-output rule
\[x \overset{f}{\longrightarrow} f(x) = -82.89x^7 \]
find the essential global graph of \(f \).

6-3. Let \(f \) be the function specified by the global input-output rule
\[x \overset{f}{\longrightarrow} f(x) = +82.89x^4 \]
find the essential global graph of \(f \).

6-4. Let \(f \) be the function specified by the global input-output rule
\[x \overset{f}{\longrightarrow} f(x) = -32.51x^4 \]
find the essential global graph of \(f \).
6-5. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +29.84x^{-7} \]
find the essential global graph of f.

6-6. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -75.83x^{-5} \]
find the essential global graph of f.

6-7. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = +92.56x^{-4} \]
find the essential global graph of f.

6-8. Let f be the function specified by the global input-output rule
\[x \xrightarrow{f} f(x) = -77.02x^{-4} \]
find the essential global graph of f.

6-9. Given the power function f whose local graph near ∞ is
find its local graph near 0.

6-10. Given the power function \(f \) whose local graph near \(\infty \) is

\[
\begin{array}{c|c|c}
\text{Input} & \text{Ruler} & \text{Output} \\
\hline
-\infty & \text{Screen} & +\infty \\
\hline
0 & \text{Screen} & 0 \\
\hline
+\infty & \text{Screen} & -\infty \\
\end{array}
\]

find its local graph near 0.

6-11. Given the power function \(f \) whose local graph near 0 is

\[
\begin{array}{c|c|c}
\text{Input} & \text{Ruler} & \text{Output} \\
\hline
-\infty & \text{Screen} & +\infty \\
\hline
0 & \text{Screen} & 0 \\
\hline
+\infty & \text{Screen} & -\infty \\
\end{array}
\]

find its local graph near \(\infty \).

6-12. Given the power function \(f \) whose local graph near 0 is

\[
\begin{array}{c|c|c}
\text{Input} & \text{Ruler} & \text{Output} \\
\hline
-\infty & \text{Screen} & +\infty \\
\hline
0 & \text{Screen} & 0 \\
\hline
+\infty & \text{Screen} & -\infty \\
\end{array}
\]

find its local graph near \(\infty \).
6-13. Given the *power* function f whose local graph near $+\infty$ is

find its local graph near 0^+.

6-14. Given the *power* function f whose local graph near $-\infty$ is

find its local graph near 0^-.

6-15. Given the *power* function f whose local graph near 0^+ is

find its local graph near $+\infty$.

6-16. Given the *power* function f whose local graph near 0^+ is
6-17. Given the power function \(f \) whose local graph near \(+\infty \) is

find its local graph near \(0^- \).

6-18. Given the power function \(f \) whose local graph near \(+\infty \) is

find its local graph near \(0^- \).

6-19. Given the power function \(f \) whose local graph near \(0^+ \) is
find its local graph near $-\infty$.

6-20. Given the *power* function f whose local graph near 0^- is

find its local graph near $+\infty$.