After having read the chapter pencil in hand and done this HOMEWORK:

i. What’s the most important idea in the CHAPTER? Be brief and specific.

ii. What from this CHAPTER will you need to work on for the EXAM?
 a.
 b.
 c.
Hw 2-1. Given the plot point

![Plot Point Diagram]

of which input-output pair is it the plot point?

a. (+4, +1)
 b. (+4, −1)
 c. (−4, +1)
 d. (−4, −1)
 e. None of the preceding

Hw 2-2. Plot the input-output pair −2, +5

![Input-Output Pair Diagrams]

a.
 b.
 c.
 d.
 e. None of the preceding

Hw 2-3. Which of the following screens, if any, shows large negative outputs?

![Screen Diagrams]

M:
N:
P:
Q:

None of the preceding
a. N, Q b. N c. P d. Q e. None of the preceding

Hw 2-4. Which of the following screens, if any, shows inputs near -3?

![Screens](image)

a. M b. N c. P d. Q e. None of the preceding

Hw 2-5. Which screen(s), if any, show(s) the inputs that are right of ∞?

![Screens](image)

a. M b. N c. P d. Q e. None of the preceding

Hw 2-6. Which of the following specify a function?

\[
\begin{align*}
x & \xrightarrow{M} M(x) = \text{Boss of } x \\
x & \xrightarrow{S} S(x) = \text{Employee of } x \\
x & \xrightarrow{D} D(x) = \text{Cousin of } x \\
x & \xrightarrow{F} F(x) = \text{Spouse of } x
\end{align*}
\]

a. All b. None c. M d. F e. None of the preceding
Hw 2-7. Which of the following tabular relations, if any, IS/ARE function(s)?

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-203</td>
<td>-45</td>
</tr>
<tr>
<td></td>
<td>+22</td>
<td>-351</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>+753</td>
</tr>
<tr>
<td></td>
<td>-57</td>
<td>-36</td>
</tr>
<tr>
<td></td>
<td>+25</td>
<td>-675</td>
</tr>
<tr>
<td></td>
<td>-123</td>
<td>+43</td>
</tr>
<tr>
<td>N</td>
<td>-72</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>-46</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>+391</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>+18</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>+100</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+32</td>
</tr>
<tr>
<td>P</td>
<td>-43</td>
<td>+17</td>
</tr>
<tr>
<td></td>
<td>+17</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-52</td>
<td>-13</td>
</tr>
<tr>
<td></td>
<td>+43</td>
<td>-17</td>
</tr>
<tr>
<td></td>
<td>-356</td>
<td>+17</td>
</tr>
<tr>
<td>Q</td>
<td>-22</td>
<td>+22</td>
</tr>
<tr>
<td></td>
<td>+52</td>
<td>-52</td>
</tr>
<tr>
<td></td>
<td>-456</td>
<td>+456</td>
</tr>
<tr>
<td></td>
<td>+98</td>
<td>-98</td>
</tr>
<tr>
<td></td>
<td>-55</td>
<td>+55</td>
</tr>
<tr>
<td></td>
<td>+209</td>
<td>-209</td>
</tr>
</tbody>
</table>

e. None of the preceding

Hw 2-8. Given the function \(TAB \) specified by the input-output table:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>-203</td>
<td>-36</td>
</tr>
<tr>
<td>+22</td>
<td>-351</td>
</tr>
<tr>
<td>-123</td>
<td>+753</td>
</tr>
<tr>
<td>-57</td>
<td>-36</td>
</tr>
<tr>
<td>+25</td>
<td>-675</td>
</tr>
<tr>
<td>-36</td>
<td>+43</td>
</tr>
</tbody>
</table>

For which input(s) if any, does \(TAB \) return the output -36?

a. +43 b. -203 c. -57 d. -57, -203

e. None of the preceding

Hw 2-9. Which of the following input-output rules

- \(x \xrightarrow{MILL} MILL(x) = -13 \)
- \(x \xrightarrow{NILL} NILL(x) = \text{Number at a distance } x \text{ from } 13 \)
- \(x \xrightarrow{PILL} PILL(x) = \pm 13 \)
- \(x \xrightarrow{QILL} QILL(x) = \text{Number at a distance } 13 \text{ from } x \)

is the input-output rule of a function?

a. MILL b. NILL c. PILL d. QILL

e. None of the preceding

Hw 2-10. Which of the following is/are NOT the graph of a function?
Hw 2-11. Given the function MILT whose quantitative bounded graph is
and given the input -4, what is the output, if any?

a. -3

b. $+2$

c. $+3$

d. No such output

e. None of the preceding

Hw 2-12. Given the function *TILL* whose *quantitative bounded graph* is

![Quantitative Bounded Graph](image)

which input(s), if any, will give the output $+2$?

a. -6

b. $+4$

c. $-6, -1, +3, +6$

d. No such input

e. None of the preceding

Hw 2-13. Given the function *NEAL* specified by the global input-output rule

$$x \xrightarrow{JILL} JILL(x) = -3x - 1$$

and given the input -2, plot the input-output pair
e. None of the preceding