
Epilogue

The reader may have been curious as to what Part II - Inequations and
Equations and Part III - Laurent Polynomials could have in common
or why, of all the topics in algebra, these two were chosen here.

Moreover, in the last two chapters, a new idea made its first appearance,
namely that there are at least two cases when we approximate the result of
a procedure:
• One case is when we compute the powers of a binomial, we can conceiv-

ably do the whole computation but the point was that a lot of the work
involved to get the exact result would really be wasted and that it would
turn out that we would be perfectly happy with only an approximation
of the result.

• The other case is when we divide and there it is not a case where we could
do the whole computation because the division needs not terminate by
itself. Fortunately, since the remainder keeps get smaller and smaller, a
point has to come, sooner or later, where the precision in the quotient
would become unnecessary and so we can terminate and stay with an
approximation of the quotient.

But, while we illustrated the idea of approximation in the case of arith-
metic, we didn’t show where and how the idea of approximation would
come in algebra.

1. Functions
As usual, we need to build things up a bit before we can get to the actual
point.

In the real world, things are always changing, if sometimes very slowly,
and we will begin with is to see how we represent this idea on paper.

1. To perceive that something is changing, it is necessary to look at it
against something else that either does not change at all or that changes
differently. For instance, the amount of income tax changes in terms of
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income, the amount of property tax changes in terms of assets, the amount
of sales tax changes in terms of expenses.
More precisely, in order to observe something changing, we must pair each
of the stages that it goes through in terms of the stages that some reference
thing goes through, if only a clock or a calendar!
EXAMPLE 14. We might say that, in 2003, someone’s income tax was $6,753. Just
to have said that the income tax was $6,753 would not say much since $6,753 was a
lot less money in, say, 2007 than it was in 1913 when income tax was first created.
The reference stages will be called inputs and the stages of what we are
investigating will be called outputs.
We will call function the pairing of input numerators with output nu-
merators that results from any process, device, procedure, agency, con-
verter, exchanger, translator, etc that satisfies the condition that an input
cannot result in more than one output. This, by the way, does not mean
that two inputs cannot result in the same output: they can.
EXAMPLE 15. A parking meter is a function because, given an input, say 1 Quarter,
the parking meter returns a definite amount of parking time, say 30 Minutes. We would
then say that (1 Quarter, 30 Minutes) is an input-output pair.
EXAMPLE 16. A slot machine is not a function because, given an input, say 1 Quarter,
a slot machine could return any number of Quarters.

2. While in some sciences, such as psychology and sociology, func-
tions are usually specified by input-output tables, in other sciences, such
as physics and electronics, functions are usually specified by input-
output rules as follows:
i. We use a letter, usually x, as unspecified input. In other words, we
will be able to replace x by any specific input we want.
ii. We must either have or give a name to the function. In the absence of
any given name, we shall usually use the letter f .
iii. Then, f(x) will stand for the output returned for the input x by the
function f .
EXAMPLE 17. If a function called, say, FUN doubles the input and adds 5 to give
the output, then the input-output rule of FUN is:

x
FUN−−−−−−−−→ FUN(x) = 2x+ 5

Then, the output for a specific input, say 7, is
2x+ 5|x:=7

So, in order to compute the output for the given input 7, we replace all the occurrences
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rational functionof x in the input-output rule by 7 and then we compute

x := 7 FUN−−−−−−−−→ FUN(x)|x:=7 = 2x+ 5|x:=7
= 2 · 7 + 5
= 14 + 5
= 19

We can then write
7 FUN−−−−−−−−→ FUN(7) = 19

3. A particular type of function, called rational function, is when the
output is in the form of a fraction where both the top and the bottom are
polynomials.
EXAMPLE 18. The function RAT whose input-output rule is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8

is a rational function.
When the input is, say, 3, we compute the output as follows:

x := 3 RAT−−−−−−−−→ RAT (x)|x:=3 = 3x2 + 5x− 4
x3 − 8

∣∣∣∣
x:=3

= 3 · (3)2 + 5 · (3)− 4
(3)3 − 8

= 27 + 15− 4
27 − 8

= 38
19

= 2

4. We shall now look at two kinds of problems that we encounter in the
investigation of functions:
• Local investigations in which the main tools are those of Part III -

Laurent Polynomials
• Global investigations in which the main tools are those of Part II -

Inequations and Equations
and, in fact, if perhaps surprisingly, local and global problems have almost
nothing in common in the sense that usually no amount of local investigation
will help in a global problem and, vice versa, no global investigation will shed
much light on a local problem.

2. Local Problems
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While it is usually relatively easy to compute the output of a given function
for a given input, this is usually not what we are after because knowing
what the output is for a given input may say nothing about the output for
a second input even when the second input is very close to the first input.

1. Most of the time, indeed, two inputs that are close will give outputs
that are also close.
EXAMPLE 19. Given the function RAT whose input-output rule is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8

we saw in EXAMPLE 5 that the input 3 gives the output 2 and we would like now to
get the output when the input is near 3, say when it is 3.1.

x := 3 + 0.1 RAT−−−−−−−−→ RAT (x)|x:=3+0.1 = 3x2 + 5x− 4
x3 − 8

∣∣∣∣
x:=3+0.1

= 3 · (3 + 0.1)2 + 5 · (3 + 0.1)− 4
(3 + 0.1)3 − 8

= 3 · [32 + (...)] + 5 · [3 + (...)]− 4
[33 + (...)]− 8

= 27 + (...) + 15 + (...)− 4 + (...)
27 + (...)− 8

= 38 + (...)
19 + (...)

= 2 + (...)

So, we have that
3.1 RAT−−−−−−−−→ RAT (3.1) = 2 + (...)

In other words, the input 3.1 which is close to the input 3 gives an output that is close
to the output of 3.

2. Quite often, though, it can happen that two inputs that are close will
give outputs that are far apart.
EXAMPLE 20. Given again the function RAT whose input-output rule is

x
RAT−−−−−−−−→ RAT (x) = 3x2 + 5x− 4

x3 − 8

we will now show that, while the inputs 1.9 and 2.1 are close, their outputs are far
apart.
In order to save time and energy, we will compute the output for 2 + h and only at the
end we will replace h by −0.1 on the one hand and by +0.1 on the other hand.



235

x := 2 + h RAT−−−−−−−−→ RAT (x)|x:=2+h = 3x2 + 5x− 4
x3 − 8

∣∣∣∣
x:=2+h

= 3 · (2 + h)2 + 5 · (2 + h)− 4
(2 + h)3 − 8

= 3 · [22 + 2 · 2 · h+ (...)] + 5 · [2 + h]− 4
[23 + 3 · 22 · h+ (...)]− 8

= 12 + 12h+ (...) + 10 + 5h− 4
8 + 12h+ (...)− 8

= 18 + 17h+ (...)
12h+ (...)

and the division in ascending exponents gives

= 18
12h

−1 + (...)

Now:
• when we replace h by −0.1, we get that

x := 2− 0.1 RAT−−−−−−−−→ RAT (x)|x:=2−0.1 = 18
12 · (−0.1)−1 + (...)

= 18
12 · (−10) + (...)

= −180
12 + (...)

= −15 + (...)

• while when we replace h by +0.1, we get that

x := 2 + 0.1 RAT−−−−−−−−→ RAT (x)|x:=2+0.1 = 18
12 · (+0.1)−1 + (...)

= 18
12 · (+10) + (...)

= +180
12 + (...)

= +15 + (...)

so that, even though the inputs were only 0.2 apart, their outputs are 30 + (...) apart.
3. While we may tend to expect functions to give large outputs only

for large inputs, this is far from being necessarily the case. In fact, most
rational functions do not behave that way at all and
• large inputs can give non-large outputs,
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zero
pole

EXAMPLE 21. Given the function TIT whose input-output rule is

x
TIT−−−−−−−−→ TIT (x) = 3x+ 2

x3 + 5
we compute its output when the input is 1, 000:

x := 1, 000 TIT−−−−−−−−→ TIT (x)|x:=1,000 = 3x+ 2
x3 + 5

∣∣∣∣
x:=1,000

= 3 · 1, 000 + (...)
1, 0003 + (...)

= 3, 000 + (...)
1, 000, 000, 000 + (...)

= 3
1, 000, 000 + (...)

= 0.000003 + (...)

which is certainly non-large.
• non-large inputs can give large outputs.

EXAMPLE 22. Given the function TAT whose input-output rule is

x
TAT−−−−−−−−→ TAT (x) = x

2 + 3
x− 7

we compute its output when the input is 7.01. In fact, we compute the output
when the input is 7 + h and we let h := 0.01 only at the end:

x := 7 + h TAT−−−−−−−−→ TAT (x)|x:=7+h = x
2 + 3
x− 7

∣∣∣∣
x:=7+h

= (7 + h)2 + 3
(7 + h)− 7

= [72 + (...)] + 3
h

= 72 + 3 + (...)
h

= 52
h

+ (...)

and when we replace h by 0.01, we get that the output is 5, 200 which is certainly
large.
An input near which the outputs are small is called a zero because the
output for a zero is 0. By symmetry, an input near which the outputs
are large is called a pole and we will say that the output for a pole is
∞.
4. More generally, given inputs that are either:
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• near and on either side of a non-large input x0
or
• near and on either side of ∞, that is that are large in size

local investigations can be about finding:
• the sign of the slope, that is whether the graph of the function is going

up or going down,
• the sign of the bending, that is whether the graph of the function is

bending up or bending down,
• whether the output is the largest or the smallest as compared to the

outputs for neighboring inputs.

3. Global Problems
Global problems are those where we are looking for input(s), if any, whose
output has a required feature.

1. Just as with what was already the case in Part II - Inequations
and Equations, the zeros, that is the inputs whose output is 0 play an
important role in the investigation of functions. But, in the case of rational
functions, the pole(s), that is the inputs whose output is ∞, also play an
important role.

EXAMPLE 23. Given the rational function HOM whose input-output rule is:

x
HOM−−−−−−−−−→ HOM(x) = 3x− 15

7x+ 14
find the input(s), if any, whose output is positive.
In other words, we need to solve the rational problem in which the data set consists of
all signed decimal numerators

3x− 15
7x+ 14 > 0

which we do essentially in the same manner as in Part II - Inequations and
Equations, that is we use the PASCH PROCEDURE:

I. We determine the boundary of the solution subset. These are
• the solution(s), if any, of the associated equation 3x− 15

7x+ 14 = 0, that is the zero(s),
if any, of the function HOM , that is the solution(s), if any, of the equation

3x− 15 = 0
• the solution(s), if any, of the associated equation 3x− 15

7x+ 14 =∞, that is the pole(s),
if any, of the function HOM , that is the solution(s), if any, of the equation

7x+ 14 = 0
In other words, the boundary is the solution subset of the associated double problem

or
{

3x− 15 = 0
7x+ 14 = 0
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Proceeding as in Chapter 12, we get that the graph of the boundary is:

–2–! +!

Boundary

+5

II. We determine the interior of the solution subset by testing each one of the three
sections separated by the boundary points and then using the PASCH THEOREM. We
get that the graph of the interior is

–2–! +!

Interior

+
5

III. Altogether, the inputs whose output by the function HOM is positive are rep-
resented by:
• The graph of the solution subset is (we use DEFAULT RULE #4)

–
2–! +!+

5

• The name of the solution subset is(
−∞,−2

)
∪
(

+ 5,+∞
)

2. More generally, global investigations can be about finding:
• all those input(s), if any, for which the slope of the local graph is equal

to 0,
• all those input(s), if any, for which the local graph goes up (or goes

down),
• all those input(s), if any, for which the bending of the local graph is equal

to 0,
• all those input(s), if any, for which the local graph bends up (or bends

down),
• all those input(s), if any, whose output is larger (or smaller) than

the output of all neighboring inputs.

4. Conclusion
While its purpose was to show both how Part II - Inequations and
Equations and Part III - Laurent Polynomials were fundamental
tools in the investigation of functions and how unavoidable, but also how
powerful a tool, was the idea of approximation, this Epilogue couldn’t really
do justice to a very rich subject called the differential calculus and,
beyond that, to its extension called initial value problems.

We are however unable to resist ending this book with an example of an
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initial value problem.
EXAMPLE 24. Imagine a pond with an inexhaustible amount of weeds in which there
are two populations of fish:
• Herbivorous fish, that is fish that feed on the weeds,
• Carnivorous fish, that is fish that feed on the herbivorous fish.
We would like to follow these two populations as time goes by.

Suppose we know what the two populations are at the beginning of time, for
instance that there are many more herbivorous fish than carnivorous fish. Then the
population of carnivorous fish is going to go up. But, as the population of carnivorous
fish goes up, they eat more and more of the herbivorous fish whose population is going
to go down. But then, so will the population of carnivorous fish. Etc.

What seems to be critical here are the relative rates at which the two populations
of fish reproduce and grow and, from that knowledge, one should be able to figure out
what the the two populations are going to be at any time.

On paper, one represents each one of the two populations by a function whose
input is time and whose output is the number of fish. One then tries to write equations
that represent the real-world situation just described and, in fact, this representation
of the real-world situation is called the Lotka-Volterra’s double differential equation
problem after the two people who first wrote and investigated, independently of each
other, these equations.

Hopefully, then, this Epilogue will turn out to be only a Prologue to a
thorough investigation of functions, a concept central not only to math-
ematics but to many other scientific subjects as well.
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