Chapter 8

Signed Addition

Attaching Collections of Oriented Items, 1 • Adding Signed Number Phrases, 3 • Architecture, 6.

8.1 Attaching Collections of Oriented Items

Attaching an add-on collection of oriented items to an initial collection of oriented items is almost as simple as attaching an add-on collection of plain items to an initial collection of plain items. The only difference is that we must check the orientation of the items in the add-on collection against the orientation of the items in the initial collection.

- When the orientation of the items in the add-on collection is the same as the orientation of the items in the initial collection, the attachment process is exactly the same as with collections of plain items.

Example 8.1. To perform the action of attaching
initial collection, that is:

we attach the add-on collection to the initial collection:
and, since the orientation of the initial items is \emph{the same as} the orientation of the attached items, there is no cancellation and the \emph{final collection} is

\begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

Example 8.2. To perform the \emph{action} of attaching \begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center} to the \emph{initial collection} \begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}, that is:

\begin{center}
\begin{tikzpicture}
\node at (0,0){Attach};
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

we attach the add-on collection to the initial collection:

\begin{center}
\begin{tikzpicture}
\node at (0,0){Attach};
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

and, since the orientation of the initial items is \emph{the same as} the orientation of the attached items, there is no cancellation and the \emph{final collection} is

\begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

\begin{itemize}
\item When the orientation of the items in the add-on collection is \emph{the opposite of} the orientation of the items in the initial collection, there is going to be \emph{cancellation} of the items of \emph{opposite orientation}.
\end{itemize}

Example 8.3. To perform the \emph{action} of attaching \begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center} to the \emph{initial collection} \begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}, that is:

\begin{center}
\begin{tikzpicture}
\node at (0,0){Attach};
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

we attach the add-on collection to the initial collection:

\begin{center}
\begin{tikzpicture}
\node at (0,0){Attach};
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}

but, since the orientation of the initial items collection is \emph{the opposite of} the orientation of the attached items, there are two cancellations and the \emph{final collection} is

\begin{center}
\begin{tikzpicture}
\begin{scope}
\draw[<->,thick] (0,0) -- (1,0);
\draw[->,thick] (1,0) -- (2,0);
\draw[->,thick] (2,0) -- (3,0);
\draw[->,thick] (3,0) -- (4,0);
\end{scope}
\end{tikzpicture}
\end{center}
8.2 Adding Signed Number Phrases

1. We saw in Chapter 5 that real world *agents of change* are represented on paper by *functions* which we specify with an *input-output rule* that consists of:
 i. An *unspecified input* eventually to be replaced by *specific inputs*, that is the number phrases that represent the *initial collections*.
 ii. A *function name*, that is the name of the function that represents the agent of change.
 iii. The *output specifying code* which is the code that specifies the output of the function in terms of the input. The *specific outputs* are the number phrases that represent the final collections.

Thus, the real world *action*

\[
\text{Initial collection} \xrightarrow{\text{Agent of Change}} \text{Final collection}
\]

is represented on paper by the *input-output rule*:

<table>
<thead>
<tr>
<th>Unspecified input</th>
<th>Name of function</th>
<th>Output-specifying code</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be replaced by specific inputs</td>
<td>Specifies what to do with the inputs to get the outputs</td>
<td></td>
</tr>
</tbody>
</table>

2. It will be most important to know what we are talking about:
3. Just as with plain addition, we represent the action of attaching an add-on collection of oriented items to a collection of oriented items by the input-output rule of a signed adding function, often called signed addition for short.

\[
\text{Input signed numerator} \quad \oplus \quad \text{signed numerator} \quad \rightarrow \quad \text{Output numerator} = \quad \text{Input signed numerator} \quad \oplus \quad \text{signed numerator}
\]

4. Just like, in the real world, we must check if the orientation of the items in the add-on collection is the same as or the opposite of the orientation of the items in the initial collection, in the paper world we must check if the sign of the add-on numerator is the same as or the opposite of the sign of the input numerator.

- When the sign of the add-on numerator is the same as the sign of the input numerator, then:
 - The sign of the output numerator is the sign common to the input numerator and the add-on numerator
 - The size of the output numerator is the plain addition of the size of the add-on numerator to the size of the input numerator

Example 8.5. The real world attachment

\[
\begin{array}{c}
\text{Attach} \\
\end{array}
\begin{array}{c}
\text{Arrows} \\
\text{Arrows} \quad \oplus \quad -3 \text{Arrows} \quad \rightarrow \quad -2 \text{Arrows} \quad \oplus \quad -3 \text{Arrows} \\
\quad = \quad (2 + 3) \text{Arrows} \\
\quad = \quad -5 \text{Arrows}
\end{array}
\]

where \(2 + 3 = 5\) is the plain addition of the sizes.
8.2. Adding Signed Number Phrases

Example 8.6. The real world attachment

![Diagram of real world attachment]

is represented in the paper world by

\[+2 \text{ Arrows} \oplus +3 \text{ Arrows} \rightarrow + (2 + 3) \text{ Arrows} = +5 \text{ Arrows} \]

where \(2 + 3 = 5\) is the plain addition of the sizes.

- When the sign of the add-on numerator is the opposite of the sign of the input numerator, we must compare the size of the add-on numerator to the size of the input numerator in order to know which way to plain subtract the sizes:
 - The sign of the output numerator will be the sign of the numerator with the larger size,
 - The size of the output numerator will be the result of plain subtracting the numerator with smaller size from the numerator with larger size.

Example 8.7. The real world attachment

![Diagram of real world attachment]

is represented in the paper world by

\[+2 \text{ Arrows} \oplus -3 \text{ Arrows} \rightarrow + (3 - 2) \text{ Arrows} = -1 \text{ Arrows} \]

where \(3 - 2 = 1\) is the plain subtraction of the smaller size from the larger size.

Example 8.8. The real world attachment

![Diagram of real world attachment]

is represented in the paper world by
prior knowledge

\[
-2 \text{ Arrows} \oplus +4 \text{ Arrows} \rightarrow -2 \text{ Arrows} \oplus +4 \text{ Arrows} = +(4 - 2) \text{ Arrows} = +2 \text{ Arrows}
\]

where \(4 - 2 = 1\) is the plain subtraction of the smaller size from the larger size.

5. Here are a few examples that focus on the numerators.

Example 8.9. \(\oplus 3 \oplus -5 = (3 + 5) = 8\)

where, since the two numerators have the same signs:
- the sign of the result, \(8\), is the common sign,
- the size of the result, \(8\), is the plain addition, \(3 + 5\), of the sizes

Example 8.10. \(\oplus 3 \oplus +5 = (3 + 5) = 8\)

where, since the two numerators have the same signs:
- the sign of the result, \(8\), is the common sign,
- the size of the result, \(8\), is the plain addition, \(3 + 5\), of the sizes

Example 8.11. \(\oplus -3 \oplus +5 = (5 - 3) = 2\)

where, since the two numerators have opposite signs:
- the sign of the result, \(2\), is the sign of the numerator with the larger size,
- the size of the result, \(2\), is the plain subtraction, \(5 - 3\), of the smaller size from the larger size.

Example 8.12. \(\oplus -3 \oplus -5 = (5 - 3) = 2\)

where, since the two numerators have opposite signs:
- the sign of the result, \(2\), is the sign of the numerator with the larger size,
- the size of the result, \(2\), is the plain subtraction, \(5 - 3\), of the smaller size from the larger size.

8.3 Architecture

Dealing with signed numerators was based on a prior knowledge of plain numerators. (To help us focus, we will deal here with counting numerators but things are exactly the same with decimal numerators.)
1. In order to represent collections of plain items, we used:
 i. Plain numerators, 1, 2, 3, ...
 ii. In order to compare a first plain numerator to a second plain numerator, the procedure was to count from the first plain numerator to the second plain numerator and if we had to count up then the verb was < and if we had to count down the verb was >.
 iii. In order to add to a first plain numerator a second plain numerator, the symbol was + and the procedure was, starting from the first plain numerator, to count up on our fingers the second plain numerator. Then the plain numerator we arrive at was the result.
 iv. In order to subtract from a first plain numerator a second plain numerator, the symbol was − and the procedure was, starting from the first plain numerator, to count down on our fingers the second plain numerator. Then, if we could do it, the plain numerator we arrived at was the result.

So, our tool was counting.

2. In order to represent collection of oriented items, we used:
 i. Signed numerators whose sign was one of two symbols, + or − (unfortunately already used above) and whose size was a plain numerator.
 ii. In order to compare a first signed numerator to a second signed numerator, the procedure was still to count from the first signed numerator to the second signed numerator and if we had to count up then the verb was ⋄ and if we had to count down the verb was ⋋. Note, though, that this was signed counting since we also had to be able to count on negative numerators.
 iii. In order to oplus to a first signed numerator a second signed numerator, the procedure was quite a bit more complicated because:
 • The procedure was forked:

```
| Is second signed numerator same sign as first signed numerator? |
|-----------------|----------------|
| yes             | no             |

Sign of result is common sign
Size of result is:
  size first signed numerator
  + size second signed numerator

Sign of result is sign of numerator with larger size.
Size of result is:
  size of signed numerator with larger size
  − size of signed numerator with smaller size
```

but also because
• We had to compare, add, subtract plain numerators, namely the sizes of the signed numerators.

Altogether then, oplussing signed numerator is based on prior knowledge of plain numerators.
Index

⊕, 4

add-on collection of oriented items, 1

forked, 7
function, 3
function name, 3

input-output rule, 3

oplussing, 4
output specifying code, 3

plain adding, 4
prior knowledge, 6

signed adding function, 4
signed addition, 4
specific inputs, 3
specific outputs, 3

tool, 7

unspecified input, 3